shithub: libvpx

Download patch

ref: 501efcad4a6311e4b8a919089b8aac2f54770272
parent: 3c092e2474fdcef4c9d5383d5a1fe8e8db676e5b
parent: ee5b80597e871ad1a7c3da0834cd7896ae3f1588
author: Angie Chiang <[email protected]>
date: Thu Sep 10 20:10:45 EDT 2015

Merge "Isolate vp10's fwd_txfm from vp9"

--- /dev/null
+++ b/vp10/common/vp10_fwd_txfm.c
@@ -1,0 +1,824 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp10/common/vp10_fwd_txfm.h"
+
+void vp10_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
+  // The 2D transform is done with two passes which are actually pretty
+  // similar. In the first one, we transform the columns and transpose
+  // the results. In the second one, we transform the rows. To achieve that,
+  // as the first pass results are transposed, we transpose the columns (that
+  // is the transposed rows) and transpose the results (so that it goes back
+  // in normal/row positions).
+  int pass;
+  // We need an intermediate buffer between passes.
+  tran_low_t intermediate[4 * 4];
+  const int16_t *in_pass0 = input;
+  const tran_low_t *in = NULL;
+  tran_low_t *out = intermediate;
+  // Do the two transform/transpose passes
+  for (pass = 0; pass < 2; ++pass) {
+    tran_high_t input[4];      // canbe16
+    tran_high_t step[4];       // canbe16
+    tran_high_t temp1, temp2;  // needs32
+    int i;
+    for (i = 0; i < 4; ++i) {
+      // Load inputs.
+      if (0 == pass) {
+        input[0] = in_pass0[0 * stride] * 16;
+        input[1] = in_pass0[1 * stride] * 16;
+        input[2] = in_pass0[2 * stride] * 16;
+        input[3] = in_pass0[3 * stride] * 16;
+        if (i == 0 && input[0]) {
+          input[0] += 1;
+        }
+      } else {
+        input[0] = in[0 * 4];
+        input[1] = in[1 * 4];
+        input[2] = in[2 * 4];
+        input[3] = in[3 * 4];
+      }
+      // Transform.
+      step[0] = input[0] + input[3];
+      step[1] = input[1] + input[2];
+      step[2] = input[1] - input[2];
+      step[3] = input[0] - input[3];
+      temp1 = (step[0] + step[1]) * cospi_16_64;
+      temp2 = (step[0] - step[1]) * cospi_16_64;
+      out[0] = (tran_low_t)fdct_round_shift(temp1);
+      out[2] = (tran_low_t)fdct_round_shift(temp2);
+      temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
+      temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
+      out[1] = (tran_low_t)fdct_round_shift(temp1);
+      out[3] = (tran_low_t)fdct_round_shift(temp2);
+      // Do next column (which is a transposed row in second/horizontal pass)
+      in_pass0++;
+      in++;
+      out += 4;
+    }
+    // Setup in/out for next pass.
+    in = intermediate;
+    out = output;
+  }
+
+  {
+    int i, j;
+    for (i = 0; i < 4; ++i) {
+      for (j = 0; j < 4; ++j)
+        output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
+    }
+  }
+}
+
+void vp10_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) {
+  int r, c;
+  tran_low_t sum = 0;
+  for (r = 0; r < 4; ++r)
+    for (c = 0; c < 4; ++c)
+      sum += input[r * stride + c];
+
+  output[0] = sum << 1;
+  output[1] = 0;
+}
+
+void vp10_fdct8x8_c(const int16_t *input,
+    tran_low_t *final_output, int stride) {
+  int i, j;
+  tran_low_t intermediate[64];
+  int pass;
+  tran_low_t *output = intermediate;
+  const tran_low_t *in = NULL;
+
+  // Transform columns
+  for (pass = 0; pass < 2; ++pass) {
+    tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
+    tran_high_t t0, t1, t2, t3;                  // needs32
+    tran_high_t x0, x1, x2, x3;                  // canbe16
+
+    int i;
+    for (i = 0; i < 8; i++) {
+      // stage 1
+      if (pass == 0) {
+        s0 = (input[0 * stride] + input[7 * stride]) * 4;
+        s1 = (input[1 * stride] + input[6 * stride]) * 4;
+        s2 = (input[2 * stride] + input[5 * stride]) * 4;
+        s3 = (input[3 * stride] + input[4 * stride]) * 4;
+        s4 = (input[3 * stride] - input[4 * stride]) * 4;
+        s5 = (input[2 * stride] - input[5 * stride]) * 4;
+        s6 = (input[1 * stride] - input[6 * stride]) * 4;
+        s7 = (input[0 * stride] - input[7 * stride]) * 4;
+        ++input;
+      } else {
+        s0 = in[0 * 8] + in[7 * 8];
+        s1 = in[1 * 8] + in[6 * 8];
+        s2 = in[2 * 8] + in[5 * 8];
+        s3 = in[3 * 8] + in[4 * 8];
+        s4 = in[3 * 8] - in[4 * 8];
+        s5 = in[2 * 8] - in[5 * 8];
+        s6 = in[1 * 8] - in[6 * 8];
+        s7 = in[0 * 8] - in[7 * 8];
+        ++in;
+      }
+
+      // fdct4(step, step);
+      x0 = s0 + s3;
+      x1 = s1 + s2;
+      x2 = s1 - s2;
+      x3 = s0 - s3;
+      t0 = (x0 + x1) * cospi_16_64;
+      t1 = (x0 - x1) * cospi_16_64;
+      t2 =  x2 * cospi_24_64 + x3 *  cospi_8_64;
+      t3 = -x2 * cospi_8_64  + x3 * cospi_24_64;
+      output[0] = (tran_low_t)fdct_round_shift(t0);
+      output[2] = (tran_low_t)fdct_round_shift(t2);
+      output[4] = (tran_low_t)fdct_round_shift(t1);
+      output[6] = (tran_low_t)fdct_round_shift(t3);
+
+      // Stage 2
+      t0 = (s6 - s5) * cospi_16_64;
+      t1 = (s6 + s5) * cospi_16_64;
+      t2 = fdct_round_shift(t0);
+      t3 = fdct_round_shift(t1);
+
+      // Stage 3
+      x0 = s4 + t2;
+      x1 = s4 - t2;
+      x2 = s7 - t3;
+      x3 = s7 + t3;
+
+      // Stage 4
+      t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
+      t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
+      t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+      t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
+      output[1] = (tran_low_t)fdct_round_shift(t0);
+      output[3] = (tran_low_t)fdct_round_shift(t2);
+      output[5] = (tran_low_t)fdct_round_shift(t1);
+      output[7] = (tran_low_t)fdct_round_shift(t3);
+      output += 8;
+    }
+    in  = intermediate;
+    output = final_output;
+  }
+
+  // Rows
+  for (i = 0; i < 8; ++i) {
+    for (j = 0; j < 8; ++j)
+      final_output[j + i * 8] /= 2;
+  }
+}
+
+void vp10_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) {
+  int r, c;
+  tran_low_t sum = 0;
+  for (r = 0; r < 8; ++r)
+    for (c = 0; c < 8; ++c)
+      sum += input[r * stride + c];
+
+  output[0] = sum;
+  output[1] = 0;
+}
+
+void vp10_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
+  // The 2D transform is done with two passes which are actually pretty
+  // similar. In the first one, we transform the columns and transpose
+  // the results. In the second one, we transform the rows. To achieve that,
+  // as the first pass results are transposed, we transpose the columns (that
+  // is the transposed rows) and transpose the results (so that it goes back
+  // in normal/row positions).
+  int pass;
+  // We need an intermediate buffer between passes.
+  tran_low_t intermediate[256];
+  const int16_t *in_pass0 = input;
+  const tran_low_t *in = NULL;
+  tran_low_t *out = intermediate;
+  // Do the two transform/transpose passes
+  for (pass = 0; pass < 2; ++pass) {
+    tran_high_t step1[8];      // canbe16
+    tran_high_t step2[8];      // canbe16
+    tran_high_t step3[8];      // canbe16
+    tran_high_t input[8];      // canbe16
+    tran_high_t temp1, temp2;  // needs32
+    int i;
+    for (i = 0; i < 16; i++) {
+      if (0 == pass) {
+        // Calculate input for the first 8 results.
+        input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4;
+        input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4;
+        input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4;
+        input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4;
+        input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4;
+        input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4;
+        input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4;
+        input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4;
+        // Calculate input for the next 8 results.
+        step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4;
+        step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4;
+        step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4;
+        step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4;
+        step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4;
+        step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4;
+        step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4;
+        step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4;
+      } else {
+        // Calculate input for the first 8 results.
+        input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
+        input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
+        input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
+        input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
+        input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
+        input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
+        input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
+        input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
+        // Calculate input for the next 8 results.
+        step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
+        step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
+        step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
+        step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
+        step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
+        step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
+        step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
+        step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
+      }
+      // Work on the first eight values; fdct8(input, even_results);
+      {
+        tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
+        tran_high_t t0, t1, t2, t3;                  // needs32
+        tran_high_t x0, x1, x2, x3;                  // canbe16
+
+        // stage 1
+        s0 = input[0] + input[7];
+        s1 = input[1] + input[6];
+        s2 = input[2] + input[5];
+        s3 = input[3] + input[4];
+        s4 = input[3] - input[4];
+        s5 = input[2] - input[5];
+        s6 = input[1] - input[6];
+        s7 = input[0] - input[7];
+
+        // fdct4(step, step);
+        x0 = s0 + s3;
+        x1 = s1 + s2;
+        x2 = s1 - s2;
+        x3 = s0 - s3;
+        t0 = (x0 + x1) * cospi_16_64;
+        t1 = (x0 - x1) * cospi_16_64;
+        t2 = x3 * cospi_8_64  + x2 * cospi_24_64;
+        t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
+        out[0] = (tran_low_t)fdct_round_shift(t0);
+        out[4] = (tran_low_t)fdct_round_shift(t2);
+        out[8] = (tran_low_t)fdct_round_shift(t1);
+        out[12] = (tran_low_t)fdct_round_shift(t3);
+
+        // Stage 2
+        t0 = (s6 - s5) * cospi_16_64;
+        t1 = (s6 + s5) * cospi_16_64;
+        t2 = fdct_round_shift(t0);
+        t3 = fdct_round_shift(t1);
+
+        // Stage 3
+        x0 = s4 + t2;
+        x1 = s4 - t2;
+        x2 = s7 - t3;
+        x3 = s7 + t3;
+
+        // Stage 4
+        t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
+        t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
+        t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+        t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
+        out[2] = (tran_low_t)fdct_round_shift(t0);
+        out[6] = (tran_low_t)fdct_round_shift(t2);
+        out[10] = (tran_low_t)fdct_round_shift(t1);
+        out[14] = (tran_low_t)fdct_round_shift(t3);
+      }
+      // Work on the next eight values; step1 -> odd_results
+      {
+        // step 2
+        temp1 = (step1[5] - step1[2]) * cospi_16_64;
+        temp2 = (step1[4] - step1[3]) * cospi_16_64;
+        step2[2] = fdct_round_shift(temp1);
+        step2[3] = fdct_round_shift(temp2);
+        temp1 = (step1[4] + step1[3]) * cospi_16_64;
+        temp2 = (step1[5] + step1[2]) * cospi_16_64;
+        step2[4] = fdct_round_shift(temp1);
+        step2[5] = fdct_round_shift(temp2);
+        // step 3
+        step3[0] = step1[0] + step2[3];
+        step3[1] = step1[1] + step2[2];
+        step3[2] = step1[1] - step2[2];
+        step3[3] = step1[0] - step2[3];
+        step3[4] = step1[7] - step2[4];
+        step3[5] = step1[6] - step2[5];
+        step3[6] = step1[6] + step2[5];
+        step3[7] = step1[7] + step2[4];
+        // step 4
+        temp1 = step3[1] *  -cospi_8_64 + step3[6] * cospi_24_64;
+        temp2 = step3[2] * cospi_24_64 + step3[5] *  cospi_8_64;
+        step2[1] = fdct_round_shift(temp1);
+        step2[2] = fdct_round_shift(temp2);
+        temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
+        temp2 = step3[1] * cospi_24_64 + step3[6] *  cospi_8_64;
+        step2[5] = fdct_round_shift(temp1);
+        step2[6] = fdct_round_shift(temp2);
+        // step 5
+        step1[0] = step3[0] + step2[1];
+        step1[1] = step3[0] - step2[1];
+        step1[2] = step3[3] + step2[2];
+        step1[3] = step3[3] - step2[2];
+        step1[4] = step3[4] - step2[5];
+        step1[5] = step3[4] + step2[5];
+        step1[6] = step3[7] - step2[6];
+        step1[7] = step3[7] + step2[6];
+        // step 6
+        temp1 = step1[0] * cospi_30_64 + step1[7] *  cospi_2_64;
+        temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
+        out[1] = (tran_low_t)fdct_round_shift(temp1);
+        out[9] = (tran_low_t)fdct_round_shift(temp2);
+        temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
+        temp2 = step1[3] *  cospi_6_64 + step1[4] * cospi_26_64;
+        out[5] = (tran_low_t)fdct_round_shift(temp1);
+        out[13] = (tran_low_t)fdct_round_shift(temp2);
+        temp1 = step1[3] * -cospi_26_64 + step1[4] *  cospi_6_64;
+        temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
+        out[3] = (tran_low_t)fdct_round_shift(temp1);
+        out[11] = (tran_low_t)fdct_round_shift(temp2);
+        temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
+        temp2 = step1[0] *  -cospi_2_64 + step1[7] * cospi_30_64;
+        out[7] = (tran_low_t)fdct_round_shift(temp1);
+        out[15] = (tran_low_t)fdct_round_shift(temp2);
+      }
+      // Do next column (which is a transposed row in second/horizontal pass)
+      in++;
+      in_pass0++;
+      out += 16;
+    }
+    // Setup in/out for next pass.
