shithub: aacdec

ref: c0ae72652fc9619e8b1e8f365ab977614179779a
dir: /libfaad/sbr_hfgen.c/

View raw version
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**  
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
** 
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
** 
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software 
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through [email protected].
**
** $Id: sbr_hfgen.c,v 1.10 2003/11/12 20:47:58 menno Exp $
**/

/* High Frequency generation */

#include "common.h"
#include "structs.h"

#ifdef SBR_DEC

#include "sbr_syntax.h"
#include "sbr_hfgen.h"
#include "sbr_fbt.h"

void hf_generation(sbr_info *sbr, const qmf_t Xlow[MAX_NTSRHFG][32],
                   qmf_t Xhigh[MAX_NTSRHFG][64]
#ifdef SBR_LOW_POWER
                   ,real_t *deg
#endif
                   ,uint8_t ch)
{
    uint8_t l, i, x;
    uint8_t offset, first, last;
    complex_t alpha_0[64], alpha_1[64];
#ifdef SBR_LOW_POWER
    real_t rxx[64];
#endif

#ifdef DRM
    if (sbr->Is_DRM_SBR)
    {
        offset = sbr->tHFGen;
        first = 0;
        last = sbr->numTimeSlotsRate;
    } else
#endif
    {
        offset = sbr->tHFAdj;
        first = sbr->t_E[ch][0];
        last = sbr->t_E[ch][sbr->L_E[ch]];
    }

    calc_chirp_factors(sbr, ch);

    for (i = first; i < last; i++)
    {
        memset(Xhigh[i + offset], 0, 64 * sizeof(qmf_t));
    }

    if ((ch == 0) && (sbr->Reset))
        patch_construction(sbr);

    /* calculate the prediction coefficients */
    calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1
#ifdef SBR_LOW_POWER
        , rxx
#endif
        );

#ifdef SBR_LOW_POWER
    calc_aliasing_degree(sbr, rxx, deg);
#endif

    /* actual HF generation */
    for (i = 0; i < sbr->noPatches; i++)
    {
        for (x = 0; x < sbr->patchNoSubbands[i]; x++)
        {
            complex_t a0, a1;
            real_t bw, bw2;
            uint8_t q, p, k, g;

            /* find the low and high band for patching */
            k = sbr->kx + x;
            for (q = 0; q < i; q++)
            {
                k += sbr->patchNoSubbands[q];
            }
            p = sbr->patchStartSubband[i] + x;

#ifdef SBR_LOW_POWER
            if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
                deg[k] = deg[p];
            else
                deg[k] = 0;
#endif

            g = sbr->table_map_k_to_g[k];

            bw = sbr->bwArray[ch][g];
            bw2 = MUL_C(bw, bw);


            /* do the patching */
            /* with or without filtering */
            if (bw2 > 0)
            {
                RE(a0) = MUL_C(RE(alpha_0[p]), bw);
                RE(a1) = MUL_C(RE(alpha_1[p]), bw2);
#ifndef SBR_LOW_POWER
                IM(a0) = MUL_C(IM(alpha_0[p]), bw);
                IM(a1) = MUL_C(IM(alpha_1[p]), bw2);
#endif

				for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif

#ifdef SBR_LOW_POWER
                    QMF_RE(Xhigh[l + offset][k]) += (
                        MUL_R(RE(a0), QMF_RE(Xlow[l - 1 + offset][p])) +
                        MUL_R(RE(a1), QMF_RE(Xlow[l - 2 + offset][p])));
#else
                    QMF_RE(Xhigh[l + offset][k]) += (
                        RE(a0) * QMF_RE(Xlow[l - 1 + offset][p]) -
                        IM(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
                        RE(a1) * QMF_RE(Xlow[l - 2 + offset][p]) -
                        IM(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
                    QMF_IM(Xhigh[l + offset][k]) += (
                        IM(a0) * QMF_RE(Xlow[l - 1 + offset][p]) +
                        RE(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
                        IM(a1) * QMF_RE(Xlow[l - 2 + offset][p]) +
                        RE(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
#endif
                }
            } else {
                for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif
                }
            }
        }
    }

    if (sbr->Reset)
    {
        limiter_frequency_table(sbr);
    }
}

typedef struct
{
    complex_t r01;
    complex_t r02;
    complex_t r11;
    complex_t r12;
    complex_t r22;
    real_t det;
} acorr_coef;

