
9 � More tools

9.1. Regular expressions
We have usedsed to replace one string with another. But, what happens here?

; echo foo.xcc | sed ’s/.cc/.c/g’
foo..c
; echo focca.x | sed ’s/.cc/.c/g’
f.ca.x

We need to learn more.

In addresses of the form/text/ and in commands likes/text/other/ , the stringtext is
not a string forsed . This happens to many other programs that search for things. For example,
we have usedgrep to print only lines containing a string. Well, thestring given to grep, like in

; grep string file1 file2 ...

is not a string. It is aregular expression. A regular expression is a little language. It is very use-
ful to master it, because many commands employ regular expressions to let you do complex
things in an easy way.

The text in a regular expression represents many different strings. You have already seen
something similar. The*.c in the shell, used for globbing, is very similar to a regular expres-
sion. Although it has a slightly different meaning. But you know that in the shell,*.c matches
with many different strings. In this case, those that are file names in the current directory that hap-
pen to terminate with the characters�.c �. That is what regular expressions, orregexps, are for.
They are used to select or match text, expressing the kind of text to be selected in a simple way.
They are a language on their own. A regular expression, as known bysed , grep , and many oth-
ers, is best defined recursively, as follows.

" Any single charactermatches the string consisting of that character. For example,a matches
a, but notb.

" A single dot,�. �, matchesany single character. For example,�. � matchesa andb, but not
ab .

" A set of characters, specified by writing a string within brackets, like[abc123] , matches
any character in the string. This example would matcha, b, or 3, but notx . A set of char-
acters, but starting witĥ, matches any characternot in the set. For example,[^abc123]
matchesx , but not1, which is in the string that follows thê. A range may be used, like in
[a-z0-9] , which matches any single character that is a letter or a digit.

" A single ^ , matches the start of the text. And a single$, matches the end of the text.
Depending on the program using the regexp, the text may be a line or a file. For example,
when usinggrep , a matches the charactera at any place. However,̂ a matchesa only
when it is the first character in a line, and^a$ also requires it to be the last character in the
line.

" Two regular expressions concatenated match any text matching the first regexp followed by
any text matching the second. This is more hard to say than it is to understand. The expres-
sion abc matchesabc becausea matchesa, b matchesb, and so on. The expression
[a-z]x matches any two characters where the first one matches[a-z] , and the second
one is anx .

" Adding a* after a regular expression, matches zero or any number of strings that match the
expression. For example,x* matches the empty string, and alsox , xx , xxx , etc. Beware,
ab* matchesa, ab , abb , etc. But it doesnot matchabab . The* applies to the preceding
regexp, with is justb in this case.

- 2 -

" Adding a+ after a regular expression, matches one or more strings that match the previous
regexp. It is like* , but there has to be at least one match. For example,x+ does not match
the empty string, but it matches every other thing matched byx* .

" Adding a? after a regular expression, matches either the empty string or one string match-
ing the expression. For example,x? matchesx and the empty string. This is used to make
parts optional.

" Different expressions may be surounded by parenthesis, to alter grouping. For example,
(ab)+ matchesab , abab , etc.

" Two expressions separated by| match anything matched either by the first, or the second
regexp. For example,ab|xy matchesab , andxy .

" A backslash removes the special meaning for any character used for syntax. This is called a
escape character. For example,(is not a well-formed regular expression, but\(is, and
matches the string(. To use a backslash as a plain character, and not as a escape, use the
backslash to escape itself, like in\\ .

That was a long list, but it is easy to learn regular expressions just by using them. First, let’s
fix the ones we used in the last section. This is what happen to us.

; echo foo.xcc | sed ’s/.cc/.c/g’
foo..c
; echo focca.x | sed ’s/.cc/.c/g’
f.ca.x

But we wanted to replace.cc , and notany character and acc . Now we know that the first argu-
ment to thesed commands , is a regular expression. We can try to fix our problem.

; echo foo.xcc | sed ’s/\.cc/.c/g’
foo.xcc
; echo focca.x | sed ’s/\.cc/.c/g’
focca.x

It seems to work. The backslash removes the special meaning for the dot, and makes it match just
one dot. But this may still happen.

