ref: 56cc2ad446e920164e823e78a21972cadb339bfc
parent: 86b9c9347f99174f4fea3e9deca5800e57a987f2
author: David Turner <[email protected]>
date: Sat Jun 19 06:26:53 EDT 2021
[smooth] Implement Bezier quadratic arc flattenning with DDA Benchmarking shows that this provides a very slighty performance boost when rendering fonts with lots of quadratic bezier arcs, compared to the recursive arc splitting, but only when SSE2 is available, or on 64-bit CPUs. On a 2017 Core i5-7300U CPU on Linux/x86_64: ./ftbench -p -s10 -t5 -cb .../DroidSansFallbackFull.ttf Before: 4.033 us/op (best of 5 runs for all numbers) After: 3.876 us/op ./ftbench -p -s60 -t5 -cb .../DroidSansFallbackFull.ttf Before: 13.467 us/op After: 13.385 us/op
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,5 +1,17 @@
2021-07-15 David Turner <[email protected]>
+ [smooth] Implement Bezier quadratic arc flattenning with DDA
+
+ Benchmarking shows that this provides a very slighty performance
+ boost when rendering fonts with lots of quadratic bezier arcs,
+ compared to the recursive arc splitting, but only when SSE2 is
+ available, or on 64-bit CPUs.
+
+ * src/smooth/ftgrays.c (gray_render_conic): New implementation
+ based on DDA and optionally SSE2.
+
+2021-07-15 David Turner <[email protected]>
+
[smooth] Minor speedup to smooth rasterizer
This speeds up the smooth rasterizer by avoiding a conditional
--- a/src/smooth/ftgrays.c
+++ b/src/smooth/ftgrays.c
@@ -993,7 +993,189 @@
#endif
+/* Benchmarking shows that using DDA to flatten the quadratic bezier
+ * arcs is slightly faster in the following cases:
+ *
+ * - When the host CPU is 64-bit.
+ * - When SSE2 SIMD registers and instructions are available (even on x86).
+ *
+ * For other cases, using binary splits is actually slightly faster.
+ */
+#if defined(__SSE2__) || defined(__x86_64__) || defined(__aarch64__) || defined(_M_AMD64) || defined(_M_ARM64)
+#define BEZIER_USE_DDA 1
+#else
+#define BEZIER_USE_DDA 0
+#endif
+
+#if BEZIER_USE_DDA
+
+#include <emmintrin.h>
+
static void
+ gray_render_conic( RAS_ARG_ const FT_Vector* control,
+ const FT_Vector* to )
+ {
+ FT_Vector p0, p1, p2;
+
+ p0.x = ras.x;
+ p0.y = ras.y;
+ p1.x = UPSCALE( control->x );
+ p1.y = UPSCALE( control->y );
+ p2.x = UPSCALE( to->x );
+ p2.y = UPSCALE( to->y );
+
+ /* short-cut the arc that crosses the current band */
+ if ( ( TRUNC( p0.y ) >= ras.max_ey &&
+ TRUNC( p1.y ) >= ras.max_ey &&
+ TRUNC( p2.y ) >= ras.max_ey ) ||
+ ( TRUNC( p0.y ) < ras.min_ey &&
+ TRUNC( p1.y ) < ras.min_ey &&
+ TRUNC( p2.y ) < ras.min_ey ) )
+ {
+ ras.x = p2.x;
+ ras.y = p2.y;
+ return;
+ }
+
+ TPos dx = FT_ABS( p0.x + p2.x - 2 * p1.x );
+ TPos dy = FT_ABS( p0.y + p2.y - 2 * p1.y );
+ if ( dx < dy )
+ dx = dy;
+
+ if ( dx <= ONE_PIXEL / 4 )
+ {
+ gray_render_line( RAS_VAR_ p2.x, p2.y );
+ return;
+ }
+
+ /* We can calculate the number of necessary bisections because */
+ /* each bisection predictably reduces deviation exactly 4-fold. */
+ /* Even 32-bit deviation would vanish after 16 bisections. */
+ int shift = 0;
+ do
+ {
+ dx >>= 2;
+ shift += 1;
+ }
+ while (dx > ONE_PIXEL / 4);
+
+ /*
+ * The (P0,P1,P2) arc equation, for t in [0,1] range:
+ *
+ * P(t) = P0*(1-t)^2 + P1*2*t*(1-t) + P2*t^2
+ *