+    in = intermediate;
+    out = output;
+  }
+}
+
+void vp10_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) {
+  int r, c;
+  tran_low_t sum = 0;
+  for (r = 0; r < 16; ++r)
+    for (c = 0; c < 16; ++c)
+      sum += input[r * stride + c];
+
+  output[0] = sum >> 1;
+  output[1] = 0;
+}
+
+static INLINE tran_high_t dct_32_round(tran_high_t input) {
+  tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
+  // TODO(debargha, peter.derivaz): Find new bounds for this assert,
+  // and make the bounds consts.
+  // assert(-131072 <= rv && rv <= 131071);
+  return rv;
+}
+
+static INLINE tran_high_t half_round_shift(tran_high_t input) {
+  tran_high_t rv = (input + 1 + (input < 0)) >> 2;
+  return rv;
+}
+
+void vp10_fdct32(const tran_high_t *input, tran_high_t *output, int round) {
+  tran_high_t step[32];
+  // Stage 1
+  step[0] = input[0] + input[(32 - 1)];
+  step[1] = input[1] + input[(32 - 2)];
+  step[2] = input[2] + input[(32 - 3)];
+  step[3] = input[3] + input[(32 - 4)];
+  step[4] = input[4] + input[(32 - 5)];
+  step[5] = input[5] + input[(32 - 6)];
+  step[6] = input[6] + input[(32 - 7)];
+  step[7] = input[7] + input[(32 - 8)];
+  step[8] = input[8] + input[(32 - 9)];
+  step[9] = input[9] + input[(32 - 10)];
+  step[10] = input[10] + input[(32 - 11)];
+  step[11] = input[11] + input[(32 - 12)];
+  step[12] = input[12] + input[(32 - 13)];
+  step[13] = input[13] + input[(32 - 14)];
+  step[14] = input[14] + input[(32 - 15)];
+  step[15] = input[15] + input[(32 - 16)];
+  step[16] = -input[16] + input[(32 - 17)];
+  step[17] = -input[17] + input[(32 - 18)];
+  step[18] = -input[18] + input[(32 - 19)];
+  step[19] = -input[19] + input[(32 - 20)];
+  step[20] = -input[20] + input[(32 - 21)];
+  step[21] = -input[21] + input[(32 - 22)];
+  step[22] = -input[22] + input[(32 - 23)];
+  step[23] = -input[23] + input[(32 - 24)];
+  step[24] = -input[24] + input[(32 - 25)];
+  step[25] = -input[25] + input[(32 - 26)];
+  step[26] = -input[26] + input[(32 - 27)];
+  step[27] = -input[27] + input[(32 - 28)];
+  step[28] = -input[28] + input[(32 - 29)];
+  step[29] = -input[29] + input[(32 - 30)];
+  step[30] = -input[30] + input[(32 - 31)];
+  step[31] = -input[31] + input[(32 - 32)];
+
+  // Stage 2
+  output[0] = step[0] + step[16 - 1];
+  output[1] = step[1] + step[16 - 2];
+  output[2] = step[2] + step[16 - 3];
+  output[3] = step[3] + step[16 - 4];
+  output[4] = step[4] + step[16 - 5];
+  output[5] = step[5] + step[16 - 6];
+  output[6] = step[6] + step[16 - 7];
+  output[7] = step[7] + step[16 - 8];
+  output[8] = -step[8] + step[16 - 9];
+  output[9] = -step[9] + step[16 - 10];
+  output[10] = -step[10] + step[16 - 11];
+  output[11] = -step[11] + step[16 - 12];
+  output[12] = -step[12] + step[16 - 13];
+  output[13] = -step[13] + step[16 - 14];
+  output[14] = -step[14] + step[16 - 15];
+  output[15] = -step[15] + step[16 - 16];
+
+  output[16] = step[16];
+  output[17] = step[17];
+  output[18] = step[18];
+  output[19] = step[19];
+
+  output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
+  output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
+  output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
+  output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
+
+  output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
+  output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
+  output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
+  output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
+
+  output[28] = step[28];
+  output[29] = step[29];
+  output[30] = step[30];
+  output[31] = step[31];
+
+  // dump the magnitude by 4, hence the intermediate values are within
+  // the range of 16 bits.
+  if (round) {
+    output[0] = half_round_shift(output[0]);
+    output[1] = half_round_shift(output[1]);
+    output[2] = half_round_shift(output[2]);
+    output[3] = half_round_shift(output[3]);
+    output[4] = half_round_shift(output[4]);
+    output[5] = half_round_shift(output[5]);
+    output[6] = half_round_shift(output[6]);
+    output[7] = half_round_shift(output[7]);
+    output[8] = half_round_shift(output[8]);
+    output[9] = half_round_shift(output[9]);
+    output[10] = half_round_shift(output[10]);
+    output[11] = half_round_shift(output[11]);
+    output[12] = half_round_shift(output[12]);
+    output[13] = half_round_shift(output[13]);
+    output[14] = half_round_shift(output[14]);
+    output[15] = half_round_shift(output[15]);
+
+    output[16] = half_round_shift(output[16]);
+    output[17] = half_round_shift(output[17]);
+    output[18] = half_round_shift(output[18]);
+    output[19] = half_round_shift(output[19]);
+    output[20] = half_round_shift(output[20]);
+    output[21] = half_round_shift(output[21]);
+    output[22] = half_round_shift(output[22]);
+    output[23] = half_round_shift(output[23]);
+    output[24] = half_round_shift(output[24]);
+    output[25] = half_round_shift(output[25]);
+    output[26] = half_round_shift(output[26]);
+    output[27] = half_round_shift(output[27]);
+    output[28] = half_round_shift(output[28]);
+    output[29] = half_round_shift(output[29]);
+    output[30] = half_round_shift(output[30]);
+    output[31] = half_round_shift(output[31]);
+  }
+
+  // Stage 3
+  step[0] = output[0] + output[(8 - 1)];
+  step[1] = output[1] + output[(8 - 2)];
+  step[2] = output[2] + output[(8 - 3)];
+  step[3] = output[3] + output[(8 - 4)];
+  step[4] = -output[4] + output[(8 - 5)];
+  step[5] = -output[5] + output[(8 - 6)];
+  step[6] = -output[6] + output[(8 - 7)];
+  step[7] = -output[7] + output[(8 - 8)];
+  step[8] = output[8];
+  step[9] = output[9];
+  step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
+  step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
+  step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
+  step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
+  step[14] = output[14];
+  step[15] = output[15];
+
+  step[16] = output[16] + output[23];
+  step[17] = output[17] + output[22];
+  step[18] = output[18] + output[21];
+  step[19] = output[19] + output[20];
+  step[20] = -output[20] + output[19];
+  step[21] = -output[21] + output[18];
+  step[22] = -output[22] + output[17];
+  step[23] = -output[23] + output[16];
+  step[24] = -output[24] + output[31];
+  step[25] = -output[25] + output[30];
+  step[26] = -output[26] + output[29];
+  step[27] = -output[27] + output[28];
+  step[28] = output[28] + output[27];
+  step[29] = output[29] + output[26];
+  step[30] = output[30] + output[25];
+  step[31] = output[31] + output[24];
+
+  // Stage 4
+  output[0] = step[0] + step[3];
+  output[1] = step[1] + step[2];
+  output[2] = -step[2] + step[1];
+  output[3] = -step[3] + step[0];
+  output[4] = step[4];
+  output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
+  output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
+  output[7] = step[7];
+  output[8] = step[8] + step[11];
+  output[9] = step[9] + step[10];
+  output[10] = -step[10] + step[9];
+  output[11] = -step[11] + step[8];
+  output[12] = -step[12] + step[15];
+  output[13] = -step[13] + step[14];
+  output[14] = step[14] + step[13];
+  output[15] = step[15] + step[12];
+
+  output[16] = step[16];
+  output[17] = step[17];
+  output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
+  output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
+  output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
+  output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
+  output[22] = step[22];
+  output[23] = step[23];
+  output[24] = step[24];
+  output[25] = step[25];
+  output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
+  output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
+  output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
+  output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
+  output[30] = step[30];
+  output[31] = step[31];
+
+  // Stage 5
+  step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
+  step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
+  step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
+  step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
+  step[4] = output[4] + output[5];
+  step[5] = -output[5] + output[4];
+  step[6] = -output[6] + output[7];
+  step[7] = output[7] + output[6];
+  step[8] = output[8];
+  step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
+  step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
+  step[11] = output[11];
+  step[12] = output[12];
+  step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
+  step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
+  step[15] = output[15];
+
+  step[16] = output[16] + output[19];
+  step[17] = output[17] + output[18];
+  step[18] = -output[18] + output[17];
+  step[19] = -output[19] + output[16];
+  step[20] = -output[20] + output[23];
+  step[21] = -output[21] + output[22];
+  step[22] = output[22] + output[21];
+  step[23] = output[23] + output[20];
+  step[24] = output[24] + output[27];
+  step[25] = output[25] + output[26];
+  step[26] = -output[26] + output[25];
+  step[27] = -output[27] + output[24];
+  step[28] = -output[28] + output[31];
+  step[29] = -output[29] + output[30];
+  step[30] = output[30] + output[29];
+  step[31] = output[31] + output[28];
+
+  // Stage 6
+  output[0] = step[0];
+  output[1] = step[1];
+  output[2] = step[2];
+  output[3] = step[3];
+  output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
+  output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
+  output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
+  output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
+  output[8] = step[8] + step[9];
+  output[9] = -step[9] + step[8];
+  output[10] = -step[10] + step[11];
+  output[11] = step[11] + step[10];
+  output[12] = step[12] + step[13];
+  output[13] = -step[13] + step[12];
+  output[14] = -step[14] + step[15];
+  output[15] = step[15] + step[14];
+
+  output[16] = step[16];
+  output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
+  output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
+  output[19] = step[19];
+  output[20] = step[20];
+  output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
+  output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
+  output[23] = step[23];
+  output[24] = step[24];
+  output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
+  output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
+  output[27] = step[27];
+  output[28] = step[28];
+  output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
+  output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
+  output[31] = step[31];
+
+  // Stage 7
+  step[0] = output[0];
+  step[1] = output[1];
+  step[2] = output[2];
+  step[3] = output[3];
+  step[4] = output[4];
+  step[5] = output[5];
+  step[6] = output[6];
+  step[7] = output[7];
+  step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
+  step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
+  step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
+  step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
+  step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
+  step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
+  step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
+  step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
+
+  step[16] = output[16] + output[17];
+  step[17] = -output[17] + output[16];
+  step[18] = -output[18] + output[19];
+  step[19] = output[19] + output[18];
+  step[20] = output[20] + output[21];
+  step[21] = -output[21] + output[20];
+  step[22] = -output[22] + output[23];
+  step[23] = output[23] + output[22];
+  step[24] = output[24] + output[25];
+  step[25] = -output[25] + output[24];
+  step[26] = -output[26] + output[27];
+  step[27] = output[27] + output[26];
+  step[28] = output[28] + output[29];
+  step[29] = -output[29] + output[28];
+  step[30] = -output[30] + output[31];
+  step[31] = output[31] + output[30];
+
+  // Final stage --- outputs indices are bit-reversed.
+  output[0]  = step[0];
+  output[16] = step[1];
+  output[8]  = step[2];
+  output[24] = step[3];
+  output[4]  = step[4];
+  output[20] = step[5];
+  output[12] = step[6];
+  output[28] = step[7];
+  output[2]  = step[8];
+  output[18] = step[9];
+  output[10] = step[10];
+  output[26] = step[11];
+  output[6]  = step[12];
+  output[22] = step[13];
+  output[14] = step[14];
+  output[30] = step[15];
+
+  output[1]  = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
+  output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
+  output[9]  = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
+  output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
+  output[5]  = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
+  output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
+  output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
+  output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
+  output[3]  = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
+  output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
+  output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
+  output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
+  output[7]  = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
+  output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
+  output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
+  output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
+}
+
+void vp10_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
+  int i, j;
+  tran_high_t output[32 * 32];
+
+  // Columns
+  for (i = 0; i < 32; ++i) {
+    tran_high_t temp_in[32], temp_out[32];
+    for (j = 0; j < 32; ++j)
+      temp_in[j] = input[j * stride + i] * 4;
+    vp10_fdct32(temp_in, temp_out, 0);
+    for (j = 0; j < 32; ++j)
+      output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
+  }
+
+  // Rows
+  for (i = 0; i < 32; ++i) {
+    tran_high_t temp_in[32], temp_out[32];
+    for (j = 0; j < 32; ++j)
+      temp_in[j] = output[j + i * 32];
+    vp10_fdct32(temp_in, temp_out, 0);
+    for (j = 0; j < 32; ++j)
+      out[j + i * 32] =
+          (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
+  }
+}
+
+// Note that although we use dct_32_round in dct32 computation flow,
+// this 2d fdct32x32 for rate-distortion optimization loop is operating
+// within 16 bits precision.
