ref: d9f3b8e36558b0825787c14c6512d975afa4cf5b
dir: /src/ft2_audio.c/
// for finding memory leaks in debug mode with Visual Studio #if defined _DEBUG && defined _MSC_VER #include <crtdbg.h> #endif #include <stdio.h> #include <stdint.h> #include "ft2_header.h" #include "ft2_config.h" #include "scopes/ft2_scopes.h" #include "ft2_video.h" #include "ft2_gui.h" #include "ft2_midi.h" #include "ft2_wav_renderer.h" #include "ft2_tables.h" #include "ft2_structs.h" // -------------------------------- #include "mixer/ft2_mix.h" #include "mixer/ft2_center_mix.h" #include "mixer/ft2_silence_mix.h" // -------------------------------- // hide POSIX warnings #ifdef _MSC_VER #pragma warning(disable: 4996) #endif #define INITIAL_DITHER_SEED 0x12345000 static int8_t pmpCountDiv, pmpChannels = 2; static uint16_t smpBuffSize; static uint32_t oldAudioFreq, tickTimeLen, tickTimeLenFrac, randSeed = INITIAL_DITHER_SEED; static float fAudioNormalizeMul, fPanningTab[256+1]; static double dAudioNormalizeMul, dPrngStateL, dPrngStateR; static voice_t voice[MAX_CHANNELS * 2]; static void (*sendAudSamplesFunc)(uint8_t *, uint32_t, uint8_t); // "send mixed samples" routines // globalized audio_t audio; pattSyncData_t *pattSyncEntry; chSyncData_t *chSyncEntry; chSync_t chSync; pattSync_t pattSync; volatile bool pattQueueClearing, chQueueClearing; void resetCachedMixerVars(void) { channel_t *ch = channel; for (int32_t i = 0; i < MAX_CHANNELS; i++, ch++) ch->oldFinalPeriod = -1; voice_t *v = voice; for (int32_t i = 0; i < MAX_CHANNELS*2; i++, v++) v->oldDelta = 0; } void stopVoice(int32_t i) { voice_t *v; v = &voice[i]; memset(v, 0, sizeof (voice_t)); v->panning = 128; // clear "fade out" voice too v = &voice[MAX_CHANNELS + i]; memset(v, 0, sizeof (voice_t)); v->panning = 128; } bool setNewAudioSettings(void) // only call this from the main input/video thread { pauseAudio(); if (!setupAudio(CONFIG_HIDE_ERRORS)) { // set back old known working settings config.audioFreq = audio.lastWorkingAudioFreq; config.specialFlags &= ~(BITDEPTH_16 + BITDEPTH_32 + BUFFSIZE_512 + BUFFSIZE_1024 + BUFFSIZE_2048); config.specialFlags |= audio.lastWorkingAudioBits; if (audio.lastWorkingAudioDeviceName != NULL) { if (audio.currOutputDevice != NULL) { free(audio.currOutputDevice); audio.currOutputDevice = NULL; } audio.currOutputDevice = strdup(audio.lastWorkingAudioDeviceName); } // also update config audio radio buttons if we're on that screen at the moment if (ui.configScreenShown && editor.currConfigScreen == CONFIG_SCREEN_IO_DEVICES) setConfigIORadioButtonStates(); // if it didn't work to use the old settings again, then something is seriously wrong... if (!setupAudio(CONFIG_HIDE_ERRORS)) okBox(0, "System message", "Couldn't find a working audio mode... You'll get no sound / replayer timer!"); resumeAudio(); return false; } resumeAudio(); setWavRenderFrequency(audio.freq); setWavRenderBitDepth((config.specialFlags & BITDEPTH_32) ? 32 : 16); return true; } // amp = 1..32, masterVol = 0..256 void setAudioAmp(int16_t amp, int16_t masterVol, bool bitDepth32Flag) { amp = CLAMP(amp, 1, 32); masterVol = CLAMP(masterVol, 0, 256); double dAmp = (amp * masterVol) / (32.0 * 256.0); if (!bitDepth32Flag) dAmp *= 32768.0; dAudioNormalizeMul = dAmp; fAudioNormalizeMul = (float)dAmp; } void decreaseMasterVol(void) { if (config.masterVol >= 16) config.masterVol -= 16; else config.masterVol = 0; setAudioAmp(config.boostLevel, config.masterVol, !!(config.specialFlags & BITDEPTH_32)); // if Config -> I/O Devices is open, update master volume scrollbar if (ui.configScreenShown && editor.currConfigScreen == CONFIG_SCREEN_IO_DEVICES) drawScrollBar(SB_MASTERVOL_SCROLL); } void increaseMasterVol(void) { if (config.masterVol < (256-16)) config.masterVol += 16; else config.masterVol = 256; setAudioAmp(config.boostLevel, config.masterVol, !!