; echo foo.cc.x | sed ’s/\.cc/.c/g’
foo.c.x

And we wanted to replace only the extension for file names ending in.cc . We can modify our
expression to match.cc only when immediately before the end of the line (which is the string
being matched here).

; echo foo.cc.x | sed ’s/\.cc$/.c/g’
foo.cc.x
; echo foo.x.cc | sed ’s/\.cc/.c/g’
foo.x.c

Sometimes, it is useful to be able to refer to text that matched part of a regular expression. Sup-
pose you want to replace the variable nametext with word in a program. You might try with
s/text/word/g , but it would change other identifiers, which is not what you want.

- 3 -

; cat f.c
void
printtext(char* text)
{

print("[%s]", text);
}
; sed ’s/text/word/g’ f.c
void
printword(char* word)
{

print("[%s]", word);
}

The change is only to be done ifword is not surounded by characters that may be part of an iden-
tifier in the program. For simplicity, we will assume that these characters are just[a-z0-9_] .
We can do what follows.

; sed ’s/([^a-z0-9_])text([^a-z0-9_])/\1word\2/g’ f.c
void
printtext(char* word)
{

print("[%s]", word);
}

The regular expression[^a-z0-9_]text[^a-z0-9_] means�any character that may not be
part of an identifier�, thentext , and then�any character that may not be part of an identifier�.
Because the substitution affectsall the regular expression, we need to substitute the matched
string with another one that hasword instead oftext , but keeping the characters matching
[^a-z0-9_] before and after the stringtext . This can be done by surounding in parentheses
both [^a-z0-9_] . Later, in the destination string, we may use\1 to refer to the text matching
the first regexp within parenthesis, and\2 to refer to the second.

Becauseprinttext is not matched by[^a-z0-9_]text[^a-z0-9_] , it was
untouched. However,�#text) � was matched. In the destination string,\1 was a white space,
because that is what matched the first parenthesized part. And\2 was a right parenthesis, because
that is what matched the second one. As a result, we left those characters untouched, and used
them ascontext to determine when to do the substitution.

Regular expressions permit to clean up source files in an easy way. In may cases, it makes
no sense to keep white space at the end of lines. This removes them.

; sed ’s/[]*//’

We saw that a scriptt+ can be used to indent text in Acme. Here it is.

; cat /bin/t+
#!/bin/rc
sed ’s/^/ /’
;

This other script removes one level of indentation.

; cat /bin/t-
#!/bin/rc
sed ’s/^ //’
;

There are many other useful uses of regular expressions, as you will be able to see from here to
the end of this book. In many cases, your C programs can be made more flexible by accepting
regular expressions for certain parameters instead of mere strings. For example, an editor might
accept a regular expression that determines if the text is to be shown using aconstant width

- 4 -

font or aproportional width font. For file names matching, say.*\.[ch] , it could use a con-
stant width font, to show C source code like you might be acustomed to see it.

It turns out that it istrivial to use regular expressions in a C program, by using theregexp
library. The expression iscompiled into a description more amenable to the machine, and the
resulting data structure (called aReprog) can be used for matching strings against the expres-
sion. This program accepts a regular expression as a parameter, and then reads one line at a time.
For each such line, it reports if the string read matches the regular expression or not.

match.c________
#include <u.h>

#include <libc.h>

#include <regexp.h>

void

main(int argc, char* argv[])

{

Reprog* prog;

Resub sub[16];

char buf[1024];

int nr, ismatch, i;

if (argc != 2){

fprint(2, "usage: %s regexp\n", argv[0]);

exits("usage");

}

prog = regcomp(argv[1]);

if (prog == nil)

sysfatal("regexp ’%s’: %r", buf);

for(;;){

nr = read(0, buf, sizeof(buf)-1);

if (nr <= 0)

break;

buf[nr] = 0;

ismatch = regexec(prog, buf, sub, nelem(sub));

if (!ismatch)

print("no match\n");

else {

print("matched: ’");

write(1, sub[0].sp, sub[0].ep - sub[0].sp);

print("’\n");

}

}

exits(nil);

}

The call toregcomp compiles the regular expression intoprog . Later,regexec executes the
compiled regular expression to determine if it matches the string just read inbuf . The parameter
sub points to an array of structures that keeps information about the match. The whole string

- 5 -

matching starts at the character pointed to bysub[0].sp and terminates right before the one
pointed to bysub[0].ep . Other entries in the array report which substring matched the first
parenthesized expression in the regexp,sub[1] , which one matched the second one,sub[2] ,
etc. They are similar to\1 , \2 , etc. This is an example session with the program.