+void vp10_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) {
+  int i, j;
+  tran_high_t output[32 * 32];
+
+  // Columns
+  for (i = 0; i < 32; ++i) {
+    tran_high_t temp_in[32], temp_out[32];
+    for (j = 0; j < 32; ++j)
+      temp_in[j] = input[j * stride + i] * 4;
+    vp10_fdct32(temp_in, temp_out, 0);
+    for (j = 0; j < 32; ++j)
+      // TODO(cd): see quality impact of only doing
+      //           output[j * 32 + i] = (temp_out[j] + 1) >> 2;
+      //           PS: also change code in vp10_dsp/x86/vp10_dct_sse2.c
+      output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
+  }
+
+  // Rows
+  for (i = 0; i < 32; ++i) {
+    tran_high_t temp_in[32], temp_out[32];
+    for (j = 0; j < 32; ++j)
+      temp_in[j] = output[j + i * 32];
+    vp10_fdct32(temp_in, temp_out, 1);
+    for (j = 0; j < 32; ++j)
+      out[j + i * 32] = (tran_low_t)temp_out[j];
+  }
+}
+
+void vp10_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) {
+  int r, c;
+  tran_low_t sum = 0;
+  for (r = 0; r < 32; ++r)
+    for (c = 0; c < 32; ++c)
+      sum += input[r * stride + c];
+
+  output[0] = sum >> 3;
+  output[1] = 0;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp10_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
+                          int stride) {
+  vp10_fdct4x4_c(input, output, stride);
+}
+
+void vp10_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
+                          int stride) {
+  vp10_fdct8x8_c(input, final_output, stride);
+}
+
+void vp10_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output,
+                            int stride) {
+  vp10_fdct8x8_1_c(input, final_output, stride);
+}
+
+void vp10_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
+                            int stride) {
+  vp10_fdct16x16_c(input, output, stride);
+}
+
+void vp10_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output,
+                              int stride) {
+  vp10_fdct16x16_1_c(input, output, stride);
+}
+
+void vp10_highbd_fdct32x32_c(const int16_t *input,
+    tran_low_t *out, int stride) {
+  vp10_fdct32x32_c(input, out, stride);
+}
+
+void vp10_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
+                               int stride) {
+  vp10_fdct32x32_rd_c(input, out, stride);
+}
+
+void vp10_highbd_fdct32x32_1_c(const int16_t *input,
+    tran_low_t *out, int stride) {
+  vp10_fdct32x32_1_c(input, out, stride);
+}
+#endif  // CONFIG_VP9_HIGHBITDEPTH
--- /dev/null
+++ b/vp10/common/vp10_fwd_txfm.h
@@ -1,0 +1,18 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_COMMON_VP10_FWD_TXFM_H_
+#define VP10_COMMON_VP10_FWD_TXFM_H_
+
+#include "vpx_dsp/txfm_common.h"
+#include "vpx_dsp/fwd_txfm.h"
+
+void vp10_fdct32(const tran_high_t *input, tran_high_t *output, int round);
+#endif  // VP10_COMMON_VP10_FWD_TXFM_H_
--- a/vp10/common/vp10_rtcd_defs.pl
+++ b/vp10/common/vp10_rtcd_defs.pl
@@ -95,6 +95,57 @@
 
   add_proto qw/void vp10_iht16x16_256_add/, "const tran_low_t *input, uint8_t *output, int pitch, int tx_type";
   specialize qw/vp10_iht16x16_256_add/;
+
+  add_proto qw/void vp10_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_fdct4x4 sse2/;
+
+  add_proto qw/void vp10_fdct4x4_1/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_fdct4x4_1 sse2/;
+
+  add_proto qw/void vp10_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_fdct8x8 sse2/;
+
+  add_proto qw/void vp10_fdct8x8_1/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_fdct8x8_1 sse2/;
+
+  add_proto qw/void vp10_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_fdct16x16 sse2/;
+
+  add_proto qw/void vp10_fdct16x16_1/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_fdct16x16_1 sse2/;
+
+  add_proto qw/void vp10_fdct32x32/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_fdct32x32 sse2/;
+
+  add_proto qw/void vp10_fdct32x32_rd/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_fdct32x32_rd sse2/;
+
+  add_proto qw/void vp10_fdct32x32_1/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_fdct32x32_1 sse2/;
+
+  add_proto qw/void vp10_highbd_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_highbd_fdct4x4 sse2/;
+
+  add_proto qw/void vp10_highbd_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_highbd_fdct8x8 sse2/;
+
+  add_proto qw/void vp10_highbd_fdct8x8_1/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_highbd_fdct8x8_1/;
+
+  add_proto qw/void vp10_highbd_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_highbd_fdct16x16 sse2/;
+
+  add_proto qw/void vp10_highbd_fdct16x16_1/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_highbd_fdct16x16_1/;
+
+  add_proto qw/void vp10_highbd_fdct32x32/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_highbd_fdct32x32 sse2/;
+
+  add_proto qw/void vp10_highbd_fdct32x32_rd/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_highbd_fdct32x32_rd sse2/;
+
+  add_proto qw/void vp10_highbd_fdct32x32_1/, "const int16_t *input, tran_low_t *output, int stride";
+  specialize qw/vp10_highbd_fdct32x32_1/;
 } else {
   # Force C versions if CONFIG_EMULATE_HARDWARE is 1
   if (vpx_config("CONFIG_EMULATE_HARDWARE") eq "yes") {
@@ -106,6 +157,33 @@
 
     add_proto qw/void vp10_iht16x16_256_add/, "const tran_low_t *input, uint8_t *output, int pitch, int tx_type";
     specialize qw/vp10_iht16x16_256_add/;
+
+    add_proto qw/void vp10_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct4x4/;
+
+    add_proto qw/void vp10_fdct4x4_1/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct4x4_1/;
+
+    add_proto qw/void vp10_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct8x8/;
+
+    add_proto qw/void vp10_fdct8x8_1/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct8x8_1/;
+
+    add_proto qw/void vp10_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct16x16/;
+
+    add_proto qw/void vp10_fdct16x16_1/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct16x16_1/;
+
+    add_proto qw/void vp10_fdct32x32/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct32x32/;
+
+    add_proto qw/void vp10_fdct32x32_rd/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct32x32_rd/;
+
+    add_proto qw/void vp10_fdct32x32_1/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct32x32_1/;
   } else {
     add_proto qw/void vp10_iht4x4_16_add/, "const tran_low_t *input, uint8_t *dest, int dest_stride, int tx_type";
     specialize qw/vp10_iht4x4_16_add sse2 neon dspr2 msa/;
@@ -115,6 +193,33 @@
 
     add_proto qw/void vp10_iht16x16_256_add/, "const tran_low_t *input, uint8_t *output, int pitch, int tx_type";
     specialize qw/vp10_iht16x16_256_add sse2 dspr2 msa/;
+
+    add_proto qw/void vp10_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct4x4 sse2/;
+
+    add_proto qw/void vp10_fdct4x4_1/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct4x4_1 sse2/;
+
+    add_proto qw/void vp10_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct8x8 sse2/;
+
+    add_proto qw/void vp10_fdct8x8_1/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct8x8_1 sse2/;
+
+    add_proto qw/void vp10_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct16x16 sse2/;
+
+    add_proto qw/void vp10_fdct16x16_1/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct16x16_1 sse2/;
+
+    add_proto qw/void vp10_fdct32x32/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct32x32 sse2/;
+
+    add_proto qw/void vp10_fdct32x32_rd/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct32x32_rd sse2/;
+
+    add_proto qw/void vp10_fdct32x32_1/, "const int16_t *input, tran_low_t *output, int stride";
+    specialize qw/vp10_fdct32x32_1 sse2/;
   }
 }
 
--- /dev/null
+++ b/vp10/common/x86/vp10_fwd_dct32x32_impl_sse2.h
@@ -1,0 +1,3153 @@
+/*
+ *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>  // SSE2
+
+#include "vp10/common/vp10_fwd_txfm.h"
+#include "vpx_dsp/txfm_common.h"
+#include "vpx_dsp/x86/txfm_common_sse2.h"
+
+// TODO(jingning) The high bit-depth version needs re-work for performance.
+// The current SSE2 implementation also causes cross reference to the static
+// functions in the C implementation file.
+#if DCT_HIGH_BIT_DEPTH
+#define ADD_EPI16 _mm_adds_epi16
+#define SUB_EPI16 _mm_subs_epi16
+#if FDCT32x32_HIGH_PRECISION
+void vp10_fdct32x32_rows_c(const int16_t *intermediate, tran_low_t *out) {
+    int i, j;
+    for (i = 0; i < 32; ++i) {
+      tran_high_t temp_in[32], temp_out[32];
+      for (j = 0; j < 32; ++j)
+        temp_in[j] = intermediate[j * 32 + i];
+      vp10_fdct32(temp_in, temp_out, 0);
+      for (j = 0; j < 32; ++j)
+        out[j + i * 32] =
+            (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
+    }
+}
+  #define HIGH_FDCT32x32_2D_C vp10_highbd_fdct32x32_c
+  #define HIGH_FDCT32x32_2D_ROWS_C vp10_fdct32x32_rows_c
+#else
+void vp10_fdct32x32_rd_rows_c(const int16_t *intermediate, tran_low_t *out) {
+    int i, j;
+    for (i = 0; i < 32; ++i) {
+      tran_high_t temp_in[32], temp_out[32];
+      for (j = 0; j < 32; ++j)
+        temp_in[j] = intermediate[j * 32 + i];
+      vp10_fdct32(temp_in, temp_out, 1);
+      for (j = 0; j < 32; ++j)
+        out[j + i * 32] = (tran_low_t)temp_out[j];
+    }
+}
+  #define HIGH_FDCT32x32_2D_C vp10_highbd_fdct32x32_rd_c
+  #define HIGH_FDCT32x32_2D_ROWS_C vp10_fdct32x32_rd_rows_c
+#endif  // FDCT32x32_HIGH_PRECISION
+#else
+#define ADD_EPI16 _mm_add_epi16
+#define SUB_EPI16 _mm_sub_epi16
+#endif  // DCT_HIGH_BIT_DEPTH
+
+
+void FDCT32x32_2D(const int16_t *input,
+                  tran_low_t *output_org, int stride) {
+  // Calculate pre-multiplied strides
+  const int str1 = stride;
+  const int str2 = 2 * stride;
+  const int str3 = 2 * stride + str1;
+  // We need an intermediate buffer between passes.
+  DECLARE_ALIGNED(16, int16_t, intermediate[32 * 32]);
+  // Constants
+  //    When we use them, in one case, they are all the same. In all others
+  //    it's a pair of them that we need to repeat four times. This is done
+  //    by constructing the 32 bit constant corresponding to that pair.
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(+cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64,   cospi_24_64);
+  const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64);
+  const __m128i k__cospi_p24_p08 = pair_set_epi16(+cospi_24_64,  cospi_8_64);
+  const __m128i k__cospi_p12_p20 = pair_set_epi16(+cospi_12_64,  cospi_20_64);
+  const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64,  cospi_12_64);
+  const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64,   cospi_28_64);
+  const __m128i k__cospi_p28_p04 = pair_set_epi16(+cospi_28_64,  cospi_4_64);
+  const __m128i k__cospi_m28_m04 = pair_set_epi16(-cospi_28_64, -cospi_4_64);
+  const __m128i k__cospi_m12_m20 = pair_set_epi16(-cospi_12_64, -cospi_20_64);
+  const __m128i k__cospi_p30_p02 = pair_set_epi16(+cospi_30_64,  cospi_2_64);
+  const __m128i k__cospi_p14_p18 = pair_set_epi16(+cospi_14_64,  cospi_18_64);
+  const __m128i k__cospi_p22_p10 = pair_set_epi16(+cospi_22_64,  cospi_10_64);
+  const __m128i k__cospi_p06_p26 = pair_set_epi16(+cospi_6_64,   cospi_26_64);
+  const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64,  cospi_6_64);
+  const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64,  cospi_22_64);
+  const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64,  cospi_14_64);
+  const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64,   cospi_30_64);
+  const __m128i k__cospi_p31_p01 = pair_set_epi16(+cospi_31_64,  cospi_1_64);
+  const __m128i k__cospi_p15_p17 = pair_set_epi16(+cospi_15_64,  cospi_17_64);
+  const __m128i k__cospi_p23_p09 = pair_set_epi16(+cospi_23_64,  cospi_9_64);
+  const __m128i k__cospi_p07_p25 = pair_set_epi16(+cospi_7_64,   cospi_25_64);
+  const __m128i k__cospi_m25_p07 = pair_set_epi16(-cospi_25_64,  cospi_7_64);
+  const __m128i k__cospi_m09_p23 = pair_set_epi16(-cospi_9_64,   cospi_23_64);
+  const __m128i k__cospi_m17_p15 = pair_set_epi16(-cospi_17_64,  cospi_15_64);
+  const __m128i k__cospi_m01_p31 = pair_set_epi16(-cospi_1_64,   cospi_31_64);
+  const __m128i k__cospi_p27_p05 = pair_set_epi16(+cospi_27_64,  cospi_5_64);
+  const __m128i k__cospi_p11_p21 = pair_set_epi16(+cospi_11_64,  cospi_21_64);
+  const __m128i k__cospi_p19_p13 = pair_set_epi16(+cospi_19_64,  cospi_13_64);
+  const __m128i k__cospi_p03_p29 = pair_set_epi16(+cospi_3_64,   cospi_29_64);
+  const __m128i k__cospi_m29_p03 = pair_set_epi16(-cospi_29_64,  cospi_3_64);
+  const __m128i k__cospi_m13_p19 = pair_set_epi16(-cospi_13_64,  cospi_19_64);
+  const __m128i k__cospi_m21_p11 = pair_set_epi16(-cospi_21_64,  cospi_11_64);
+  const __m128i k__cospi_m05_p27 = pair_set_epi16(-cospi_5_64,   cospi_27_64);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+  const __m128i kZero = _mm_set1_epi16(0);
+  const __m128i kOne  = _mm_set1_epi16(1);
+  // Do the two transform/transpose passes
+  int pass;
+#if DCT_HIGH_BIT_DEPTH
+  int overflow;
+#endif
+  for (pass = 0; pass < 2; ++pass) {
+    // We process eight columns (transposed rows in second pass) at a time.