(config.specialFlags & BITDEPTH_32)); // if Config -> I/O Devices is open, update master volume scrollbar if (ui.configScreenShown && editor.currConfigScreen == CONFIG_SCREEN_IO_DEVICES) drawScrollBar(SB_MASTERVOL_SCROLL); } void setNewAudioFreq(uint32_t freq) // for song-to-WAV rendering { if (freq == 0) return; oldAudioFreq = audio.freq; audio.freq = freq; const bool mustRecalcTables = audio.freq != oldAudioFreq; if (mustRecalcTables) calcReplayerVars(audio.freq); } void setBackOldAudioFreq(void) // for song-to-WAV rendering { const bool mustRecalcTables = audio.freq != oldAudioFreq; audio.freq = oldAudioFreq; if (mustRecalcTables) calcReplayerVars(audio.freq); } void setMixerBPM(int32_t bpm) { if (bpm < MIN_BPM || bpm > MAX_BPM) return; int32_t i = bpm - MIN_BPM; audio.samplesPerTick64 = audio.samplesPerTick64Tab[i]; // fixed-point audio.samplesPerTick = (audio.samplesPerTick64 + (1LL << 31)) >> 32; // rounded // for audio/video sync timestamp tickTimeLen = audio.tickTimeTab[i]; tickTimeLenFrac = audio.tickTimeFracTab[i]; // for calculating volume ramp length for tick-length ramps audio.fRampTickMul = audio.fRampTickMulTab[i]; } void audioSetVolRamp(bool volRamp) { lockMixerCallback(); audio.volumeRampingFlag = volRamp; unlockMixerCallback(); } void audioSetInterpolationType(uint8_t interpolationType) { lockMixerCallback(); audio.interpolationType = interpolationType; unlockMixerCallback(); } void calcPanningTable(void) { // same formula as FT2's panning table (with 0.0f..1.0f range) for (int32_t i = 0; i <= 256; i++) fPanningTab[i] = sqrtf(i / 256.0f); } static void voiceUpdateVolumes(int32_t i, uint8_t status) { voice_t *v = &voice[i]; const float fVolumeL = v->fVolume * fPanningTab[256-v->panning]; const float fVolumeR = v->fVolume * fPanningTab[ v->panning]; if (!audio.volumeRampingFlag) { // volume ramping is disabled v->fVolumeL = fVolumeL; v->fVolumeR = fVolumeR; v->volumeRampLength = 0; return; } v->fVolumeLTarget = fVolumeL; v->fVolumeRTarget = fVolumeR; if (status & IS_Trigger) { // sample is about to start, ramp out/in at the same time // setup "fade out" voice (only if current voice volume > 0) if (v->fVolumeL > 0.0f || v->fVolumeR > 0.0f) { voice_t *f = &voice[MAX_CHANNELS+i]; *f = *v; // copy voice f->volumeRampLength = audio.quickVolRampSamples; const float fVolumeLTarget = -f->fVolumeL; const float fVolumeRTarget = -f->fVolumeR; f->fVolumeLDelta = fVolumeLTarget * audio.fRampQuickVolMul; f->fVolumeRDelta = fVolumeRTarget * audio.fRampQuickVolMul; f->isFadeOutVoice = true; } // make current voice fade in from zero when it starts v->fVolumeL = 0.0f; v->fVolumeR = 0.0f; } // ramp volume changes /* FT2 has two internal volume ramping lengths: ** IS_QuickVol: 5ms ** Normal: The duration of a tick (samplesPerTick) */ // if destination volume and current volume is the same (and we have no sample trigger), don't do ramp if (fVolumeL == v->fVolumeL && fVolumeR == v->fVolumeR && !(status & IS_Trigger)) { // there is no volume change v->volumeRampLength = 0; } else { const float fVolumeLTarget = fVolumeL - v->fVolumeL; const float fVolumeRTarget = fVolumeR - v->fVolumeR; if (status & IS_QuickVol) { v->fVolumeLDelta = fVolumeLTarget * audio.fRampQuickVolMul; v->fVolumeRDelta = fVolumeRTarget * audio.fRampQuickVolMul; v->volumeRampLength = audio.quickVolRampSamples; } else { v->fVolumeLDelta = fVolumeLTarget * audio.fRampTickMul; v->fVolumeRDelta = fVolumeRTarget * audio.fRampTickMul; v->volumeRampLength = audio.samplesPerTick; } } } static void voiceTrigger(int32_t ch, sample_t *s, int32_t position) { voice_t *v = &voice[ch]; int32_t length = s->length; int32_t loopStart = s->loopStart; int32_t loopLength = s->loopLength; int32_t loopEnd = s->loopStart + s->loopLength; uint8_t loopType = GET_LOOPTYPE(s->flags); bool sample16Bit = !!