ref: a2a56b3ea59188e2e2b60b69a0a8f77aa3093144
dir: /libfaad/sbr_util.c/
/* ** FAAD - Freeware Advanced Audio Decoder ** Copyright (C) 2002 M. Bakker ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** $Id: sbr_util.c,v 1.1 2002/09/29 22:19:48 menno Exp $ **/ #include "common.h" #ifdef SBR #include <stdlib.h> #include "sbr_util.h" /* calculate the start QMF channel for the master frequency band table */ /* parameter is also called k0 */ uint16_t qmf_start_channel(uint8_t bs_start_freq, uint32_t sample_rate) { static uint8_t offset[] = { 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 }; uint8_t startMin; if (sample_rate >= 64000) { startMin = (uint8_t)((5000.*128.)/(float)sample_rate + 0.5); } else if (sample_rate < 32000) { startMin = (uint8_t)((3000.*128.)/(float)sample_rate + 0.5); } else { startMin = (uint8_t)((4000.*128.)/(float)sample_rate + 0.5); } return startMin + offset[bs_start_freq]; } static int32_t longcmp(const void *a, const void *b) { return ((int32_t)(*(int32_t*)a - *(int32_t*)b)); } /* calculate the stop QMF channel for the master frequency band table */ /* parameter is also called k2 */ uint16_t qmf_stop_channel(uint8_t bs_stop_freq, uint32_t sample_rate, uint16_t k0) { if (bs_stop_freq == 15) return k0 * 3; else if (bs_stop_freq == 14) return k0 * 2; else { uint8_t i; uint8_t stopMin; uint32_t stopDk[13], k2; if (sample_rate >= 64000) { stopMin = (uint8_t)((10000.*128.)/(float)sample_rate + 0.5); } else if (sample_rate < 32000) { stopMin = (uint8_t)((6000.*128.)/(float)sample_rate + 0.5); } else { stopMin = (uint8_t)((8000.*128.)/(float)sample_rate + 0.5); } /* TODO: PUT THIS IN MAPLE, CAN BE SIMPLIFIED A LOT */ for (i = 0; i < 13; i++) { stopDk[i] = (uint32_t)(stopMin*pow(64./(float)stopMin, (i+1)/13.) + 0.5) - (uint32_t)(stopMin*pow(64./(float)stopMin, i/13.) + 0.5); } /* needed? or does this always reverse the array? */ qsort(stopDk, 13, sizeof(stopDk[0]), longcmp); k2 = stopMin; for (i = 0; i < bs_stop_freq-1; i++) { k2 += stopDk[i]; } return k2; } return 0; } /* calculate the master frequency table from k0, k2, bs_freq_scale and bs_alter_scale returns N_master version for bs_freq_scale = 0 */ uint32_t master_frequency_table_fs0(int32_t *f_master, uint16_t k0, uint16_t k2, uint8_t bs_alter_scale) { int8_t incr; uint8_t k; uint8_t dk; uint32_t nrBands, k2Achieved; int32_t k2Diff, vDk[100 /*TODO*/]; /* mft only defined for k2 > k0 */ if (k2 <= k0) return 0; dk = bs_alter_scale ? 2 : 1; nrBands = 2 * (int32_t)((k2-k0)/(float)dk*2. + 0.5); k2Achieved = k0 + nrBands * dk; k2Diff = k2 - k2Achieved; for (k = 0; k <= nrBands; k++) vDk[k] = dk; if (k2Diff) { incr = (k2Diff > 0) ? -1 : 1; k = (k2Diff > 0) ? (nrBands-1) : 0; while (k2Diff != 0) { vDk[k] = vDk[k] - 1; k += incr; k2Diff += incr; } } f_master[0] = k0; for (k = 1; k <= nrBands; k++) f_master[k] = f_master[k-1] + vDk[k-1]; return nrBands; } /* version for bs_freq_scale > 0 */ uint32_t master_frequency_table(int32_t *f_master, uint16_t k0, uint16_t k2, uint8_t bs_freq_scale, uint8_t bs_alter_scale) { uint8_t k, bands, twoRegions; uint16_t k1; uint32_t nrBand0, nrBand1, N_master; int32_t max_vDk0, min_vDk1; int32_t vDk0[100 /*TODO*/], vDk1[100 /*TODO*/]; int32_t vk0[100 /*TODO*/], vk1[100 /*TODO*/]; float warp; uint8_t temp1[] = { 12, 10, 8 }; float temp2[] = { 1.0, 1.3 }; /* mft only defined for k2 > k0 */ if (k2 <= k0) return 0; bands = temp1[bs_freq_scale-1]; warp = temp2[bs_alter_scale]; if ((float)k2/(float)k0 > 2.2449) { twoRegions = 1; k1 = 2 * k0; } else { twoRegions = 0; k1 = k2; } nrBand0 = 2 * (int32_t)(bands * log(k1/k0)/(2.0*log(2.0)) + 0.5); max_vDk0 = 0; for (k = 0; k <= nrBand0; k++) { vDk0[k] = (int32_t)(k0 * pow((float)k1/(float)k0, (k+1)/(float)nrBand0)+0.5) - (int32_t)(k0 * pow((float)k1/(float)k0, k/(float)nrBand0)+0.5); max_vDk0 = (max_vDk0 < vDk0[k]) ? vDk0[k] : max_vDk0; } /* needed? */ qsort(vDk0, nrBand0 + 1, sizeof(vDk0[0]), longcmp); vk0[0] = k0; for (k = 1; k <= nrBand0; k++) { vk0[k] = vk0[k-1] + vDk0[k-1]; } if (!twoRegions) { for (k = 0; k <= nrBand0; k++) f_master[k] = vk0[k]; return nrBand0; } nrBand1 = 2 * (int32_t)(bands * log((float)k2/(float)k1)/(2.0 * log(2.0) * warp) + 0.5); min_vDk1 = 9999999; for (k = 0; k <= nrBand1 - 1; k++) { vDk1[k] = (int32_t)(k0 * pow((float)k1/(float)k0, (k+1)/(float)nrBand1)+0.5) - (int32_t)(k0 * pow((float)k1/(float)k0, k/(float)nrBand1)+0.5); min_vDk1 = (min_vDk1 > vDk1[k]) ? vDk1[k] : min_vDk1; } if (min_vDk1 < max_vDk0) { int32_t change; qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), longcmp); change = max_vDk0 - vDk1[0]; vDk1[0] = max_vDk0; vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change; } qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), longcmp); vk1[0] = k1; for (k = 1; k <= nrBand1; k++) { vk1[k] = vk1[k-1] + vDk1[k-1]; } N_master = nrBand0 + nrBand1; for (k = 0; k <= nrBand0; k++) { f_master[k] = vk0[k]; } for (k = nrBand0 + 1; k <= N_master; k++) { f_master[k] = vk1[k - nrBand0]; } return N_master; } #endif