+    int column_start;
+    for (column_start = 0; column_start < 32; column_start += 8) {
+      __m128i step1[32];
+      __m128i step2[32];
+      __m128i step3[32];
+      __m128i out[32];
+      // Stage 1
+      // Note: even though all the loads below are aligned, using the aligned
+      //       intrinsic make the code slightly slower.
+      if (0 == pass) {
+        const int16_t *in  = &input[column_start];
+        // step1[i] =  (in[ 0 * stride] + in[(32 -  1) * stride]) << 2;
+        // Note: the next four blocks could be in a loop. That would help the
+        //       instruction cache but is actually slower.
+        {
+          const int16_t *ina =  in +  0 * str1;
+          const int16_t *inb =  in + 31 * str1;
+          __m128i *step1a = &step1[ 0];
+          __m128i *step1b = &step1[31];
+          const __m128i ina0  = _mm_loadu_si128((const __m128i *)(ina));
+          const __m128i ina1  = _mm_loadu_si128((const __m128i *)(ina + str1));
+          const __m128i ina2  = _mm_loadu_si128((const __m128i *)(ina + str2));
+          const __m128i ina3  = _mm_loadu_si128((const __m128i *)(ina + str3));
+          const __m128i inb3  = _mm_loadu_si128((const __m128i *)(inb - str3));
+          const __m128i inb2  = _mm_loadu_si128((const __m128i *)(inb - str2));
+          const __m128i inb1  = _mm_loadu_si128((const __m128i *)(inb - str1));
+          const __m128i inb0  = _mm_loadu_si128((const __m128i *)(inb));
+          step1a[ 0] = _mm_add_epi16(ina0, inb0);
+          step1a[ 1] = _mm_add_epi16(ina1, inb1);
+          step1a[ 2] = _mm_add_epi16(ina2, inb2);
+          step1a[ 3] = _mm_add_epi16(ina3, inb3);
+          step1b[-3] = _mm_sub_epi16(ina3, inb3);
+          step1b[-2] = _mm_sub_epi16(ina2, inb2);
+          step1b[-1] = _mm_sub_epi16(ina1, inb1);
+          step1b[-0] = _mm_sub_epi16(ina0, inb0);
+          step1a[ 0] = _mm_slli_epi16(step1a[ 0], 2);
+          step1a[ 1] = _mm_slli_epi16(step1a[ 1], 2);
+          step1a[ 2] = _mm_slli_epi16(step1a[ 2], 2);
+          step1a[ 3] = _mm_slli_epi16(step1a[ 3], 2);
+          step1b[-3] = _mm_slli_epi16(step1b[-3], 2);
+          step1b[-2] = _mm_slli_epi16(step1b[-2], 2);
+          step1b[-1] = _mm_slli_epi16(step1b[-1], 2);
+          step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
+        }
+        {
+          const int16_t *ina =  in +  4 * str1;
+          const int16_t *inb =  in + 27 * str1;
+          __m128i *step1a = &step1[ 4];
+          __m128i *step1b = &step1[27];
+          const __m128i ina0  = _mm_loadu_si128((const __m128i *)(ina));
+          const __m128i ina1  = _mm_loadu_si128((const __m128i *)(ina + str1));
+          const __m128i ina2  = _mm_loadu_si128((const __m128i *)(ina + str2));
+          const __m128i ina3  = _mm_loadu_si128((const __m128i *)(ina + str3));
+          const __m128i inb3  = _mm_loadu_si128((const __m128i *)(inb - str3));
+          const __m128i inb2  = _mm_loadu_si128((const __m128i *)(inb - str2));
+          const __m128i inb1  = _mm_loadu_si128((const __m128i *)(inb - str1));
+          const __m128i inb0  = _mm_loadu_si128((const __m128i *)(inb));
+          step1a[ 0] = _mm_add_epi16(ina0, inb0);
+          step1a[ 1] = _mm_add_epi16(ina1, inb1);
+          step1a[ 2] = _mm_add_epi16(ina2, inb2);
+          step1a[ 3] = _mm_add_epi16(ina3, inb3);
+          step1b[-3] = _mm_sub_epi16(ina3, inb3);
+          step1b[-2] = _mm_sub_epi16(ina2, inb2);
+          step1b[-1] = _mm_sub_epi16(ina1, inb1);
+          step1b[-0] = _mm_sub_epi16(ina0, inb0);
+          step1a[ 0] = _mm_slli_epi16(step1a[ 0], 2);
+          step1a[ 1] = _mm_slli_epi16(step1a[ 1], 2);
+          step1a[ 2] = _mm_slli_epi16(step1a[ 2], 2);
+          step1a[ 3] = _mm_slli_epi16(step1a[ 3], 2);
+          step1b[-3] = _mm_slli_epi16(step1b[-3], 2);
+          step1b[-2] = _mm_slli_epi16(step1b[-2], 2);
+          step1b[-1] = _mm_slli_epi16(step1b[-1], 2);
+          step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
+        }
+        {
+          const int16_t *ina =  in +  8 * str1;
+          const int16_t *inb =  in + 23 * str1;
+          __m128i *step1a = &step1[ 8];
+          __m128i *step1b = &step1[23];
+          const __m128i ina0  = _mm_loadu_si128((const __m128i *)(ina));
+          const __m128i ina1  = _mm_loadu_si128((const __m128i *)(ina + str1));
+          const __m128i ina2  = _mm_loadu_si128((const __m128i *)(ina + str2));
+          const __m128i ina3  = _mm_loadu_si128((const __m128i *)(ina + str3));
+          const __m128i inb3  = _mm_loadu_si128((const __m128i *)(inb - str3));
+          const __m128i inb2  = _mm_loadu_si128((const __m128i *)(inb - str2));
+          const __m128i inb1  = _mm_loadu_si128((const __m128i *)(inb - str1));
+          const __m128i inb0  = _mm_loadu_si128((const __m128i *)(inb));
+          step1a[ 0] = _mm_add_epi16(ina0, inb0);
+          step1a[ 1] = _mm_add_epi16(ina1, inb1);
+          step1a[ 2] = _mm_add_epi16(ina2, inb2);
+          step1a[ 3] = _mm_add_epi16(ina3, inb3);
+          step1b[-3] = _mm_sub_epi16(ina3, inb3);
+          step1b[-2] = _mm_sub_epi16(ina2, inb2);
+          step1b[-1] = _mm_sub_epi16(ina1, inb1);
+          step1b[-0] = _mm_sub_epi16(ina0, inb0);
+          step1a[ 0] = _mm_slli_epi16(step1a[ 0], 2);
+          step1a[ 1] = _mm_slli_epi16(step1a[ 1], 2);
+          step1a[ 2] = _mm_slli_epi16(step1a[ 2], 2);
+          step1a[ 3] = _mm_slli_epi16(step1a[ 3], 2);
+          step1b[-3] = _mm_slli_epi16(step1b[-3], 2);
+          step1b[-2] = _mm_slli_epi16(step1b[-2], 2);
+          step1b[-1] = _mm_slli_epi16(step1b[-1], 2);
+          step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
+        }
+        {
+          const int16_t *ina =  in + 12 * str1;
+          const int16_t *inb =  in + 19 * str1;
+          __m128i *step1a = &step1[12];
+          __m128i *step1b = &step1[19];
+          const __m128i ina0  = _mm_loadu_si128((const __m128i *)(ina));
+          const __m128i ina1  = _mm_loadu_si128((const __m128i *)(ina + str1));
+          const __m128i ina2  = _mm_loadu_si128((const __m128i *)(ina + str2));
+          const __m128i ina3  = _mm_loadu_si128((const __m128i *)(ina + str3));
+          const __m128i inb3  = _mm_loadu_si128((const __m128i *)(inb - str3));
+          const __m128i inb2  = _mm_loadu_si128((const __m128i *)(inb - str2));
+          const __m128i inb1  = _mm_loadu_si128((const __m128i *)(inb - str1));
+          const __m128i inb0  = _mm_loadu_si128((const __m128i *)(inb));
+          step1a[ 0] = _mm_add_epi16(ina0, inb0);
+          step1a[ 1] = _mm_add_epi16(ina1, inb1);
+          step1a[ 2] = _mm_add_epi16(ina2, inb2);
+          step1a[ 3] = _mm_add_epi16(ina3, inb3);
+          step1b[-3] = _mm_sub_epi16(ina3, inb3);
+          step1b[-2] = _mm_sub_epi16(ina2, inb2);
+          step1b[-1] = _mm_sub_epi16(ina1, inb1);
+          step1b[-0] = _mm_sub_epi16(ina0, inb0);
+          step1a[ 0] = _mm_slli_epi16(step1a[ 0], 2);
+          step1a[ 1] = _mm_slli_epi16(step1a[ 1], 2);
+          step1a[ 2] = _mm_slli_epi16(step1a[ 2], 2);
+          step1a[ 3] = _mm_slli_epi16(step1a[ 3], 2);
+          step1b[-3] = _mm_slli_epi16(step1b[-3], 2);
+          step1b[-2] = _mm_slli_epi16(step1b[-2], 2);
+          step1b[-1] = _mm_slli_epi16(step1b[-1], 2);
+          step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
+        }
+      } else {
+        int16_t *in = &intermediate[column_start];
+        // step1[i] =  in[ 0 * 32] + in[(32 -  1) * 32];
+        // Note: using the same approach as above to have common offset is
+        //       counter-productive as all offsets can be calculated at compile
+        //       time.
+        // Note: the next four blocks could be in a loop. That would help the
+        //       instruction cache but is actually slower.
+        {
+          __m128i in00  = _mm_loadu_si128((const __m128i *)(in +  0 * 32));
+          __m128i in01  = _mm_loadu_si128((const __m128i *)(in +  1 * 32));
+          __m128i in02  = _mm_loadu_si128((const __m128i *)(in +  2 * 32));
+          __m128i in03  = _mm_loadu_si128((const __m128i *)(in +  3 * 32));
+          __m128i in28  = _mm_loadu_si128((const __m128i *)(in + 28 * 32));
+          __m128i in29  = _mm_loadu_si128((const __m128i *)(in + 29 * 32));
+          __m128i in30  = _mm_loadu_si128((const __m128i *)(in + 30 * 32));
+          __m128i in31  = _mm_loadu_si128((const __m128i *)(in + 31 * 32));
+          step1[0] = ADD_EPI16(in00, in31);
+          step1[1] = ADD_EPI16(in01, in30);
+          step1[2] = ADD_EPI16(in02, in29);
+          step1[3] = ADD_EPI16(in03, in28);
+          step1[28] = SUB_EPI16(in03, in28);
+          step1[29] = SUB_EPI16(in02, in29);
+          step1[30] = SUB_EPI16(in01, in30);
+          step1[31] = SUB_EPI16(in00, in31);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x8(&step1[0], &step1[1], &step1[2],
+                                             &step1[3], &step1[28], &step1[29],
+                                             &step1[30], &step1[31]);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        {
+          __m128i in04  = _mm_loadu_si128((const __m128i *)(in +  4 * 32));
+          __m128i in05  = _mm_loadu_si128((const __m128i *)(in +  5 * 32));
+          __m128i in06  = _mm_loadu_si128((const __m128i *)(in +  6 * 32));
+          __m128i in07  = _mm_loadu_si128((const __m128i *)(in +  7 * 32));
+          __m128i in24  = _mm_loadu_si128((const __m128i *)(in + 24 * 32));
+          __m128i in25  = _mm_loadu_si128((const __m128i *)(in + 25 * 32));
+          __m128i in26  = _mm_loadu_si128((const __m128i *)(in + 26 * 32));
+          __m128i in27  = _mm_loadu_si128((const __m128i *)(in + 27 * 32));
+          step1[4] = ADD_EPI16(in04, in27);
+          step1[5] = ADD_EPI16(in05, in26);
+          step1[6] = ADD_EPI16(in06, in25);
+          step1[7] = ADD_EPI16(in07, in24);
+          step1[24] = SUB_EPI16(in07, in24);
+          step1[25] = SUB_EPI16(in06, in25);
+          step1[26] = SUB_EPI16(in05, in26);
+          step1[27] = SUB_EPI16(in04, in27);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x8(&step1[4], &step1[5], &step1[6],
+                                             &step1[7], &step1[24], &step1[25],
+                                             &step1[26], &step1[27]);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        {
+          __m128i in08  = _mm_loadu_si128((const __m128i *)(in +  8 * 32));
+          __m128i in09  = _mm_loadu_si128((const __m128i *)(in +  9 * 32));
+          __m128i in10  = _mm_loadu_si128((const __m128i *)(in + 10 * 32));
+          __m128i in11  = _mm_loadu_si128((const __m128i *)(in + 11 * 32));
+          __m128i in20  = _mm_loadu_si128((const __m128i *)(in + 20 * 32));
+          __m128i in21  = _mm_loadu_si128((const __m128i *)(in + 21 * 32));
+          __m128i in22  = _mm_loadu_si128((const __m128i *)(in + 22 * 32));
+          __m128i in23  = _mm_loadu_si128((const __m128i *)(in + 23 * 32));
+          step1[8] = ADD_EPI16(in08, in23);
+          step1[9] = ADD_EPI16(in09, in22);
+          step1[10] = ADD_EPI16(in10, in21);
+          step1[11] = ADD_EPI16(in11, in20);
+          step1[20] = SUB_EPI16(in11, in20);
+          step1[21] = SUB_EPI16(in10, in21);
+          step1[22] = SUB_EPI16(in09, in22);
+          step1[23] = SUB_EPI16(in08, in23);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x8(&step1[8], &step1[9], &step1[10],
+                                             &step1[11], &step1[20], &step1[21],