(s->flags & SAMPLE_16BIT); if (s->dataPtr == NULL || length < 1) { v->active = false; // shut down voice (illegal parameters) return; } if (loopLength < 1) // disable loop if loopLength is below 1 loopType = 0; if (sample16Bit) { v->base16 = (const int16_t *)s->dataPtr; v->revBase16 = &v->base16[loopStart + loopEnd]; // for pingpong loops v->leftEdgeTaps16 = s->leftEdgeTapSamples16 + SINC_LEFT_TAPS; } else { v->base8 = s->dataPtr; v->revBase8 = &v->base8[loopStart + loopEnd]; // for pingpong loops v->leftEdgeTaps8 = s->leftEdgeTapSamples8 + SINC_LEFT_TAPS; } v->hasLooped = false; // for sinc interpolation special case v->samplingBackwards = false; v->loopType = loopType; v->sampleEnd = (loopType == LOOP_OFF) ? length : loopEnd; v->loopStart = loopStart; v->loopLength = loopLength; v->position = position; v->positionFrac = 0; // if position overflows, shut down voice (f.ex. through 9xx command) if (v->position >= v->sampleEnd) { v->active = false; return; } v->mixFuncOffset = (sample16Bit * 9) + (audio.interpolationType * 3) + loopType; v->active = true; } void resetRampVolumes(void) { voice_t *v = voice; for (int32_t i = 0; i < song.numChannels; i++, v++) { v->fVolumeL = v->fVolumeLTarget; v->fVolumeR = v->fVolumeRTarget; v->volumeRampLength = 0; } } void updateVoices(void) { channel_t *ch = channel; voice_t *v = voice; for (int32_t i = 0; i < song.numChannels; i++, ch++, v++) { const uint8_t status = ch->tmpStatus = ch->status; // (tmpStatus is used for audio/video sync queue) if (status == 0) continue; ch->status = 0; if (status & IS_Vol) { v->fVolume = ch->fFinalVol; const int32_t scopeVolume = (int32_t)((SCOPE_HEIGHT * ch->fFinalVol) + 0.5f); // rounded v->scopeVolume = (uint8_t)scopeVolume; } if (status & IS_Pan) v->panning = ch->finalPan; if (status & (IS_Vol + IS_Pan)) voiceUpdateVolumes(i, status); if (status & IS_Period) { // use cached values when possible if (ch->finalPeriod != ch->oldFinalPeriod) { ch->oldFinalPeriod = ch->finalPeriod; if (ch->finalPeriod == 0) // in FT2, period 0 -> delta 0 { v->scopeDelta = 0; v->oldDelta = 0; v->fSincLUT = fKaiserSinc; } else { const double dHz = dPeriod2Hz(ch->finalPeriod); const uintCPUWord_t delta = v->oldDelta = (intCPUWord_t)((dHz * audio.dHz2MixDeltaMul) + 0.5); // Hz -> fixed-point delta (rounded) // decide which polyphase sinc LUT to use according to resampling ratio if (delta <= (uintCPUWord_t)(1.1875 * MIXER_FRAC_SCALE)) v->fSincLUT = fKaiserSinc; else if (delta <= (uintCPUWord_t)(1.5 * MIXER_FRAC_SCALE)) v->fSincLUT = fDownSample1; else v->fSincLUT = fDownSample2; // set scope delta const double dHz2ScopeDeltaMul = SCOPE_FRAC_SCALE / (double)SCOPE_HZ; v->scopeDelta = (intCPUWord_t)((dHz * dHz2ScopeDeltaMul) + 0.5); // Hz -> fixed-point delta (rounded) } } v->delta = v->oldDelta; } if (status & IS_Trigger) voiceTrigger(i, ch->smpPtr, ch->smpStartPos); } } void resetAudioDither(void) { randSeed = INITIAL_DITHER_SEED; dPrngStateL = 0.0; dPrngStateR = 0.0; } static inline int32_t random32(void) { // LCG 32-bit random randSeed *= 134775813; randSeed++; return (int32_t)randSeed; } static void sendSamples16BitDitherStereo(uint8_t *stream, uint32_t sampleBlockLength, uint8_t numAudioChannels) { int32_t out32; double dOut, dPrng; int16_t *streamPointer16 = (int16_t *)stream; for (uint32_t i = 0; i < sampleBlockLength; i++) { // left channel - 1-bit triangular dithering dPrng = random32() * (0.5 / INT32_MAX); // -0.5 .. 