#define SBR_ABS(A) ((A) < 0) ? -(A) : (A)

#ifdef SBR_LOW_POWER
static void auto_correlation(sbr_info *sbr, acorr_coef *ac,
                             const qmf_t buffer[MAX_NTSRHFG][32],
                             uint8_t bd, uint8_t len)
{
    real_t r01 = 0, r02 = 0, r11 = 0;
    int8_t j;
    uint8_t offset;
    const real_t rel = 1 / (1 + 1e-6f);

#ifdef DRM
    if (sbr->Is_DRM_SBR)
        offset = sbr->tHFGen;
    else
#endif
    {
        offset = sbr->tHFAdj;
    }

    for (j = offset; j < len + offset; j++)
    {
        RE(ac->r01) += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]);
        RE(ac->r02) += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]);
        RE(ac->r11) += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]);
    }
    RE(ac->r12) = r01 -
        QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
        QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]);
    RE(ac->r22) = r11 -
        QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
        QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]);
    RE(ac->r01) = r01;
    RE(ac->r02) = r02;
    RE(ac->r11) = r11;

    ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_C(MUL_R(RE(ac->r12), RE(ac->r12)), rel);
}
#else
static void auto_correlation(sbr_info *sbr, acorr_coef *ac, const qmf_t buffer[MAX_NTSRHFG][32],
                             uint8_t bd, uint8_t len)
{
    real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0;
    const real_t rel = 1 / (1 + 1e-6f);
    int8_t j;
    uint8_t offset;

#ifdef DRM
    if (sbr->Is_DRM_SBR)
        offset = sbr->tHFGen;
    else
#endif
    {
        offset = sbr->tHFAdj;
    }

    for (j = offset; j < len + offset; j++)
    {
        r01r += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]) +
            QMF_IM(buffer[j][bd]) * QMF_IM(buffer[j-1][bd]);
        r01i += QMF_IM(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]) -
            QMF_RE(buffer[j][bd]) * QMF_IM(buffer[j-1][bd]);
        r02r += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]) +
            QMF_IM(buffer[j][bd]) * QMF_IM(buffer[j-2][bd]);
        r02i += QMF_IM(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]) -
            QMF_RE(buffer[j][bd]) * QMF_IM(buffer[j-2][bd]);
        r11r += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]) +
            QMF_IM(buffer[j-1][bd]) * QMF_IM(buffer[j-1][bd]);
    }

    RE(ac->r01) = r01r;
    IM(ac->r01) = r01i;
    RE(ac->r02) = r02r;
    IM(ac->r02) = r02i;
    RE(ac->r11) = r11r;

    RE(ac->r12) = r01r -
        (QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) + QMF_IM(buffer[len+offset-1][bd]) * QMF_IM(buffer[len+offset-2][bd])) +
        (QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]) + QMF_IM(buffer[offset-1][bd]) * QMF_IM(buffer[offset-2][bd]));
    IM(ac->r12) = r01i -
        (QMF_IM(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) - QMF_RE(buffer[len+offset-1][bd]) * QMF_IM(buffer[len+offset-2][bd])) +
        (QMF_IM(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]) - QMF_RE(buffer[offset-1][bd]) * QMF_IM(buffer[offset-2][bd]));
    RE(ac->r22) = r11r -
        (QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) + QMF_IM(buffer[len+offset-2][bd]) * QMF_IM(buffer[len+offset-2][bd])) +
        (QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]) + QMF_IM(buffer[offset-2][bd]) * QMF_IM(buffer[offset-2][bd]));

    ac->det = RE(ac->r11) * RE(ac->r22) - rel * (RE(ac->r12) * RE(ac->r12) + IM(ac->r12) * IM(ac->r12));
}
#endif