+                                             &step1[22], &step1[23]);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        {
+          __m128i in12  = _mm_loadu_si128((const __m128i *)(in + 12 * 32));
+          __m128i in13  = _mm_loadu_si128((const __m128i *)(in + 13 * 32));
+          __m128i in14  = _mm_loadu_si128((const __m128i *)(in + 14 * 32));
+          __m128i in15  = _mm_loadu_si128((const __m128i *)(in + 15 * 32));
+          __m128i in16  = _mm_loadu_si128((const __m128i *)(in + 16 * 32));
+          __m128i in17  = _mm_loadu_si128((const __m128i *)(in + 17 * 32));
+          __m128i in18  = _mm_loadu_si128((const __m128i *)(in + 18 * 32));
+          __m128i in19  = _mm_loadu_si128((const __m128i *)(in + 19 * 32));
+          step1[12] = ADD_EPI16(in12, in19);
+          step1[13] = ADD_EPI16(in13, in18);
+          step1[14] = ADD_EPI16(in14, in17);
+          step1[15] = ADD_EPI16(in15, in16);
+          step1[16] = SUB_EPI16(in15, in16);
+          step1[17] = SUB_EPI16(in14, in17);
+          step1[18] = SUB_EPI16(in13, in18);
+          step1[19] = SUB_EPI16(in12, in19);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x8(&step1[12], &step1[13], &step1[14],
+                                             &step1[15], &step1[16], &step1[17],
+                                             &step1[18], &step1[19]);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+      }
+      // Stage 2
+      {
+        step2[0] = ADD_EPI16(step1[0], step1[15]);
+        step2[1] = ADD_EPI16(step1[1], step1[14]);
+        step2[2] = ADD_EPI16(step1[2], step1[13]);
+        step2[3] = ADD_EPI16(step1[3], step1[12]);
+        step2[4] = ADD_EPI16(step1[4], step1[11]);
+        step2[5] = ADD_EPI16(step1[5], step1[10]);
+        step2[6] = ADD_EPI16(step1[6], step1[ 9]);
+        step2[7] = ADD_EPI16(step1[7], step1[ 8]);
+        step2[8] = SUB_EPI16(step1[7], step1[ 8]);
+        step2[9] = SUB_EPI16(step1[6], step1[ 9]);
+        step2[10] = SUB_EPI16(step1[5], step1[10]);
+        step2[11] = SUB_EPI16(step1[4], step1[11]);
+        step2[12] = SUB_EPI16(step1[3], step1[12]);
+        step2[13] = SUB_EPI16(step1[2], step1[13]);
+        step2[14] = SUB_EPI16(step1[1], step1[14]);
+        step2[15] = SUB_EPI16(step1[0], step1[15]);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x16(
+            &step2[0], &step2[1], &step2[2], &step2[3],
+            &step2[4], &step2[5], &step2[6], &step2[7],
+            &step2[8], &step2[9], &step2[10], &step2[11],
+            &step2[12], &step2[13], &step2[14], &step2[15]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        const __m128i s2_20_0 = _mm_unpacklo_epi16(step1[27], step1[20]);
+        const __m128i s2_20_1 = _mm_unpackhi_epi16(step1[27], step1[20]);
+        const __m128i s2_21_0 = _mm_unpacklo_epi16(step1[26], step1[21]);
+        const __m128i s2_21_1 = _mm_unpackhi_epi16(step1[26], step1[21]);
+        const __m128i s2_22_0 = _mm_unpacklo_epi16(step1[25], step1[22]);
+        const __m128i s2_22_1 = _mm_unpackhi_epi16(step1[25], step1[22]);
+        const __m128i s2_23_0 = _mm_unpacklo_epi16(step1[24], step1[23]);
+        const __m128i s2_23_1 = _mm_unpackhi_epi16(step1[24], step1[23]);
+        const __m128i s2_20_2 = _mm_madd_epi16(s2_20_0, k__cospi_p16_m16);
+        const __m128i s2_20_3 = _mm_madd_epi16(s2_20_1, k__cospi_p16_m16);
+        const __m128i s2_21_2 = _mm_madd_epi16(s2_21_0, k__cospi_p16_m16);
+        const __m128i s2_21_3 = _mm_madd_epi16(s2_21_1, k__cospi_p16_m16);
+        const __m128i s2_22_2 = _mm_madd_epi16(s2_22_0, k__cospi_p16_m16);
+        const __m128i s2_22_3 = _mm_madd_epi16(s2_22_1, k__cospi_p16_m16);
+        const __m128i s2_23_2 = _mm_madd_epi16(s2_23_0, k__cospi_p16_m16);
+        const __m128i s2_23_3 = _mm_madd_epi16(s2_23_1, k__cospi_p16_m16);
+        const __m128i s2_24_2 = _mm_madd_epi16(s2_23_0, k__cospi_p16_p16);
+        const __m128i s2_24_3 = _mm_madd_epi16(s2_23_1, k__cospi_p16_p16);
+        const __m128i s2_25_2 = _mm_madd_epi16(s2_22_0, k__cospi_p16_p16);
+        const __m128i s2_25_3 = _mm_madd_epi16(s2_22_1, k__cospi_p16_p16);
+        const __m128i s2_26_2 = _mm_madd_epi16(s2_21_0, k__cospi_p16_p16);
+        const __m128i s2_26_3 = _mm_madd_epi16(s2_21_1, k__cospi_p16_p16);
+        const __m128i s2_27_2 = _mm_madd_epi16(s2_20_0, k__cospi_p16_p16);
+        const __m128i s2_27_3 = _mm_madd_epi16(s2_20_1, k__cospi_p16_p16);
+        // dct_const_round_shift
+        const __m128i s2_20_4 = _mm_add_epi32(s2_20_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_20_5 = _mm_add_epi32(s2_20_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_21_4 = _mm_add_epi32(s2_21_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_21_5 = _mm_add_epi32(s2_21_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_22_4 = _mm_add_epi32(s2_22_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_22_5 = _mm_add_epi32(s2_22_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_23_4 = _mm_add_epi32(s2_23_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_23_5 = _mm_add_epi32(s2_23_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_24_4 = _mm_add_epi32(s2_24_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_24_5 = _mm_add_epi32(s2_24_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_25_4 = _mm_add_epi32(s2_25_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_25_5 = _mm_add_epi32(s2_25_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_26_4 = _mm_add_epi32(s2_26_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_26_5 = _mm_add_epi32(s2_26_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_27_4 = _mm_add_epi32(s2_27_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_27_5 = _mm_add_epi32(s2_27_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_20_6 = _mm_srai_epi32(s2_20_4, DCT_CONST_BITS);
+        const __m128i s2_20_7 = _mm_srai_epi32(s2_20_5, DCT_CONST_BITS);
+        const __m128i s2_21_6 = _mm_srai_epi32(s2_21_4, DCT_CONST_BITS);
+        const __m128i s2_21_7 = _mm_srai_epi32(s2_21_5, DCT_CONST_BITS);
+        const __m128i s2_22_6 = _mm_srai_epi32(s2_22_4, DCT_CONST_BITS);
+        const __m128i s2_22_7 = _mm_srai_epi32(s2_22_5, DCT_CONST_BITS);
+        const __m128i s2_23_6 = _mm_srai_epi32(s2_23_4, DCT_CONST_BITS);
+        const __m128i s2_23_7 = _mm_srai_epi32(s2_23_5, DCT_CONST_BITS);
+        const __m128i s2_24_6 = _mm_srai_epi32(s2_24_4, DCT_CONST_BITS);
+        const __m128i s2_24_7 = _mm_srai_epi32(s2_24_5, DCT_CONST_BITS);
+        const __m128i s2_25_6 = _mm_srai_epi32(s2_25_4, DCT_CONST_BITS);
+        const __m128i s2_25_7 = _mm_srai_epi32(s2_25_5, DCT_CONST_BITS);
+        const __m128i s2_26_6 = _mm_srai_epi32(s2_26_4, DCT_CONST_BITS);
+        const __m128i s2_26_7 = _mm_srai_epi32(s2_26_5, DCT_CONST_BITS);
+        const __m128i s2_27_6 = _mm_srai_epi32(s2_27_4, DCT_CONST_BITS);
+        const __m128i s2_27_7 = _mm_srai_epi32(s2_27_5, DCT_CONST_BITS);
+        // Combine
+        step2[20] = _mm_packs_epi32(s2_20_6, s2_20_7);
+        step2[21] = _mm_packs_epi32(s2_21_6, s2_21_7);
+        step2[22] = _mm_packs_epi32(s2_22_6, s2_22_7);
+        step2[23] = _mm_packs_epi32(s2_23_6, s2_23_7);
+        step2[24] = _mm_packs_epi32(s2_24_6, s2_24_7);
+        step2[25] = _mm_packs_epi32(s2_25_6, s2_25_7);
+        step2[26] = _mm_packs_epi32(s2_26_6, s2_26_7);
+        step2[27] = _mm_packs_epi32(s2_27_6, s2_27_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&step2[20], &step2[21], &step2[22],
+                                           &step2[23], &step2[24], &step2[25],
+                                           &step2[26], &step2[27]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+
+#if !FDCT32x32_HIGH_PRECISION
+      // dump the magnitude by half, hence the intermediate values are within
+      // the range of 16 bits.
+      if (1 == pass) {
+        __m128i s3_00_0 = _mm_cmplt_epi16(step2[ 0], kZero);
+        __m128i s3_01_0 = _mm_cmplt_epi16(step2[ 1], kZero);
+        __m128i s3_02_0 = _mm_cmplt_epi16(step2[ 2], kZero);
+        __m128i s3_03_0 = _mm_cmplt_epi16(step2[ 3], kZero);
+        __m128i s3_04_0 = _mm_cmplt_epi16(step2[ 4], kZero);
+        __m128i s3_05_0 = _mm_cmplt_epi16(step2[ 5], kZero);
+        __m128i s3_06_0 = _mm_cmplt_epi16(step2[ 6], kZero);
+        __m128i s3_07_0 = _mm_cmplt_epi16(step2[ 7], kZero);
+        __m128i s2_08_0 = _mm_cmplt_epi16(step2[ 8], kZero);
+        __m128i s2_09_0 = _mm_cmplt_epi16(step2[ 9], kZero);
+        __m128i s3_10_0 = _mm_cmplt_epi16(step2[10], kZero);
+        __m128i s3_11_0 = _mm_cmplt_epi16(step2[11], kZero);
+        __m128i s3_12_0 = _mm_cmplt_epi16(step2[12], kZero);
+        __m128i s3_13_0 = _mm_cmplt_epi16(step2[13], kZero);
+        __m128i s2_14_0 = _mm_cmplt_epi16(step2[14], kZero);
+        __m128i s2_15_0 = _mm_cmplt_epi16(step2[15], kZero);
+        __m128i s3_16_0 = _mm_cmplt_epi16(step1[16], kZero);
+        __m128i s3_17_0 = _mm_cmplt_epi16(step1[17], kZero);
+        __m128i s3_18_0 = _mm_cmplt_epi16(step1[18], kZero);
+        __m128i s3_19_0 = _mm_cmplt_epi16(step1[19], kZero);
+        __m128i s3_20_0 = _mm_cmplt_epi16(step2[20], kZero);
+        __m128i s3_21_0 = _mm_cmplt_epi16(step2[21], kZero);
+        __m128i s3_22_0 = _mm_cmplt_epi16(step2[22], kZero);
+        __m128i s3_23_0 = _mm_cmplt_epi16(step2[23], kZero);
+        __m128i s3_24_0 = _mm_cmplt_epi16(step2[24], kZero);
+        __m128i s3_25_0 = _mm_cmplt_epi16(step2[25], kZero);
+        __m128i s3_26_0 = _mm_cmplt_epi16(step2[26], kZero);
+        __m128i s3_27_0 = _mm_cmplt_epi16(step2[27], kZero);
+        __m128i s3_28_0 = _mm_cmplt_epi16(step1[28], kZero);
+        __m128i s3_29_0 = _mm_cmplt_epi16(step1[29], kZero);
+        __m128i s3_30_0 = _mm_cmplt_epi16(step1[30], kZero);
+        __m128i s3_31_0 = _mm_cmplt_epi16(step1[31], kZero);
+
+        step2[0] = SUB_EPI16(step2[ 0], s3_00_0);
+        step2[1] = SUB_EPI16(step2[ 1], s3_01_0);
+        step2[2] = SUB_EPI16(step2[ 2], s3_02_0);
+        step2[3] = SUB_EPI16(step2[ 3], s3_03_0);
+        step2[4] = SUB_EPI16(step2[ 4], s3_04_0);
+        step2[5] = SUB_EPI16(step2[ 5], s3_05_0);
+        step2[6] = SUB_EPI16(step2[ 6], s3_06_0);
+        step2[7] = SUB_EPI16(step2[ 7], s3_07_0);
+        step2[8] = SUB_EPI16(step2[ 8], s2_08_0);
+        step2[9] = SUB_EPI16(step2[ 9], s2_09_0);
+        step2[10] = SUB_EPI16(step2[10], s3_10_0);
+        step2[11] = SUB_EPI16(step2[11], s3_11_0);
+        step2[12] = SUB_EPI16(step2[12], s3_12_0);
+        step2[13] = SUB_EPI16(step2[13], s3_13_0);
+        step2[14] = SUB_EPI16(step2[14], s2_14_0);
+        step2[15] = SUB_EPI16(step2[15], s2_15_0);
+        step1[16] = SUB_EPI16(step1[16], s3_16_0);
+        step1[17] = SUB_EPI16(step1[17], s3_17_0);
+        step1[18] = SUB_EPI16(step1[18], s3_18_0);
+        step1[19] = SUB_EPI16(step1[19], s3_19_0);
+        step2[20] = SUB_EPI16(step2[20], s3_20_0);
+        step2[21] = SUB_EPI16(step2[21], s3_21_0);
+        step2[22] = SUB_EPI16(step2[22], s3_22_0);
+        step2[23] = SUB_EPI16(step2[23], s3_23_0);
+        step2[24] = SUB_EPI16(step2[24], s3_24_0);
+        step2[25] = SUB_EPI16(step2[25], s3_25_0);
+        step2[26] = SUB_EPI16(step2[26], s3_26_0);
+        step2[27] = SUB_EPI16(step2[27], s3_27_0);
+        step1[28] = SUB_EPI16(step1[28], s3_28_0);
+        step1[29] = SUB_EPI16(step1[29], s3_29_0);
+        step1[30] = SUB_EPI16(step1[30], s3_30_0);
+        step1[31] = SUB_EPI16(step1[31], s3_31_0);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x32(
+            &step2[0], &step2[1], &step2[2], &step2[3],
+            &step2[4], &step2[5], &step2[6], &step2[7],