0.5 dOut = (double)audio.fMixBufferL[i] * dAudioNormalizeMul; dOut = (dOut + dPrng) - dPrngStateL; dPrngStateL = dPrng; out32 = (int32_t)dOut; CLAMP16(out32); *streamPointer16++ = (int16_t)out32; // right channel - 1-bit triangular dithering dPrng = random32() * (0.5 / INT32_MAX); // -0.5 .. 0.5 dOut = (double)audio.fMixBufferR[i] * dAudioNormalizeMul; dOut = (dOut + dPrng) - dPrngStateR; dPrngStateR = dPrng; out32 = (int32_t)dOut; CLAMP16(out32); *streamPointer16++ = (int16_t)out32; // clear what we read from the mixing buffer audio.fMixBufferL[i] = 0.0f; audio.fMixBufferR[i] = 0.0f; } (void)numAudioChannels; } static void sendSamples16BitDitherMultiChan(uint8_t *stream, uint32_t sampleBlockLength, uint8_t numAudioChannels) { int32_t out32; double dOut, dPrng; int16_t *streamPointer16 = (int16_t *)stream; for (uint32_t i = 0; i < sampleBlockLength; i++) { // left channel - 1-bit triangular dithering dPrng = random32() * (0.5 / INT32_MAX); // -0.5 .. 0.5 dOut = (double)audio.fMixBufferL[i] * dAudioNormalizeMul; dOut = (dOut + dPrng) - dPrngStateL; dPrngStateL = dPrng; out32 = (int32_t)dOut; CLAMP16(out32); *streamPointer16++ = (int16_t)out32; // right channel - 1-bit triangular dithering dPrng = random32() * (0.5 / INT32_MAX); // -0.5 .. 0.5 dOut = (double)audio.fMixBufferR[i] * dAudioNormalizeMul; dOut = (dOut + dPrng) - dPrngStateR; dPrngStateR = dPrng; out32 = (int32_t)dOut; CLAMP16(out32); *streamPointer16++ = (int16_t)out32; // clear what we read from the mixing buffer audio.fMixBufferL[i] = 0.0f; audio.fMixBufferR[i] = 0.0f; // send zeroes to the rest of the channels for (uint32_t j = 2; j < numAudioChannels; j++) *streamPointer16++ = 0; } } static void sendSamples32BitStereo(uint8_t *stream, uint32_t sampleBlockLength, uint8_t numAudioChannels) { float fOut, *fStreamPointer32 = (float *)stream; for (uint32_t i = 0; i < sampleBlockLength; i++) { // left channel fOut = audio.fMixBufferL[i] * fAudioNormalizeMul; fOut = CLAMP(fOut, -1.0f, 1.0f); *fStreamPointer32++ = fOut; // right channel fOut = audio.fMixBufferR[i] * fAudioNormalizeMul; fOut = CLAMP(fOut, -1.0f, 1.0f); *fStreamPointer32++ = fOut; // clear what we read from the mixing buffer audio.fMixBufferL[i] = 0.0f; audio.fMixBufferR[i] = 0.0f; } (void)numAudioChannels; } static void sendSamples32BitMultiChan(uint8_t *stream, uint32_t sampleBlockLength, uint8_t numAudioChannels) { float fOut, *fStreamPointer32 = (float *)stream; for (uint32_t i = 0; i < sampleBlockLength; i++) { // left channel fOut = audio.fMixBufferL[i] * fAudioNormalizeMul; fOut = CLAMP(fOut, -1.0f, 1.0f); *fStreamPointer32++ = fOut; // right channel fOut = audio.fMixBufferR[i] * fAudioNormalizeMul; fOut = CLAMP(fOut, -1.0f, 1.0f); *fStreamPointer32++ = fOut; // clear what we read from the mixing buffer audio.fMixBufferL[i] = 0.0f; audio.fMixBufferR[i] = 0.0f; // send zeroes to the rest of the channels for (uint32_t j = 2; j < numAudioChannels; j++) *fStreamPointer32++ = 0.0f; } } static void doChannelMixing(int32_t bufferPosition, int32_t samplesToMix) { voice_t *v = voice; // normal voices voice_t *r = &voice[MAX_CHANNELS]; // volume ramp fadeout-voices for (int32_t i = 0; i < song.numChannels; i++, v++, r++) { if (v->active) { bool centerMixFlag; const bool volRampFlag = (v->volumeRampLength > 0); if (volRampFlag) { centerMixFlag = (v->fVolumeLTarget == v->fVolumeRTarget) && (v->fVolumeLDelta == v->fVolumeRDelta); } else // no volume ramping active { if (v->fVolumeL == 0.0f && v->fVolumeR == 0.0f) { silenceMixRoutine(v, samplesToMix); continue; } centerMixFlag = (v->fVolumeL == v->fVolumeR); } mixFuncTab[((int32_t)centerMixFlag * 