ref: e79f5009f833fbbe65b213c59e2e5c27e1ee1ce1
dir: /libfaad/fftw/rader.c/
/* * Copyright (c) 1997-1999 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* * Compute transforms of prime sizes using Rader's trick: turn them * into convolutions of size n - 1, which you then perform via a pair * of FFTs. */ #include <stdlib.h> #include <math.h> #include <fftw-int.h> #ifdef FFTW_USING_CILK #include <cilk.h> #include <cilk-compat.h> #endif #ifdef FFTW_DEBUG #define WHEN_DEBUG(a) a #else #define WHEN_DEBUG(a) #endif /* compute n^m mod p, where m >= 0 and p > 0. */ static int power_mod(int n, int m, int p) { if (m == 0) return 1; else if (m % 2 == 0) { int x = power_mod(n, m / 2, p); return MULMOD(x, x, p); } else return MULMOD(n, power_mod(n, m - 1, p), p); } /* * Find the period of n in the multiplicative group mod p (p prime). * That is, return the smallest m such that n^m == 1 mod p. */ static int period(int n, int p) { int prod = n, period = 1; while (prod != 1) { prod = MULMOD(prod, n, p); ++period; if (prod == 0) fftw_die("non-prime order in Rader\n"); } return period; } /* find a generator for the multiplicative group mod p, where p is prime */ static int find_generator(int p) { int g; for (g = 1; g < p; ++g) if (period(g, p) == p - 1) break; if (g == p) fftw_die("couldn't find generator for Rader\n"); return g; } /***************************************************************************/ static fftw_rader_data *create_rader_aux(int p, int flags) { fftw_complex *omega, *work; int g, ginv, gpower; int i; FFTW_TRIG_REAL twoPiOverN; fftw_real scale = 1.0 / (p - 1); /* for convolution */ fftw_plan plan; fftw_rader_data *d; if (p < 2) fftw_die("non-prime order in Rader\n"); flags &= ~FFTW_IN_PLACE; d = (fftw_rader_data *) fftw_malloc(sizeof(fftw_rader_data)); g = find_generator(p); ginv = power_mod(g, p - 2, p); omega = (fftw_complex *) fftw_malloc((p - 1) * sizeof(fftw_complex)); plan = fftw_create_plan(p - 1, FFTW_FORWARD, flags & ~FFTW_NO_VECTOR_RECURSE); work = (fftw_complex *) fftw_malloc((p - 1) * sizeof(fftw_complex)); twoPiOverN = FFTW_K2PI / (FFTW_TRIG_REAL) p; gpower = 1; for (i = 0; i < p - 1; ++i) { c_re(work[i]) = scale * FFTW_TRIG_COS(twoPiOverN * gpower); c_im(work[i]) = FFTW_FORWARD * scale * FFTW_TRIG_SIN(twoPiOverN * gpower); gpower = MULMOD(gpower, ginv, p); } /* fft permuted roots of unity */ fftw_executor_simple(p - 1, work, omega, plan->root, 1, 1, plan->recurse_kind); fftw_free(work); d->plan = plan; d->omega = omega; d->g = g; d->ginv = ginv; d->p = p; d->flags = flags; d->refcount = 1; d->next = NULL; d->cdesc = (fftw_codelet_desc *) fftw_malloc(sizeof(fftw_codelet_desc)); d->cdesc->name = NULL; d->cdesc->codelet = NULL; d->cdesc->size = p; d->cdesc->dir = FFTW_FORWARD; d->cdesc->type = FFTW_RADER; d->cdesc->signature = g; d->cdesc->ntwiddle = 0; d->cdesc->twiddle_order = NULL; return d; } /***************************************************************************/ static fftw_rader_data *fftw_create_rader(int p, int flags) { fftw_rader_data *d = fftw_rader_top; flags &= ~FFTW_IN_PLACE; while (d && (d->p != p || d->flags != flags)) d = d->next; if (d) { d->refcount++; return d; } d = create_rader_aux(p, flags); d->next = fftw_rader_top; fftw_rader_top = d; return d; } /***************************************************************************/ /* Compute the prime FFTs, premultiplied by twiddle factors. Below, we * extensively use the identity that fft(x*)* = ifft(x) in order to * share data between forward and backward transforms and to obviate * the necessity of having separate forward and backward plans. */ void fftw_twiddle_rader(fftw_complex *A, const fftw_complex *W, int m, int r, int stride, fftw_rader_data * d) { fftw_complex *tmp = (fftw_complex *) fftw_malloc((r - 1) * sizeof(fftw_complex)); int i, k, gpower = 1, g = d->g, ginv = d->ginv; fftw_real a0r, a0i; fftw_complex *omega = d->omega; for (i = 0; i < m; ++i, A += stride, W += r - 1) { /* * Here, we fft W[k-1] * A[k*(m*stride)], using Rader. * (Actually, W is pre-permuted to match the permutation that we * will do on A.) */ /* First, permute the input and multiply by W, storing in tmp: */ /* gpower == g^k mod r in the following loop */ for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { fftw_real rA, iA, rW, iW; rW = c_re(W[k]); iW = c_im(W[k]); rA = c_re(A[gpower * (m * stride)]); iA = c_im(A[gpower * (m * stride)]); c_re(tmp[k]) = rW * rA - iW * iA; c_im(tmp[k]) = rW * iA + iW * rA; } WHEN_DEBUG( { if (gpower != 1) fftw_die("incorrect generator in Rader\n"); } ); /* FFT tmp to A: */ fftw_executor_simple(r - 1, tmp, A + (m * stride), d->plan->root, 1, m * stride, d->plan->recurse_kind); /* set output DC component: */ a0r = c_re(A[0]); a0i = c_im(A[0]); c_re(A[0]) += c_re(A[(m * stride)]); c_im(A[0]) += c_im(A[(m * stride)]); /* now, multiply by omega: */ for (k = 0; k < r - 1; ++k) { fftw_real rA, iA, rW, iW; rW = c_re(omega[k]); iW = c_im(omega[k]); rA = c_re(A[(k + 1) * (m * stride)]); iA = c_im(A[(k + 1) * (m * stride)]); c_re(A[(k + 1) * (m * stride)]) = rW * rA - iW * iA; c_im(A[(k + 1) * (m * stride)]) = -(rW * iA + iW * rA); } /* this will add A[0] to all of the outputs after the ifft */ c_re(A[(m * stride)]) += a0r; c_im(A[(m * stride)]) -= a0i; /* inverse FFT: */ fftw_executor_simple(r - 1, A + (m * stride), tmp, d->plan->root, m * stride, 1, d->plan->recurse_kind); /* finally, do inverse permutation to unshuffle the output: */ for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) { c_re(A[gpower * (m * stride)]) = c_re(tmp[k]); c_im(A[gpower * (m * stride)]) = -c_im(tmp[k]); } WHEN_DEBUG( { if (gpower != 1) fftw_die("incorrect generator in Rader\n"); } ); } fftw_free(tmp); } void fftwi_twiddle_rader(fftw_complex *A, const fftw_complex *W, int m, int r, int stride, fftw_rader_data * d) { fftw_complex *tmp = (fftw_complex *) fftw_malloc((r - 1) * sizeof(fftw_complex)); int i, k, gpower = 1, g = d->g, ginv = d->ginv; fftw_real a0r, a0i; fftw_complex *omega = d->omega; for (i = 0; i < m; ++i, A += stride, W += r - 1) { /* * Here, we fft W[k-1]* * A[k*(m*stride)], using Rader. * (Actually, W is pre-permuted to match the permutation that * we will do on A.) */ /* First, permute the input and multiply by W*, storing in tmp: */ /* gpower == g^k mod r in the following loop */ for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { fftw_real rA, iA, rW, iW; rW = c_re(W[k]); iW = c_im(W[k]); rA = c_re(A[gpower * (m * stride)]); iA = c_im(A[gpower * (m * stride)]); c_re(tmp[k]) = rW * rA + iW * iA; c_im(tmp[k]) = iW * rA - rW * iA; } WHEN_DEBUG( { if (gpower != 1) fftw_die("incorrect generator in Rader\n"); } ); /* FFT tmp to A: */ fftw_executor_simple(r - 1, tmp, A + (m * stride), d->plan->root, 1, m * stride, d->plan->recurse_kind); /* set output DC component: */ a0r = c_re(A[0]); a0i = c_im(A[0]); c_re(A[0]) += c_re(A[(m * stride)]); c_im(A[0]) -= c_im(A[(m * stride)]); /* now, multiply by omega: */ for (k = 0; k < r - 1; ++k) { fftw_real rA, iA, rW, iW; rW = c_re(omega[k]); iW = c_im(omega[k]); rA = c_re(A[(k + 1) * (m * stride)]); iA = c_im(A[(k + 1) * (m * stride)]); c_re(A[(k + 1) * (m * stride)]) = rW * rA - iW * iA; c_im(A[(k + 1) * (m * stride)]) = -(rW * iA + iW * rA); } /* this will add A[0] to all of the outputs after the ifft */ c_re(A[(m * stride)]) += a0r; c_im(A[(m * stride)]) += a0i; /* inverse FFT: */ fftw_executor_simple(r - 1, A + (m * stride), tmp, d->plan->root, m * stride, 1, d->plan->recurse_kind); /* finally, do inverse permutation to unshuffle the output: */ for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) { A[gpower * (m * stride)] = tmp[k]; } WHEN_DEBUG( { if (gpower != 1) fftw_die("incorrect generator in Rader\n"); } ); } fftw_free(tmp); } /***************************************************************************/ /* * Make an FFTW_RADER plan node. Note that this function must go * here, rather than in putils.c, because it indirectly calls the * fftw_planner. If we included it in putils.c, which is also used * by rfftw, then any program using rfftw would be linked with all * of the FFTW codelets, even if they were not needed. I wish that the * darn linkers operated on a function rather than a file granularity. */ fftw_plan_node *fftw_make_node_rader(int n, int size, fftw_direction dir, fftw_plan_node *recurse, int flags) { fftw_plan_node *p = fftw_make_node(); p->type = FFTW_RADER; p->nodeu.rader.size = size; p->nodeu.rader.codelet = dir == FFTW_FORWARD ? fftw_twiddle_rader : fftwi_twiddle_rader; p->nodeu.rader.rader_data = fftw_create_rader(size, flags); p->nodeu.rader.recurse = recurse; fftw_use_node(recurse); if (flags & FFTW_MEASURE) p->nodeu.rader.tw = fftw_create_twiddle(n, p->nodeu.rader.rader_data->cdesc); else p->nodeu.rader.tw = 0; return p; }