+            &step2[8], &step2[9], &step2[10], &step2[11],
+            &step2[12], &step2[13], &step2[14], &step2[15],
+            &step1[16], &step1[17], &step1[18], &step1[19],
+            &step2[20], &step2[21], &step2[22], &step2[23],
+            &step2[24], &step2[25], &step2[26], &step2[27],
+            &step1[28], &step1[29], &step1[30], &step1[31]);
+        if (overflow) {
+          HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+        step2[0] = _mm_add_epi16(step2[ 0], kOne);
+        step2[1] = _mm_add_epi16(step2[ 1], kOne);
+        step2[2] = _mm_add_epi16(step2[ 2], kOne);
+        step2[3] = _mm_add_epi16(step2[ 3], kOne);
+        step2[4] = _mm_add_epi16(step2[ 4], kOne);
+        step2[5] = _mm_add_epi16(step2[ 5], kOne);
+        step2[6] = _mm_add_epi16(step2[ 6], kOne);
+        step2[7] = _mm_add_epi16(step2[ 7], kOne);
+        step2[8] = _mm_add_epi16(step2[ 8], kOne);
+        step2[9] = _mm_add_epi16(step2[ 9], kOne);
+        step2[10] = _mm_add_epi16(step2[10], kOne);
+        step2[11] = _mm_add_epi16(step2[11], kOne);
+        step2[12] = _mm_add_epi16(step2[12], kOne);
+        step2[13] = _mm_add_epi16(step2[13], kOne);
+        step2[14] = _mm_add_epi16(step2[14], kOne);
+        step2[15] = _mm_add_epi16(step2[15], kOne);
+        step1[16] = _mm_add_epi16(step1[16], kOne);
+        step1[17] = _mm_add_epi16(step1[17], kOne);
+        step1[18] = _mm_add_epi16(step1[18], kOne);
+        step1[19] = _mm_add_epi16(step1[19], kOne);
+        step2[20] = _mm_add_epi16(step2[20], kOne);
+        step2[21] = _mm_add_epi16(step2[21], kOne);
+        step2[22] = _mm_add_epi16(step2[22], kOne);
+        step2[23] = _mm_add_epi16(step2[23], kOne);
+        step2[24] = _mm_add_epi16(step2[24], kOne);
+        step2[25] = _mm_add_epi16(step2[25], kOne);
+        step2[26] = _mm_add_epi16(step2[26], kOne);
+        step2[27] = _mm_add_epi16(step2[27], kOne);
+        step1[28] = _mm_add_epi16(step1[28], kOne);
+        step1[29] = _mm_add_epi16(step1[29], kOne);
+        step1[30] = _mm_add_epi16(step1[30], kOne);
+        step1[31] = _mm_add_epi16(step1[31], kOne);
+
+        step2[0] = _mm_srai_epi16(step2[ 0], 2);
+        step2[1] = _mm_srai_epi16(step2[ 1], 2);
+        step2[2] = _mm_srai_epi16(step2[ 2], 2);
+        step2[3] = _mm_srai_epi16(step2[ 3], 2);
+        step2[4] = _mm_srai_epi16(step2[ 4], 2);
+        step2[5] = _mm_srai_epi16(step2[ 5], 2);
+        step2[6] = _mm_srai_epi16(step2[ 6], 2);
+        step2[7] = _mm_srai_epi16(step2[ 7], 2);
+        step2[8] = _mm_srai_epi16(step2[ 8], 2);
+        step2[9] = _mm_srai_epi16(step2[ 9], 2);
+        step2[10] = _mm_srai_epi16(step2[10], 2);
+        step2[11] = _mm_srai_epi16(step2[11], 2);
+        step2[12] = _mm_srai_epi16(step2[12], 2);
+        step2[13] = _mm_srai_epi16(step2[13], 2);
+        step2[14] = _mm_srai_epi16(step2[14], 2);
+        step2[15] = _mm_srai_epi16(step2[15], 2);
+        step1[16] = _mm_srai_epi16(step1[16], 2);
+        step1[17] = _mm_srai_epi16(step1[17], 2);
+        step1[18] = _mm_srai_epi16(step1[18], 2);
+        step1[19] = _mm_srai_epi16(step1[19], 2);
+        step2[20] = _mm_srai_epi16(step2[20], 2);
+        step2[21] = _mm_srai_epi16(step2[21], 2);
+        step2[22] = _mm_srai_epi16(step2[22], 2);
+        step2[23] = _mm_srai_epi16(step2[23], 2);
+        step2[24] = _mm_srai_epi16(step2[24], 2);
+        step2[25] = _mm_srai_epi16(step2[25], 2);
+        step2[26] = _mm_srai_epi16(step2[26], 2);
+        step2[27] = _mm_srai_epi16(step2[27], 2);
+        step1[28] = _mm_srai_epi16(step1[28], 2);
+        step1[29] = _mm_srai_epi16(step1[29], 2);
+        step1[30] = _mm_srai_epi16(step1[30], 2);
+        step1[31] = _mm_srai_epi16(step1[31], 2);
+      }
+#endif  // !FDCT32x32_HIGH_PRECISION
+
+#if FDCT32x32_HIGH_PRECISION
+      if (pass == 0) {
+#endif
+      // Stage 3
+      {
+        step3[0] = ADD_EPI16(step2[(8 - 1)], step2[0]);
+        step3[1] = ADD_EPI16(step2[(8 - 2)], step2[1]);
+        step3[2] = ADD_EPI16(step2[(8 - 3)], step2[2]);
+        step3[3] = ADD_EPI16(step2[(8 - 4)], step2[3]);
+        step3[4] = SUB_EPI16(step2[(8 - 5)], step2[4]);
+        step3[5] = SUB_EPI16(step2[(8 - 6)], step2[5]);
+        step3[6] = SUB_EPI16(step2[(8 - 7)], step2[6]);
+        step3[7] = SUB_EPI16(step2[(8 - 8)], step2[7]);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&step3[0], &step3[1], &step3[2],
+                                           &step3[3], &step3[4], &step3[5],
+                                           &step3[6], &step3[7]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        const __m128i s3_10_0 = _mm_unpacklo_epi16(step2[13], step2[10]);
+        const __m128i s3_10_1 = _mm_unpackhi_epi16(step2[13], step2[10]);
+        const __m128i s3_11_0 = _mm_unpacklo_epi16(step2[12], step2[11]);
+        const __m128i s3_11_1 = _mm_unpackhi_epi16(step2[12], step2[11]);
+        const __m128i s3_10_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_m16);
+        const __m128i s3_10_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_m16);
+        const __m128i s3_11_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_m16);
+        const __m128i s3_11_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_m16);
+        const __m128i s3_12_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_p16);
+        const __m128i s3_12_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_p16);
+        const __m128i s3_13_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_p16);
+        const __m128i s3_13_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_p16);
+        // dct_const_round_shift
+        const __m128i s3_10_4 = _mm_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_10_5 = _mm_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_11_4 = _mm_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_11_5 = _mm_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_12_4 = _mm_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_12_5 = _mm_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_13_4 = _mm_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_13_5 = _mm_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_10_6 = _mm_srai_epi32(s3_10_4, DCT_CONST_BITS);
+        const __m128i s3_10_7 = _mm_srai_epi32(s3_10_5, DCT_CONST_BITS);
+        const __m128i s3_11_6 = _mm_srai_epi32(s3_11_4, DCT_CONST_BITS);
+        const __m128i s3_11_7 = _mm_srai_epi32(s3_11_5, DCT_CONST_BITS);
+        const __m128i s3_12_6 = _mm_srai_epi32(s3_12_4, DCT_CONST_BITS);
+        const __m128i s3_12_7 = _mm_srai_epi32(s3_12_5, DCT_CONST_BITS);
+        const __m128i s3_13_6 = _mm_srai_epi32(s3_13_4, DCT_CONST_BITS);
+        const __m128i s3_13_7 = _mm_srai_epi32(s3_13_5, DCT_CONST_BITS);
+        // Combine
+        step3[10] = _mm_packs_epi32(s3_10_6, s3_10_7);
+        step3[11] = _mm_packs_epi32(s3_11_6, s3_11_7);
+        step3[12] = _mm_packs_epi32(s3_12_6, s3_12_7);
+        step3[13] = _mm_packs_epi32(s3_13_6, s3_13_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x4(&step3[10], &step3[11],
+                                           &step3[12], &step3[13]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        step3[16] = ADD_EPI16(step2[23], step1[16]);
+        step3[17] = ADD_EPI16(step2[22], step1[17]);
+        step3[18] = ADD_EPI16(step2[21], step1[18]);
+        step3[19] = ADD_EPI16(step2[20], step1[19]);
+        step3[20] = SUB_EPI16(step1[19], step2[20]);
+        step3[21] = SUB_EPI16(step1[18], step2[21]);
+        step3[22] = SUB_EPI16(step1[17], step2[22]);
+        step3[23] = SUB_EPI16(step1[16], step2[23]);
+        step3[24] = SUB_EPI16(step1[31], step2[24]);
+        step3[25] = SUB_EPI16(step1[30], step2[25]);
+        step3[26] = SUB_EPI16(step1[29], step2[26]);
+        step3[27] = SUB_EPI16(step1[28], step2[27]);
+        step3[28] = ADD_EPI16(step2[27], step1[28]);
+        step3[29] = ADD_EPI16(step2[26], step1[29]);
+        step3[30] = ADD_EPI16(step2[25], step1[30]);
+        step3[31] = ADD_EPI16(step2[24], step1[31]);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x16(
+            &step3[16], &step3[17], &step3[18], &step3[19],
+            &step3[20], &step3[21], &step3[22], &step3[23],
+            &step3[24], &step3[25], &step3[26], &step3[27],
+            &step3[28], &step3[29], &step3[30], &step3[31]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+
+      // Stage 4
+      {
+        step1[0] = ADD_EPI16(step3[ 3], step3[ 0]);
+        step1[1] = ADD_EPI16(step3[ 2], step3[ 1]);
+        step1[2] = SUB_EPI16(step3[ 1], step3[ 2]);
+        step1[3] = SUB_EPI16(step3[ 0], step3[ 3]);
+        step1[8] = ADD_EPI16(step3[11], step2[ 8]);
+        step1[9] = ADD_EPI16(step3[10], step2[ 9]);
+        step1[10] = SUB_EPI16(step2[ 9], step3[10]);
+        step1[11] = SUB_EPI16(step2[ 8], step3[11]);
+        step1[12] = SUB_EPI16(step2[15], step3[12]);
+        step1[13] = SUB_EPI16(step2[14], step3[13]);
+        step1[14] = ADD_EPI16(step3[13], step2[14]);
+        step1[15] = ADD_EPI16(step3[12], step2[15]);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x16(
+            &step1[0], &step1[1], &step1[2], &step1[3],
+            &step1[4], &step1[5], &step1[6], &step1[7],
+            &step1[8], &step1[9], &step1[10], &step1[11],
+            &step1[12], &step1[13], &step1[14], &step1[15]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        const __m128i s1_05_0 = _mm_unpacklo_epi16(step3[6], step3[5]);
+        const __m128i s1_05_1 = _mm_unpackhi_epi16(step3[6], step3[5]);
+        const __m128i s1_05_2 = _mm_madd_epi16(s1_05_0, k__cospi_p16_m16);
+        const __m128i s1_05_3 = _mm_madd_epi16(s1_05_1, k__cospi_p16_m16);
+        const __m128i s1_06_2 = _mm_madd_epi16(s1_05_0, k__cospi_p16_p16);
+        const __m128i s1_06_3 = _mm_madd_epi16(s1_05_1, k__cospi_p16_p16);
+        // dct_const_round_shift
+        const __m128i s1_05_4 = _mm_add_epi32(s1_05_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_05_5 = _mm_add_epi32(s1_05_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_06_4 = _mm_add_epi32(s1_06_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_06_5 = _mm_add_epi32(s1_06_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_05_6 = _mm_srai_epi32(s1_05_4, DCT_CONST_BITS);
+        const __m128i s1_05_7 = _mm_srai_epi32(s1_05_5, DCT_CONST_BITS);
+        const __m128i s1_06_6 = _mm_srai_epi32(s1_06_4, DCT_CONST_BITS);
+        const __m128i s1_06_7 = _mm_srai_epi32(s1_06_5, DCT_CONST_BITS);
+        // Combine
+        step1[5] = _mm_packs_epi32(s1_05_6, s1_05_7);
+        step1[6] = _mm_packs_epi32(s1_06_6, s1_06_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x2(&step1[5], &step1[6]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        const __m128i s1_18_0 = _mm_unpacklo_epi16(step3[18], step3[29]);
+        const __m128i s1_18_1 = _mm_unpackhi_epi16(step3[18], step3[29]);
+        const __m128i s1_19_0 = _mm_unpacklo_epi16(step3[19], step3[28]);
+        const __m128i s1_19_1 = _mm_unpackhi_epi16(step3[19], step3[28]);
+        const __m128i s1_20_0 = _mm_unpacklo_epi16(step3[20], step3[27]);
+        const __m128i s1_20_1 = _mm_unpackhi_epi16(step3[20], step3[27]);
+        const __m128i s1_21_0 = _mm_unpacklo_epi16(step3[21], step3[26]);
+        const __m128i s1_21_1 = _mm_unpackhi_epi16(step3[21], step3[26]);
+        const __m128i s1_18_2 = _mm_madd_epi16(s1_18_0, k__cospi_m08_p24);
+        const __m128i s1_18_3 = _mm_madd_epi16(s1_18_1, k__cospi_m08_p24);