36) + ((int32_t)volRampFlag * 18) + v->mixFuncOffset](v, bufferPosition, samplesToMix); } if (r->active) // volume ramp fadeout-voice { const bool centerMixFlag = (r->fVolumeLTarget == r->fVolumeRTarget) && (r->fVolumeLDelta == r->fVolumeRDelta); mixFuncTab[((int32_t)centerMixFlag * 36) + 18 + r->mixFuncOffset](r, bufferPosition, samplesToMix); } } } // used for song-to-WAV renderer void mixReplayerTickToBuffer(uint32_t samplesToMix, uint8_t *stream, uint8_t bitDepth) { assert(samplesToMix <= MAX_WAV_RENDER_SAMPLES_PER_TICK); doChannelMixing(0, samplesToMix); // normalize mix buffer and send to audio stream if (bitDepth == 16) sendSamples16BitDitherStereo(stream, samplesToMix, 2); else sendSamples32BitStereo(stream, samplesToMix, 2); } int32_t pattQueueReadSize(void) { while (pattQueueClearing); if (pattSync.writePos > pattSync.readPos) return pattSync.writePos - pattSync.readPos; else if (pattSync.writePos < pattSync.readPos) return pattSync.writePos - pattSync.readPos + SYNC_QUEUE_LEN + 1; else return 0; } int32_t pattQueueWriteSize(void) { int32_t size; if (pattSync.writePos > pattSync.readPos) { size = pattSync.readPos - pattSync.writePos + SYNC_QUEUE_LEN; } else if (pattSync.writePos < pattSync.readPos) { pattQueueClearing = true; /* Buffer is full, reset the read/write pos. This is actually really nasty since ** read/write are two different threads, but because of timestamp validation it ** shouldn't be that dangerous. ** It will also create a small visual stutter while the buffer is getting filled, ** though that is barely noticable on normal buffer sizes, and it takes a minute ** or two at max BPM between each time (when queue size is default, 4095) */ pattSync.data[0].timestamp = 0; pattSync.readPos = 0; pattSync.writePos = 0; size = SYNC_QUEUE_LEN; pattQueueClearing = false; } else { size = SYNC_QUEUE_LEN; } return size; } bool pattQueuePush(pattSyncData_t t) { if (!pattQueueWriteSize()) return false; assert(pattSync.writePos <= SYNC_QUEUE_LEN); pattSync.data[pattSync.writePos] = t; pattSync.writePos = (pattSync.writePos + 1) & SYNC_QUEUE_LEN; return true; } bool pattQueuePop(void) { if (!pattQueueReadSize()) return false; pattSync.readPos = (pattSync.readPos + 1) & SYNC_QUEUE_LEN; assert(pattSync.readPos <= SYNC_QUEUE_LEN); return true; } pattSyncData_t *pattQueuePeek(void) { if (!pattQueueReadSize()) return NULL; assert(pattSync.readPos <= SYNC_QUEUE_LEN); return &pattSync.data[pattSync.readPos]; } uint64_t getPattQueueTimestamp(void) { if (!pattQueueReadSize()) return 0; assert(pattSync.readPos <= SYNC_QUEUE_LEN); return pattSync.data[pattSync.readPos].timestamp; } int32_t chQueueReadSize(void) { while (chQueueClearing); if (chSync.writePos > chSync.readPos) return chSync.writePos - chSync.readPos; else if (chSync.writePos < chSync.readPos) return chSync.writePos - chSync.readPos + SYNC_QUEUE_LEN + 1; else return 0; } int32_t chQueueWriteSize(void) { int32_t size; if (chSync.writePos > chSync.readPos) { size = chSync.readPos - chSync.writePos + SYNC_QUEUE_LEN; } else if (chSync.writePos < chSync.readPos) { chQueueClearing = true; /* Buffer is full, reset the read/write pos. This is actually really nasty since ** read/write are two different threads, but because of timestamp validation it ** shouldn't be that dangerous. ** It will also create a small visual stutter while the buffer is getting filled, ** though that is barely noticable on normal buffer sizes, and it takes several ** minutes between each time (when queue size is default, 16384) */ chSync.data[0].timestamp = 0; chSync.readPos = 0; chSync.writePos = 0; size = SYNC_QUEUE_LEN; chQueueClearing = false; } else { size = SYNC_QUEUE_LEN; } return