; 8.out ’*.c’ The * needs something on the left!
regerror: missing operand for *

; 8.match ’\.[123]’
x123
no match
.123
matched: ’.1’
x.z
no match
x.3
matched: ’.3’

9.2. Searching
We can revisit the first example in this chapter, finding function definitions. This script does just
that, if we follow the style convention for declaring functions that was shown at the beginning of
this chapter. First, we try to usegrep to print just the source line where the functioncat is
defined in the file/sys/src/cmd/cat.c . Our first try is this.

; grep cat /sys/src/cmd/cat.c
cat(int f, char *s)

argv0 = "cat";
cat(0, "<stdin>");

cat(f, argv[i]);

Which is not too helpful. All the lines contain the stringcat , but we want only the lines where
cat is at the beggining of line, followed by an open parenthesis. Second attempt.

; grep ’^cat\(’ /sys/src/cmd/cat.c
cat(int f, char *s)

At least, this prints just the line of interest to us. However, it is useful to get the file name and line
number before the text in the line. That output can be used to point an editor to that particular file
and line number. Becausegrep prints the file name when more than one file is given, we could
use/dev/null as a second file where to search for the line. It would not be there, but it would
makegrep print the file name.

; grep ’^cat\(’ /sys/src/cmd/cat.c /dev/null
/sys/src/cmd/cat.c:cat(int f, char *s)

Giving the option-n to grep makes it print the line number. Now we can really search for func-
tions, like we do next.

; grep -n ’^cat\(’ /sys/src/cmd/*.c
/sys/src/cmd/cat.c:5: cat(int f, char *s)

And because this seems useful, we can package it as a shell script. It accepts as arguments the
names for functions to be located. The commandgrep is used to search for such functions at all
the source files in the current directory.

- 6 -

#!/bin/rc
rfork e
for (f in $*)

grep -n ’^’$f’\(’ *.[cCh]

How can we usegrep to search for-n ? If we try, grep would get confussed, thinking that we
are supplying an option. To avoid this, the-e option tellsgrep that what follows is a regexp to
search for.

; cat text
Hi there
How can we grep for -n?
Who knows!
; grep -n text
; grep -e -n text
how can we grep for -n?

There are other useful options. For example, if may want to locate lines in the file for a chapter of
this book where we mention figures. However, if the wordfigure is in the middle of a sentence
it would be all lowercase. When it is starting a sentece, it would be capitalized. We must search
both forFigure andfigure. The flag-i makesgrep become case-insensitive. All the text
read is converted to lowercase before matching the expression.

; grep -i figure ch1.ms
Each window shows a file or the output of commands. Figure
figure are understood by acme itself. For commands
shown in the figure would be
...and other matching lines

A popular searching task is determining if a file containing a mail message is spam or not. Today,
it would not work, because spammers employ heavy armoring, and even send their text encoded
in multiple images sent as HTML mail. However, it was popular to see if a mail message con-
tained certain expressions, if it did, it was considered spam. Because there will be many expres-
sions, we may keep them in a file. The option-f for grep takes as an argument a file contain-
ing all the expressions to search for.

; cat patterns
Make money fast!
Earn 10+ millions
(Take|use) viagra for a (better|best) life.
; if (grep -i -f patterns $mailfile) echo $mailfile is spam

Show diff, to search for differences. See the script bdiff

9.3. AWK
A simple calculator. Pickup some examples from your bin

9.4. More complex things

Show the scripts to replace strings. Show the script to automatically add users from a list of
people.

Show eval. Use walk as an example. Show doctype also.

- 7 -

must talk about other file systems, plumber, cdfs, tarfs, upasfs, the dump