+        const __m128i s1_19_2 = _mm_madd_epi16(s1_19_0, k__cospi_m08_p24);
+        const __m128i s1_19_3 = _mm_madd_epi16(s1_19_1, k__cospi_m08_p24);
+        const __m128i s1_20_2 = _mm_madd_epi16(s1_20_0, k__cospi_m24_m08);
+        const __m128i s1_20_3 = _mm_madd_epi16(s1_20_1, k__cospi_m24_m08);
+        const __m128i s1_21_2 = _mm_madd_epi16(s1_21_0, k__cospi_m24_m08);
+        const __m128i s1_21_3 = _mm_madd_epi16(s1_21_1, k__cospi_m24_m08);
+        const __m128i s1_26_2 = _mm_madd_epi16(s1_21_0, k__cospi_m08_p24);
+        const __m128i s1_26_3 = _mm_madd_epi16(s1_21_1, k__cospi_m08_p24);
+        const __m128i s1_27_2 = _mm_madd_epi16(s1_20_0, k__cospi_m08_p24);
+        const __m128i s1_27_3 = _mm_madd_epi16(s1_20_1, k__cospi_m08_p24);
+        const __m128i s1_28_2 = _mm_madd_epi16(s1_19_0, k__cospi_p24_p08);
+        const __m128i s1_28_3 = _mm_madd_epi16(s1_19_1, k__cospi_p24_p08);
+        const __m128i s1_29_2 = _mm_madd_epi16(s1_18_0, k__cospi_p24_p08);
+        const __m128i s1_29_3 = _mm_madd_epi16(s1_18_1, k__cospi_p24_p08);
+        // dct_const_round_shift
+        const __m128i s1_18_4 = _mm_add_epi32(s1_18_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_18_5 = _mm_add_epi32(s1_18_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_19_4 = _mm_add_epi32(s1_19_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_19_5 = _mm_add_epi32(s1_19_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_20_4 = _mm_add_epi32(s1_20_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_20_5 = _mm_add_epi32(s1_20_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_21_4 = _mm_add_epi32(s1_21_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_21_5 = _mm_add_epi32(s1_21_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_26_4 = _mm_add_epi32(s1_26_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_26_5 = _mm_add_epi32(s1_26_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_27_4 = _mm_add_epi32(s1_27_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_27_5 = _mm_add_epi32(s1_27_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_28_4 = _mm_add_epi32(s1_28_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_28_5 = _mm_add_epi32(s1_28_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_29_4 = _mm_add_epi32(s1_29_2, k__DCT_CONST_ROUNDING);
+        const __m128i s1_29_5 = _mm_add_epi32(s1_29_3, k__DCT_CONST_ROUNDING);
+        const __m128i s1_18_6 = _mm_srai_epi32(s1_18_4, DCT_CONST_BITS);
+        const __m128i s1_18_7 = _mm_srai_epi32(s1_18_5, DCT_CONST_BITS);
+        const __m128i s1_19_6 = _mm_srai_epi32(s1_19_4, DCT_CONST_BITS);
+        const __m128i s1_19_7 = _mm_srai_epi32(s1_19_5, DCT_CONST_BITS);
+        const __m128i s1_20_6 = _mm_srai_epi32(s1_20_4, DCT_CONST_BITS);
+        const __m128i s1_20_7 = _mm_srai_epi32(s1_20_5, DCT_CONST_BITS);
+        const __m128i s1_21_6 = _mm_srai_epi32(s1_21_4, DCT_CONST_BITS);
+        const __m128i s1_21_7 = _mm_srai_epi32(s1_21_5, DCT_CONST_BITS);
+        const __m128i s1_26_6 = _mm_srai_epi32(s1_26_4, DCT_CONST_BITS);
+        const __m128i s1_26_7 = _mm_srai_epi32(s1_26_5, DCT_CONST_BITS);
+        const __m128i s1_27_6 = _mm_srai_epi32(s1_27_4, DCT_CONST_BITS);
+        const __m128i s1_27_7 = _mm_srai_epi32(s1_27_5, DCT_CONST_BITS);
+        const __m128i s1_28_6 = _mm_srai_epi32(s1_28_4, DCT_CONST_BITS);
+        const __m128i s1_28_7 = _mm_srai_epi32(s1_28_5, DCT_CONST_BITS);
+        const __m128i s1_29_6 = _mm_srai_epi32(s1_29_4, DCT_CONST_BITS);
+        const __m128i s1_29_7 = _mm_srai_epi32(s1_29_5, DCT_CONST_BITS);
+        // Combine
+        step1[18] = _mm_packs_epi32(s1_18_6, s1_18_7);
+        step1[19] = _mm_packs_epi32(s1_19_6, s1_19_7);
+        step1[20] = _mm_packs_epi32(s1_20_6, s1_20_7);
+        step1[21] = _mm_packs_epi32(s1_21_6, s1_21_7);
+        step1[26] = _mm_packs_epi32(s1_26_6, s1_26_7);
+        step1[27] = _mm_packs_epi32(s1_27_6, s1_27_7);
+        step1[28] = _mm_packs_epi32(s1_28_6, s1_28_7);
+        step1[29] = _mm_packs_epi32(s1_29_6, s1_29_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&step1[18], &step1[19], &step1[20],
+                                           &step1[21], &step1[26], &step1[27],
+                                           &step1[28], &step1[29]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      // Stage 5
+      {
+        step2[4] = ADD_EPI16(step1[5], step3[4]);
+        step2[5] = SUB_EPI16(step3[4], step1[5]);
+        step2[6] = SUB_EPI16(step3[7], step1[6]);
+        step2[7] = ADD_EPI16(step1[6], step3[7]);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x4(&step2[4], &step2[5],
+                                           &step2[6], &step2[7]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        const __m128i out_00_0 = _mm_unpacklo_epi16(step1[0], step1[1]);
+        const __m128i out_00_1 = _mm_unpackhi_epi16(step1[0], step1[1]);
+        const __m128i out_08_0 = _mm_unpacklo_epi16(step1[2], step1[3]);
+        const __m128i out_08_1 = _mm_unpackhi_epi16(step1[2], step1[3]);
+        const __m128i out_00_2 = _mm_madd_epi16(out_00_0, k__cospi_p16_p16);
+        const __m128i out_00_3 = _mm_madd_epi16(out_00_1, k__cospi_p16_p16);
+        const __m128i out_16_2 = _mm_madd_epi16(out_00_0, k__cospi_p16_m16);
+        const __m128i out_16_3 = _mm_madd_epi16(out_00_1, k__cospi_p16_m16);
+        const __m128i out_08_2 = _mm_madd_epi16(out_08_0, k__cospi_p24_p08);
+        const __m128i out_08_3 = _mm_madd_epi16(out_08_1, k__cospi_p24_p08);
+        const __m128i out_24_2 = _mm_madd_epi16(out_08_0, k__cospi_m08_p24);
+        const __m128i out_24_3 = _mm_madd_epi16(out_08_1, k__cospi_m08_p24);
+        // dct_const_round_shift
+        const __m128i out_00_4 = _mm_add_epi32(out_00_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_00_5 = _mm_add_epi32(out_00_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_16_4 = _mm_add_epi32(out_16_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_16_5 = _mm_add_epi32(out_16_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_08_4 = _mm_add_epi32(out_08_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_08_5 = _mm_add_epi32(out_08_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_24_4 = _mm_add_epi32(out_24_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_24_5 = _mm_add_epi32(out_24_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_00_6 = _mm_srai_epi32(out_00_4, DCT_CONST_BITS);
+        const __m128i out_00_7 = _mm_srai_epi32(out_00_5, DCT_CONST_BITS);
+        const __m128i out_16_6 = _mm_srai_epi32(out_16_4, DCT_CONST_BITS);
+        const __m128i out_16_7 = _mm_srai_epi32(out_16_5, DCT_CONST_BITS);
+        const __m128i out_08_6 = _mm_srai_epi32(out_08_4, DCT_CONST_BITS);
+        const __m128i out_08_7 = _mm_srai_epi32(out_08_5, DCT_CONST_BITS);
+        const __m128i out_24_6 = _mm_srai_epi32(out_24_4, DCT_CONST_BITS);
+        const __m128i out_24_7 = _mm_srai_epi32(out_24_5, DCT_CONST_BITS);
+        // Combine
+        out[ 0] = _mm_packs_epi32(out_00_6, out_00_7);
+        out[16] = _mm_packs_epi32(out_16_6, out_16_7);
+        out[ 8] = _mm_packs_epi32(out_08_6, out_08_7);
+        out[24] = _mm_packs_epi32(out_24_6, out_24_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x4(&out[0], &out[16],
+                                           &out[8], &out[24]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        const __m128i s2_09_0 = _mm_unpacklo_epi16(step1[ 9], step1[14]);
+        const __m128i s2_09_1 = _mm_unpackhi_epi16(step1[ 9], step1[14]);
+        const __m128i s2_10_0 = _mm_unpacklo_epi16(step1[10], step1[13]);
+        const __m128i s2_10_1 = _mm_unpackhi_epi16(step1[10], step1[13]);
+        const __m128i s2_09_2 = _mm_madd_epi16(s2_09_0, k__cospi_m08_p24);
+        const __m128i s2_09_3 = _mm_madd_epi16(s2_09_1, k__cospi_m08_p24);
+        const __m128i s2_10_2 = _mm_madd_epi16(s2_10_0, k__cospi_m24_m08);
+        const __m128i s2_10_3 = _mm_madd_epi16(s2_10_1, k__cospi_m24_m08);
+        const __m128i s2_13_2 = _mm_madd_epi16(s2_10_0, k__cospi_m08_p24);
+        const __m128i s2_13_3 = _mm_madd_epi16(s2_10_1, k__cospi_m08_p24);
+        const __m128i s2_14_2 = _mm_madd_epi16(s2_09_0, k__cospi_p24_p08);
+        const __m128i s2_14_3 = _mm_madd_epi16(s2_09_1, k__cospi_p24_p08);
+        // dct_const_round_shift
+        const __m128i s2_09_4 = _mm_add_epi32(s2_09_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_09_5 = _mm_add_epi32(s2_09_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_10_4 = _mm_add_epi32(s2_10_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_10_5 = _mm_add_epi32(s2_10_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_13_4 = _mm_add_epi32(s2_13_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_13_5 = _mm_add_epi32(s2_13_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_14_4 = _mm_add_epi32(s2_14_2, k__DCT_CONST_ROUNDING);
+        const __m128i s2_14_5 = _mm_add_epi32(s2_14_3, k__DCT_CONST_ROUNDING);
+        const __m128i s2_09_6 = _mm_srai_epi32(s2_09_4, DCT_CONST_BITS);
+        const __m128i s2_09_7 = _mm_srai_epi32(s2_09_5, DCT_CONST_BITS);
+        const __m128i s2_10_6 = _mm_srai_epi32(s2_10_4, DCT_CONST_BITS);
+        const __m128i s2_10_7 = _mm_srai_epi32(s2_10_5, DCT_CONST_BITS);
+        const __m128i s2_13_6 = _mm_srai_epi32(s2_13_4, DCT_CONST_BITS);
+        const __m128i s2_13_7 = _mm_srai_epi32(s2_13_5, DCT_CONST_BITS);
+        const __m128i s2_14_6 = _mm_srai_epi32(s2_14_4, DCT_CONST_BITS);
+        const __m128i s2_14_7 = _mm_srai_epi32(s2_14_5, DCT_CONST_BITS);
+        // Combine
+        step2[ 9] = _mm_packs_epi32(s2_09_6, s2_09_7);
+        step2[10] = _mm_packs_epi32(s2_10_6, s2_10_7);
+        step2[13] = _mm_packs_epi32(s2_13_6, s2_13_7);
+        step2[14] = _mm_packs_epi32(s2_14_6, s2_14_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x4(&step2[9], &step2[10],
+                                           &step2[13], &step2[14]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        step2[16] = ADD_EPI16(step1[19], step3[16]);
+        step2[17] = ADD_EPI16(step1[18], step3[17]);
+        step2[18] = SUB_EPI16(step3[17], step1[18]);
+        step2[19] = SUB_EPI16(step3[16], step1[19]);
+        step2[20] = SUB_EPI16(step3[23], step1[20]);
+        step2[21] = SUB_EPI16(step3[22], step1[21]);
+        step2[22] = ADD_EPI16(step1[21], step3[22]);
+        step2[23] = ADD_EPI16(step1[20], step3[23]);
+        step2[24] = ADD_EPI16(step1[27], step3[24]);
+        step2[25] = ADD_EPI16(step1[26], step3[25]);
+        step2[26] = SUB_EPI16(step3[25], step1[26]);
+        step2[27] = SUB_EPI16(step3[24], step1[27]);
+        step2[28] = SUB_EPI16(step3[31], step1[28]);
+        step2[29] = SUB_EPI16(step3[30], step1[29]);
+        step2[30] = ADD_EPI16(step1[29], step3[30]);
+        step2[31] = ADD_EPI16(step1[28], step3[31]);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x16(
+            &step2[16], &step2[17], &step2[18], &step2[19],
+            &step2[20], &step2[21], &step2[22], &step2[23],
+            &step2[24], &step2[25], &step2[26], &step2[27],
+            &step2[28], &step2[29], &step2[30], &step2[31]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      // Stage 6
+      {
+        const __m128i out_04_0 = _mm_unpacklo_epi16(step2[4], step2[7]);
+        const __m128i out_04_1 = _mm_unpackhi_epi16(step2[4], step2[7]);
+        const __m128i out_20_0 = _mm_unpacklo_epi16(step2[5], step2[6]);
+        const __m128i out_20_1 = _mm_unpackhi_epi16(step2[5], step2[6]);
+        const __m128i out_12_0 = _mm_unpacklo_epi16(step2[5], step2[6]);
+        const __m128i out_12_1 = _mm_unpackhi_epi16(step2[5], step2[6]);