+ * P(t) = P0 + 2*(P1-P0)*t + (P0+P2-2*P1)*t^2
+ * = P0 + 2*B*t + A*t^2
+ *
+ * for A = P0 + P2 - 2*P1
+ * and B = P1 - P0
+ *
+ * Let's consider the difference when advancing by a small
+ * parameter h:
+ *
+ * Q(h,t) = P(t+h) - P(t) = 2*B*h + A*h^2 + 2*A*h*t
+ *
+ * And then its own difference:
+ *
+ * R(h,t) = Q(h,t+h) - Q(h,t) = 2*A*h*h = R (constant)
+ *
+ * Since R is always a constant, it is possible to compute
+ * successive positions with:
+ *
+ * P = P0
+ * Q = Q(h,0) = 2*B*h + A*h*h
+ * R = 2*A*h*h
+ *
+ * loop:
+ * P += Q
+ * Q += R
+ * EMIT(P)
+ *
+ * To ensure accurate results, perform computations on 64-bit
+ * values, after scaling them by 2^32:
+ *
+ * R << 32 = 2 * A << (32 - N - N)
+ * = A << (33 - 2 *N)
+ *
+ * Q << 32 = (2 * B << (32 - N)) + (A << (32 - N - N))
+ * = (B << (33 - N)) + (A << (32 - N - N))
+ */
+#ifdef __SSE2__
+ /* Experience shows that for small shift values, SSE2 is actually slower. */
+ if (shift > 2) {
+ union {
+ struct { FT_Int64 ax, ay, bx, by; } i;
+ struct { __m128i a, b; } vec;
+ } u;
+
+ u.i.ax = p0.x + p2.x - 2 * p1.x;
+ u.i.ay = p0.y + p2.y - 2 * p1.y;
+ u.i.bx = p1.x - p0.x;
+ u.i.by = p1.y - p0.y;
+
+ __m128i a = _mm_load_si128(&u.vec.a);
+ __m128i b = _mm_load_si128(&u.vec.b);
+
+ __m128i r = _mm_slli_epi64(a, 33 - 2 * shift);
+ __m128i q = _mm_slli_epi64(b, 33 - shift);
+ __m128i q2 = _mm_slli_epi64(a, 32 - 2 * shift);
+ q = _mm_add_epi64(q2, q);
+
+ union {
+ struct { FT_Int32 px_lo, px_hi, py_lo, py_hi; } i;
+ __m128i vec;
+ } v;
+ v.i.px_lo = 0;
+ v.i.px_hi = p0.x;
+ v.i.py_lo = 0;
+ v.i.py_hi = p0.y;
+
+ __m128i p = _mm_load_si128(&v.vec);
+
+ for (unsigned count = (1u << shift); count > 0; count--) {
+ p = _mm_add_epi64(p, q);
+ q = _mm_add_epi64(q, r);
+
+ _mm_store_si128(&v.vec, p);
+
+ gray_render_line( RAS_VAR_ v.i.px_hi, v.i.py_hi);
+ }
+ return;
+ }
+#endif /* !__SSE2__ */
+ FT_Int64 ax = p0.x + p2.x - 2 * p1.x;
+ FT_Int64 ay = p0.y + p2.y - 2 * p1.y;
+ FT_Int64 bx = p1.x - p0.x;
+ FT_Int64 by = p1.y - p0.y;
+
+ FT_Int64 rx = ax << (33 - 2 * shift);
+ FT_Int64 ry = ay << (33 - 2 * shift);
+
+ FT_Int64 qx = (bx << (33 - shift)) + (ax << (32 - 2 * shift));
+ FT_Int64 qy = (by << (33 - shift)) + (ay << (32 - 2 * shift));
+
+ FT_Int64 px = (FT_Int64)p0.x << 32;
+ FT_Int64 py = (FT_Int64)p0.y << 32;
+
+ FT_UInt count = 1u << shift;
+
+ for (; count > 0; count--) {
+ px += qx;
+ py += qy;
+ qx += rx;
+ qy += ry;
+
+ gray_render_line( RAS_VAR_ (FT_Pos)(px >> 32), (FT_Pos)(py >> 32));
+ }
+ }
+
+#else /* !BEZIER_USE_DDA */
+
+ /* Note that multiple attempts to speed up the function below
+ * with SSE2 intrinsics, using various data layouts, have turned
+ * out to be slower than the non-SIMD code below.
+ */
+ static void
gray_split_conic( FT_Vector* base )
{
TPos a, b;
@@ -1078,7 +1260,15 @@
} while ( --draw );
}
+#endif /* !BEZIER_USE_DDA */
+ /* For cubic bezier, binary splits are still faster than DDA
+ * because the splits are adaptive to how quickly each sub-arc
+ * approaches their chord trisection points.
+ *
+ * It might be useful to experiment with SSE2 to speed up
+ * gray_split_cubic() though.
+ */
static void
gray_split_cubic( FT_Vector* base )
{
@@ -1168,7 +1358,6 @@
arc += 3;
}
}
-
static int
gray_move_to( const FT_Vector* to,