/* calculate linear prediction coefficients using the covariance method */
static void calc_prediction_coef(sbr_info *sbr, const qmf_t Xlow[MAX_NTSRHFG][32],
                                 complex_t *alpha_0, complex_t *alpha_1
#ifdef SBR_LOW_POWER
                                 , real_t *rxx
#endif
                                 )
{
    uint8_t k;
    real_t tmp;
    acorr_coef ac;

    for (k = 1; k < sbr->f_master[0]; k++)
    {
#ifdef DRM
        if (sbr->Is_DRM_SBR)
            auto_correlation(sbr, &ac, Xlow, k, 30);
        else
#endif
        {
            auto_correlation(sbr, &ac, Xlow, k, 38);
        }

#ifdef SBR_LOW_POWER
        if (ac.det == 0)
        {
            RE(alpha_1[k]) = 0;
        } else {
            tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11));
            RE(alpha_1[k]) = SBR_DIV(tmp, ac.det);
        }

        if (RE(ac.r11) == 0)
        {
            RE(alpha_0[k]) = 0;
        } else {
            tmp = RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12));
            RE(alpha_0[k]) = -SBR_DIV(tmp, RE(ac.r11));
        }

        if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4)))
        {
            RE(alpha_0[k]) = REAL_CONST(0);
            RE(alpha_1[k]) = REAL_CONST(0);
        }

        /* reflection coefficient */
        if (RE(ac.r11) == REAL_CONST(0.0))
        {
            rxx[k] = REAL_CONST(0.0);
        } else {
            rxx[k] = -SBR_DIV(RE(ac.r01), RE(ac.r11));
            if (rxx[k] > REAL_CONST(1.0)) rxx[k] = REAL_CONST(1.0);
            if (rxx[k] < REAL_CONST(-1.0)) rxx[k] = REAL_CONST(-1.0);
        }
#else
        if (ac.det == 0)
        {
            RE(alpha_1[k]) = 0;
            IM(alpha_1[k]) = 0;
        } else {
            tmp = REAL_CONST(1.0) / ac.det;
            RE(alpha_1[k]) = (RE(ac.r01) * RE(ac.r12) - IM(ac.r01) * IM(ac.r12) - RE(ac.r02) * RE(ac.r11)) * tmp;
            IM(alpha_1[k]) = (IM(ac.r01) * RE(ac.r12) + RE(ac.r01) * IM(ac.r12) - IM(ac.r02) * RE(ac.r11)) * tmp;
        }

        if (RE(ac.r11) == 0)
        {
            RE(alpha_0[k]) = 0;
            IM(alpha_0[k]) = 0;
        } else {
            tmp = 1.0f / RE(ac.r11);
            RE(alpha_0[k]) = -(RE(ac.r01) + RE(alpha_1[k]) * RE(ac.r12) + IM(alpha_1[k]) * IM(ac.r12)) * tmp;
            IM(alpha_0[k]) = -(IM(ac.r01) + IM(alpha_1[k]) * RE(ac.r12) - RE(alpha_1[k]) * IM(ac.r12)) * tmp;
        }

        if ((RE(alpha_0[k])*RE(alpha_0[k]) + IM(alpha_0[k])*IM(alpha_0[k]) >= 16) ||
            (RE(alpha_1[k])*RE(alpha_1[k]) + IM(alpha_1[k])*IM(alpha_1[k]) >= 16))
        {
            RE(alpha_0[k]) = 0;
            IM(alpha_0[k]) = 0;
            RE(alpha_1[k]) = 0;
            IM(alpha_1[k]) = 0;
        }
#endif
    }
}