size; } bool chQueuePush(chSyncData_t t) { if (!chQueueWriteSize()) return false; assert(chSync.writePos <= SYNC_QUEUE_LEN); chSync.data[chSync.writePos] = t; chSync.writePos = (chSync.writePos + 1) & SYNC_QUEUE_LEN; return true; } bool chQueuePop(void) { if (!chQueueReadSize()) return false; chSync.readPos = (chSync.readPos + 1) & SYNC_QUEUE_LEN; assert(chSync.readPos <= SYNC_QUEUE_LEN); return true; } chSyncData_t *chQueuePeek(void) { if (!chQueueReadSize()) return NULL; assert(chSync.readPos <= SYNC_QUEUE_LEN); return &chSync.data[chSync.readPos]; } uint64_t getChQueueTimestamp(void) { if (!chQueueReadSize()) return 0; assert(chSync.readPos <= SYNC_QUEUE_LEN); return chSync.data[chSync.readPos].timestamp; } void lockAudio(void) { if (audio.dev != 0) SDL_LockAudioDevice(audio.dev); audio.locked = true; } void unlockAudio(void) { if (audio.dev != 0) SDL_UnlockAudioDevice(audio.dev); audio.locked = false; } void resetSyncQueues(void) { pattSync.data[0].timestamp = 0; pattSync.readPos = 0; pattSync.writePos = 0; chSync.data[0].timestamp = 0; chSync.writePos = 0; chSync.readPos = 0; } void lockMixerCallback(void) // lock audio + clear voices/scopes (for short operations) { if (!audio.locked) lockAudio(); audio.resetSyncTickTimeFlag = true; stopVoices(); // VERY important! prevents potential crashes by purging pointers // scopes, mixer and replayer are guaranteed to not be active at this point resetSyncQueues(); } void unlockMixerCallback(void) { stopVoices(); // VERY important! prevents potential crashes by purging pointers if (audio.locked) unlockAudio(); } void pauseAudio(void) // lock audio + clear voices/scopes + render silence (for long operations) { if (audioPaused) { stopVoices(); // VERY important! prevents potential crashes by purging pointers return; } if (audio.dev > 0) SDL_PauseAudioDevice(audio.dev, true); audio.resetSyncTickTimeFlag = true; stopVoices(); // VERY important! prevents potential crashes by purging pointers // scopes, mixer and replayer are guaranteed to not be active at this point resetSyncQueues(); audioPaused = true; } void resumeAudio(void) // unlock audio { if (!audioPaused) return; if (audio.dev > 0) SDL_PauseAudioDevice(audio.dev, false); audioPaused = false; } static void fillVisualsSyncBuffer(void) { pattSyncData_t pattSyncData; chSyncData_t chSyncData; if (audio.resetSyncTickTimeFlag) { audio.resetSyncTickTimeFlag = false; audio.tickTime64 = SDL_GetPerformanceCounter() + audio.audLatencyPerfValInt; audio.tickTime64Frac = audio.audLatencyPerfValFrac; } if (songPlaying) { // push pattern variables to sync queue pattSyncData.tick = song.curReplayerTick; pattSyncData.row = song.curReplayerRow; pattSyncData.pattNum = song.curReplayerPattNum; pattSyncData.songPos = song.curReplayerSongPos; pattSyncData.BPM = song.BPM; pattSyncData.speed = (uint8_t)song.speed; pattSyncData.globalVolume = (uint8_t)song.globalVolume; pattSyncData.timestamp = audio.tickTime64; pattQueuePush(pattSyncData); } // push channel variables to sync queue syncedChannel_t *c = chSyncData.channels; channel_t *s = channel; voice_t *v = voice; for (int32_t i = 0; i < song.numChannels; i++, c++, s++, v++) { c->scopeVolume = v->scopeVolume; c->scopeDelta = v->scopeDelta; c->instrNum = s->instrNum; c->smpNum = s->smpNum; c->status = s->tmpStatus; c->smpStartPos = s->smpStartPos; c->pianoNoteNum = 255; // no piano key if (songPlaying && (c->status & IS_Period) && s->envSustainActive) { const int32_t note = getPianoKey(s->finalPeriod, s->finetune, s->relativeNote); if (note >= 0 && note <= 95) c->pianoNoteNum = (uint8_t)note; } } chSyncData.timestamp = audio.tickTime64; chQueuePush(chSyncData); audio.tickTime64 += tickTimeLen; audio.tickTime64Frac += tickTimeLenFrac; if (audio.tickTime64Frac > UINT32_MAX) { audio.tickTime64Frac &= UINT32_MAX; audio.tickTime64++; } } static void SDLCALL audioCallback(void *userdata, Uint8 *stream, int len) { if (editor.wavIsRendering) return; len /= pmpCountDiv; // bytes -> samples if (len <= 0) return; assert(len <= MAX_WAV_RENDER_SAMPLES_PER_TICK); int32_t bufferPosition = 0; int32_t samplesLeft = len; while (samplesLeft > 0) { if (audio.tickSampleCounter64 <= 0) // new replayer tick { replayerBusy = true; if (audio.volumeRampingFlag) resetRampVolumes(); tickReplayer(); updateVoices(); fillVisualsSyncBuffer(); audio.tickSampleCounter64 += audio.samplesPerTick64; replayerBusy = false; } const int32_t remainingTick = (audio.tickSampleCounter64 + UINT32_MAX) >> 32; // ceil (rounded upwards) int32_t samplesToMix = samplesLeft; if (samplesToMix > remainingTick) samplesToMix = remainingTick; doChannelMixing(bufferPosition, samplesToMix); bufferPosition += samplesToMix; samplesLeft -= samplesToMix; audio.tickSampleCounter64 -= (int64_t)samplesToMix << 32; } // normalize mix buffer and send to audio stream sendAudSamplesFunc(stream, len, pmpChannels); (void)userdata; } static bool setupAudioBuffers(void) { const uint32_t sampleSize = sizeof (float); audio.fMixBufferLUnaligned = (float *)MALLOC_PAD(MAX_WAV_RENDER_SAMPLES_PER_TICK * sampleSize, 256); audio.fMixBufferRUnaligned = (float *)MALLOC_PAD(MAX_WAV_RENDER_SAMPLES_PER_TICK * sampleSize, 256); if (audio.fMixBufferLUnaligned == NULL || audio.fMixBufferRUnaligned == NULL) return false; // make aligned main pointers audio.fMixBufferL = (float *)ALIGN_PTR(audio.fMixBufferLUnaligned, 256); audio.fMixBufferR = (float *)ALIGN_PTR(audio.fMixBufferRUnaligned, 256); // clear buffers memset(audio.fMixBufferL, 0, MAX_WAV_RENDER_SAMPLES_PER_TICK * sampleSize); memset(audio.fMixBufferR, 0, MAX_WAV_RENDER_SAMPLES_PER_TICK * sampleSize); return true; } static void freeAudioBuffers(void) { if (audio.fMixBufferLUnaligned != NULL) { free(audio.fMixBufferLUnaligned); audio.fMixBufferLUnaligned = NULL; } if (audio.fMixBufferRUnaligned != NULL) { free(audio.fMixBufferRUnaligned); audio.fMixBufferRUnaligned = NULL; } audio.fMixBufferL = NULL; audio.fMixBufferR = NULL; } void updateSendAudSamplesRoutine(bool lockMixer) { if (lockMixer) lockMixerCallback(); if (config.specialFlags & BITDEPTH_16) { if (pmpChannels > 2) sendAudSamplesFunc = sendSamples16BitDitherMultiChan; else sendAudSamplesFunc = sendSamples16BitDitherStereo; } else { if (pmpChannels > 2) sendAudSamplesFunc = sendSamples32BitMultiChan; else sendAudSamplesFunc = sendSamples32BitStereo; } if (lockMixer) unlockMixerCallback(); } static void calcAudioLatencyVars(int32_t audioBufferSize, int32_t audioFreq) { double dInt; if (audioFreq == 0) return; const double dAudioLatencySecs = audioBufferSize / (double)audioFreq; double dFrac = modf(dAudioLatencySecs * editor.dPerfFreq, &dInt); // integer part audio.audLatencyPerfValInt = (int32_t)dInt; // fractional part (scaled to 0..2^32-1) dFrac *= UINT32_MAX+1.0; audio.audLatencyPerfValFrac = (uint32_t)dFrac; audio.dAudioLatencyMs = dAudioLatencySecs * 1000.0; } static void setLastWorkingAudioDevName(void) { if (audio.lastWorkingAudioDeviceName != NULL) { free(audio.lastWorkingAudioDeviceName); audio.lastWorkingAudioDeviceName = NULL; } if (audio.currOutputDevice != NULL) audio.lastWorkingAudioDeviceName = strdup(audio.currOutputDevice); } bool setupAudio(bool showErrorMsg) { SDL_AudioSpec want, have; closeAudio(); if (config.audioFreq < MIN_AUDIO_FREQ || config.audioFreq > MAX_AUDIO_FREQ) config.audioFreq = DEFAULT_AUDIO_FREQ; // get audio buffer size from config