#ifdef SBR_LOW_POWER
static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg)
{
    uint8_t k;

    rxx[0] = REAL_CONST(0.0);
    deg[1] = REAL_CONST(0.0);

    for (k = 2; k < sbr->k0; k++)
    {
        deg[k] = 0.0;

        if ((k % 2 == 0) && (rxx[k] < REAL_CONST(0.0)))
        {
            if (rxx[k-1] < 0.0)
            {
                deg[k] = REAL_CONST(1.0);

                if (rxx[k-2] > REAL_CONST(0.0))
                {
                    deg[k-1] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
                }
            } else if (rxx[k-2] > REAL_CONST(0.0)) {
                deg[k]   = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
            }
        }

        if ((k % 2 == 1) && (rxx[k] > REAL_CONST(0.0)))
        {
            if (rxx[k-1] > REAL_CONST(0.0))
            {
                deg[k] = REAL_CONST(1.0);

                if (rxx[k-2] < REAL_CONST(0.0))
                {
                    deg[k-1] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
                }
            } else if (rxx[k-2] < REAL_CONST(0.0)) {
                deg[k] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
            }
        }
    }
}
#endif

static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev)
{
    switch (invf_mode)
    {
    case 1: /* LOW */
        if (invf_mode_prev == 0) /* NONE */
            return COEF_CONST(0.6);
        else
            return COEF_CONST(0.75);

    case 2: /* MID */
        return COEF_CONST(0.9);

    case 3: /* HIGH */
        return COEF_CONST(0.98);

    default: /* NONE */
        if (invf_mode_prev == 1) /* LOW */
            return COEF_CONST(0.6);
        else
            return COEF_CONST(0.0);
    }
}

static void calc_chirp_factors(sbr_info *sbr, uint8_t ch)
{
    uint8_t i;

    for (i = 0; i < sbr->N_Q; i++)
    {
        sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]);

        if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i])
            sbr->bwArray[ch][i] = MUL_C(COEF_CONST(0.75), sbr->bwArray[ch][i]) + MUL_C(COEF_CONST(0.25), sbr->bwArray_prev[ch][i]);
        else
            sbr->bwArray[ch][i] = MUL_C(COEF_CONST(0.90625), sbr->bwArray[ch][i]) + MUL_C(COEF_CONST(0.09375), sbr->bwArray_prev[ch][i]);

        if (sbr->bwArray[ch][i] < COEF_CONST(0.015625))
            sbr->bwArray[ch][i] = COEF_CONST(0.0);

        if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375))
            sbr->bwArray[ch][i] = COEF_CONST(0.99609375);

        sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i];
        sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i];
    }
}

static void patch_construction(sbr_info *sbr)
{
    uint8_t i, k;
    uint8_t odd, sb;
    uint8_t msb = sbr->k0;
    uint8_t usb = sbr->kx;
    uint8_t goalSb = (uint8_t)(2.048e6/sbr->sample_rate + 0.5);

    sbr->noPatches = 0;

    if (goalSb < (sbr->kx + sbr->M))
    {
        for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++)
            k = i+1;
    } else {
        k = sbr->N_master;
    }

    do
    {
        uint8_t j = k + 1;

        do
        {
            j--;

            sb = sbr->f_master[j];
            odd = (sb - 2 + sbr->k0) % 2;
        } while (sb > (sbr->k0 - 1 + msb - odd));

        sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0);
        sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd -
            sbr->patchNoSubbands[sbr->noPatches];

        if (sbr->patchNoSubbands[sbr->noPatches] > 0)
        {
            usb = sb;
            msb = sb;
            sbr->noPatches++;
        } else {
            msb = sbr->kx;
        }

        if (sbr->f_master[k] - sb < 3)
            k = sbr->N_master;
    } while (sb != (sbr->kx + sbr->M));

    if ((sbr->patchNoSubbands[sbr->noPatches-1] < 3) && (sbr->noPatches > 1))
    {
        sbr->noPatches--;
    }

    sbr->noPatches = min(sbr->noPatches, 5);
}

#endif