special flags uint16_t configAudioBufSize = 1024; if (config.specialFlags & BUFFSIZE_512) configAudioBufSize = 512; else if (config.specialFlags & BUFFSIZE_2048) configAudioBufSize = 2048; audio.wantFreq = config.audioFreq; audio.wantSamples = configAudioBufSize; audio.wantChannels = 2; // set up audio device memset(&want, 0, sizeof (want)); // these three may change after opening a device, but our mixer is dealing with it want.freq = config.audioFreq; want.format = (config.specialFlags & BITDEPTH_32) ? AUDIO_F32 : AUDIO_S16; want.channels = 2; // ------------------------------------------------------------------------------- want.callback = audioCallback; want.samples = configAudioBufSize; audio.dev = SDL_OpenAudioDevice(audio.currOutputDevice, 0, &want, &have, SDL_AUDIO_ALLOW_ANY_CHANGE); // prevent SDL2 from resampling if (audio.dev == 0) { if (showErrorMsg) showErrorMsgBox("Couldn't open audio device:\n\"%s\"\n\nDo you have any audio device enabled and plugged in?", SDL_GetError()); return false; } // test if the received audio format is compatible if (have.format != AUDIO_S16 && have.format != AUDIO_F32) { if (showErrorMsg) showErrorMsgBox("Couldn't open audio device:\nThe program doesn't support an SDL_AudioFormat of '%d' (not 16-bit or 32-bit float).", (uint32_t)have.format); closeAudio(); return false; } // test if the received audio rate is compatible #if CPU_64BIT if (have.freq != 44100 && have.freq != 48000 && have.freq != 96000 && have.freq != 192000) #else if (have.freq != 44100 && have.freq != 48000) #endif { if (showErrorMsg) showErrorMsgBox("Couldn't open audio device:\nThis program doesn't support an audio output rate of %dHz. Sorry!", have.freq); closeAudio(); return false; } if (!setupAudioBuffers()) { if (showErrorMsg) showErrorMsgBox("Not enough memory!"); closeAudio(); return false; } // set new bit depth flag int8_t newBitDepth = 16; config.specialFlags &= ~BITDEPTH_32; config.specialFlags |= BITDEPTH_16; if (have.format == AUDIO_F32) { newBitDepth = 24; config.specialFlags &= ~BITDEPTH_16; config.specialFlags |= BITDEPTH_32; } audio.haveFreq = have.freq; audio.haveSamples = have.samples; audio.haveChannels = have.channels; // set a few variables config.audioFreq = have.freq; audio.freq = have.freq; smpBuffSize = have.samples; calcAudioLatencyVars(have.samples, have.freq); pmpChannels = have.channels; pmpCountDiv = pmpChannels * ((newBitDepth == 16) ? sizeof (int16_t) : sizeof (float)); // make a copy of the new known working audio settings audio.lastWorkingAudioFreq = config.audioFreq; audio.lastWorkingAudioBits = config.specialFlags & (BITDEPTH_16 + BITDEPTH_32 + BUFFSIZE_512 + BUFFSIZE_1024 + BUFFSIZE_2048); setLastWorkingAudioDevName(); // update config audio radio buttons if we're on that screen at the moment if (ui.configScreenShown && editor.currConfigScreen == CONFIG_SCREEN_IO_DEVICES) showConfigScreen(); updateWavRendererSettings(); setAudioAmp(config.boostLevel, config.masterVol, !!(config.specialFlags & BITDEPTH_32)); // don't call stopVoices() in this routine for (int32_t i = 0; i < MAX_CHANNELS; i++) stopVoice(i); stopAllScopes(); audio.tickSampleCounter64 = 0; // zero tick sample counter so that it will instantly initiate a tick calcReplayerVars(audio.freq); if (song.BPM == 0) song.BPM = 125; setMixerBPM(song.BPM); // this is important updateSendAudSamplesRoutine(false); audio.resetSyncTickTimeFlag = true; setWavRenderFrequency(audio.freq); setWavRenderBitDepth((config.specialFlags & BITDEPTH_32) ? 32 : 16); return true; } void closeAudio(void) { if (audio.dev > 0) { SDL_PauseAudioDevice(audio.dev, true); SDL_CloseAudioDevice(audio.dev); audio.dev = 0; } freeAudioBuffers(); }