+        const __m128i out_28_0 = _mm_unpacklo_epi16(step2[4], step2[7]);
+        const __m128i out_28_1 = _mm_unpackhi_epi16(step2[4], step2[7]);
+        const __m128i out_04_2 = _mm_madd_epi16(out_04_0, k__cospi_p28_p04);
+        const __m128i out_04_3 = _mm_madd_epi16(out_04_1, k__cospi_p28_p04);
+        const __m128i out_20_2 = _mm_madd_epi16(out_20_0, k__cospi_p12_p20);
+        const __m128i out_20_3 = _mm_madd_epi16(out_20_1, k__cospi_p12_p20);
+        const __m128i out_12_2 = _mm_madd_epi16(out_12_0, k__cospi_m20_p12);
+        const __m128i out_12_3 = _mm_madd_epi16(out_12_1, k__cospi_m20_p12);
+        const __m128i out_28_2 = _mm_madd_epi16(out_28_0, k__cospi_m04_p28);
+        const __m128i out_28_3 = _mm_madd_epi16(out_28_1, k__cospi_m04_p28);
+        // dct_const_round_shift
+        const __m128i out_04_4 = _mm_add_epi32(out_04_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_04_5 = _mm_add_epi32(out_04_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_20_4 = _mm_add_epi32(out_20_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_20_5 = _mm_add_epi32(out_20_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_12_4 = _mm_add_epi32(out_12_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_12_5 = _mm_add_epi32(out_12_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_28_4 = _mm_add_epi32(out_28_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_28_5 = _mm_add_epi32(out_28_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_04_6 = _mm_srai_epi32(out_04_4, DCT_CONST_BITS);
+        const __m128i out_04_7 = _mm_srai_epi32(out_04_5, DCT_CONST_BITS);
+        const __m128i out_20_6 = _mm_srai_epi32(out_20_4, DCT_CONST_BITS);
+        const __m128i out_20_7 = _mm_srai_epi32(out_20_5, DCT_CONST_BITS);
+        const __m128i out_12_6 = _mm_srai_epi32(out_12_4, DCT_CONST_BITS);
+        const __m128i out_12_7 = _mm_srai_epi32(out_12_5, DCT_CONST_BITS);
+        const __m128i out_28_6 = _mm_srai_epi32(out_28_4, DCT_CONST_BITS);
+        const __m128i out_28_7 = _mm_srai_epi32(out_28_5, DCT_CONST_BITS);
+        // Combine
+        out[4] = _mm_packs_epi32(out_04_6, out_04_7);
+        out[20] = _mm_packs_epi32(out_20_6, out_20_7);
+        out[12] = _mm_packs_epi32(out_12_6, out_12_7);
+        out[28] = _mm_packs_epi32(out_28_6, out_28_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x4(&out[4], &out[20],
+                                           &out[12], &out[28]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        step3[8] = ADD_EPI16(step2[ 9], step1[ 8]);
+        step3[9] = SUB_EPI16(step1[ 8], step2[ 9]);
+        step3[10] = SUB_EPI16(step1[11], step2[10]);
+        step3[11] = ADD_EPI16(step2[10], step1[11]);
+        step3[12] = ADD_EPI16(step2[13], step1[12]);
+        step3[13] = SUB_EPI16(step1[12], step2[13]);
+        step3[14] = SUB_EPI16(step1[15], step2[14]);
+        step3[15] = ADD_EPI16(step2[14], step1[15]);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&step3[8], &step3[9], &step3[10],
+                                           &step3[11], &step3[12], &step3[13],
+                                           &step3[14], &step3[15]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        const __m128i s3_17_0 = _mm_unpacklo_epi16(step2[17], step2[30]);
+        const __m128i s3_17_1 = _mm_unpackhi_epi16(step2[17], step2[30]);
+        const __m128i s3_18_0 = _mm_unpacklo_epi16(step2[18], step2[29]);
+        const __m128i s3_18_1 = _mm_unpackhi_epi16(step2[18], step2[29]);
+        const __m128i s3_21_0 = _mm_unpacklo_epi16(step2[21], step2[26]);
+        const __m128i s3_21_1 = _mm_unpackhi_epi16(step2[21], step2[26]);
+        const __m128i s3_22_0 = _mm_unpacklo_epi16(step2[22], step2[25]);
+        const __m128i s3_22_1 = _mm_unpackhi_epi16(step2[22], step2[25]);
+        const __m128i s3_17_2 = _mm_madd_epi16(s3_17_0, k__cospi_m04_p28);
+        const __m128i s3_17_3 = _mm_madd_epi16(s3_17_1, k__cospi_m04_p28);
+        const __m128i s3_18_2 = _mm_madd_epi16(s3_18_0, k__cospi_m28_m04);
+        const __m128i s3_18_3 = _mm_madd_epi16(s3_18_1, k__cospi_m28_m04);
+        const __m128i s3_21_2 = _mm_madd_epi16(s3_21_0, k__cospi_m20_p12);
+        const __m128i s3_21_3 = _mm_madd_epi16(s3_21_1, k__cospi_m20_p12);
+        const __m128i s3_22_2 = _mm_madd_epi16(s3_22_0, k__cospi_m12_m20);
+        const __m128i s3_22_3 = _mm_madd_epi16(s3_22_1, k__cospi_m12_m20);
+        const __m128i s3_25_2 = _mm_madd_epi16(s3_22_0, k__cospi_m20_p12);
+        const __m128i s3_25_3 = _mm_madd_epi16(s3_22_1, k__cospi_m20_p12);
+        const __m128i s3_26_2 = _mm_madd_epi16(s3_21_0, k__cospi_p12_p20);
+        const __m128i s3_26_3 = _mm_madd_epi16(s3_21_1, k__cospi_p12_p20);
+        const __m128i s3_29_2 = _mm_madd_epi16(s3_18_0, k__cospi_m04_p28);
+        const __m128i s3_29_3 = _mm_madd_epi16(s3_18_1, k__cospi_m04_p28);
+        const __m128i s3_30_2 = _mm_madd_epi16(s3_17_0, k__cospi_p28_p04);
+        const __m128i s3_30_3 = _mm_madd_epi16(s3_17_1, k__cospi_p28_p04);
+        // dct_const_round_shift
+        const __m128i s3_17_4 = _mm_add_epi32(s3_17_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_17_5 = _mm_add_epi32(s3_17_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_18_4 = _mm_add_epi32(s3_18_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_18_5 = _mm_add_epi32(s3_18_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_21_4 = _mm_add_epi32(s3_21_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_21_5 = _mm_add_epi32(s3_21_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_22_4 = _mm_add_epi32(s3_22_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_22_5 = _mm_add_epi32(s3_22_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_17_6 = _mm_srai_epi32(s3_17_4, DCT_CONST_BITS);
+        const __m128i s3_17_7 = _mm_srai_epi32(s3_17_5, DCT_CONST_BITS);
+        const __m128i s3_18_6 = _mm_srai_epi32(s3_18_4, DCT_CONST_BITS);
+        const __m128i s3_18_7 = _mm_srai_epi32(s3_18_5, DCT_CONST_BITS);
+        const __m128i s3_21_6 = _mm_srai_epi32(s3_21_4, DCT_CONST_BITS);
+        const __m128i s3_21_7 = _mm_srai_epi32(s3_21_5, DCT_CONST_BITS);
+        const __m128i s3_22_6 = _mm_srai_epi32(s3_22_4, DCT_CONST_BITS);
+        const __m128i s3_22_7 = _mm_srai_epi32(s3_22_5, DCT_CONST_BITS);
+        const __m128i s3_25_4 = _mm_add_epi32(s3_25_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_25_5 = _mm_add_epi32(s3_25_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_26_4 = _mm_add_epi32(s3_26_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_26_5 = _mm_add_epi32(s3_26_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_29_4 = _mm_add_epi32(s3_29_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_29_5 = _mm_add_epi32(s3_29_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_30_4 = _mm_add_epi32(s3_30_2, k__DCT_CONST_ROUNDING);
+        const __m128i s3_30_5 = _mm_add_epi32(s3_30_3, k__DCT_CONST_ROUNDING);
+        const __m128i s3_25_6 = _mm_srai_epi32(s3_25_4, DCT_CONST_BITS);
+        const __m128i s3_25_7 = _mm_srai_epi32(s3_25_5, DCT_CONST_BITS);
+        const __m128i s3_26_6 = _mm_srai_epi32(s3_26_4, DCT_CONST_BITS);
+        const __m128i s3_26_7 = _mm_srai_epi32(s3_26_5, DCT_CONST_BITS);
+        const __m128i s3_29_6 = _mm_srai_epi32(s3_29_4, DCT_CONST_BITS);
+        const __m128i s3_29_7 = _mm_srai_epi32(s3_29_5, DCT_CONST_BITS);
+        const __m128i s3_30_6 = _mm_srai_epi32(s3_30_4, DCT_CONST_BITS);
+        const __m128i s3_30_7 = _mm_srai_epi32(s3_30_5, DCT_CONST_BITS);
+        // Combine
+        step3[17] = _mm_packs_epi32(s3_17_6, s3_17_7);
+        step3[18] = _mm_packs_epi32(s3_18_6, s3_18_7);
+        step3[21] = _mm_packs_epi32(s3_21_6, s3_21_7);
+        step3[22] = _mm_packs_epi32(s3_22_6, s3_22_7);
+        // Combine
+        step3[25] = _mm_packs_epi32(s3_25_6, s3_25_7);
+        step3[26] = _mm_packs_epi32(s3_26_6, s3_26_7);
+        step3[29] = _mm_packs_epi32(s3_29_6, s3_29_7);
+        step3[30] = _mm_packs_epi32(s3_30_6, s3_30_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&step3[17], &step3[18], &step3[21],
+                                           &step3[22], &step3[25], &step3[26],
+                                           &step3[29], &step3[30]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      // Stage 7
+      {
+        const __m128i out_02_0 = _mm_unpacklo_epi16(step3[ 8], step3[15]);
+        const __m128i out_02_1 = _mm_unpackhi_epi16(step3[ 8], step3[15]);
+        const __m128i out_18_0 = _mm_unpacklo_epi16(step3[ 9], step3[14]);
+        const __m128i out_18_1 = _mm_unpackhi_epi16(step3[ 9], step3[14]);
+        const __m128i out_10_0 = _mm_unpacklo_epi16(step3[10], step3[13]);
+        const __m128i out_10_1 = _mm_unpackhi_epi16(step3[10], step3[13]);
+        const __m128i out_26_0 = _mm_unpacklo_epi16(step3[11], step3[12]);
+        const __m128i out_26_1 = _mm_unpackhi_epi16(step3[11], step3[12]);
+        const __m128i out_02_2 = _mm_madd_epi16(out_02_0, k__cospi_p30_p02);
+        const __m128i out_02_3 = _mm_madd_epi16(out_02_1, k__cospi_p30_p02);
+        const __m128i out_18_2 = _mm_madd_epi16(out_18_0, k__cospi_p14_p18);
+        const __m128i out_18_3 = _mm_madd_epi16(out_18_1, k__cospi_p14_p18);
+        const __m128i out_10_2 = _mm_madd_epi16(out_10_0, k__cospi_p22_p10);
+        const __m128i out_10_3 = _mm_madd_epi16(out_10_1, k__cospi_p22_p10);
+        const __m128i out_26_2 = _mm_madd_epi16(out_26_0, k__cospi_p06_p26);
+        const __m128i out_26_3 = _mm_madd_epi16(out_26_1, k__cospi_p06_p26);
+        const __m128i out_06_2 = _mm_madd_epi16(out_26_0, k__cospi_m26_p06);
+        const __m128i out_06_3 = _mm_madd_epi16(out_26_1, k__cospi_m26_p06);
+        const __m128i out_22_2 = _mm_madd_epi16(out_10_0, k__cospi_m10_p22);
+        const __m128i out_22_3 = _mm_madd_epi16(out_10_1, k__cospi_m10_p22);
+        const __m128i out_14_2 = _mm_madd_epi16(out_18_0, k__cospi_m18_p14);
+        const __m128i out_14_3 = _mm_madd_epi16(out_18_1, k__cospi_m18_p14);
+        const __m128i out_30_2 = _mm_madd_epi16(out_02_0, k__cospi_m02_p30);
+        const __m128i out_30_3 = _mm_madd_epi16(out_02_1, k__cospi_m02_p30);
+        // dct_const_round_shift
+        const __m128i out_02_4 = _mm_add_epi32(out_02_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_02_5 = _mm_add_epi32(out_02_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_18_4 = _mm_add_epi32(out_18_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_18_5 = _mm_add_epi32(out_18_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_10_4 = _mm_add_epi32(out_10_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_10_5 = _mm_add_epi32(out_10_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_26_4 = _mm_add_epi32(out_26_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_26_5 = _mm_add_epi32(out_26_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_06_4 = _mm_add_epi32(out_06_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_06_5 = _mm_add_epi32(out_06_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_22_4 = _mm_add_epi32(out_22_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_22_5 = _mm_add_epi32(out_22_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_14_4 = _mm_add_epi32(out_14_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_14_5 = _mm_add_epi32(out_14_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_30_4 = _mm_add_epi32(out_30_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_30_5 = _mm_add_epi32(out_30_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_02_6 = _mm_srai_epi32(out_02_4, DCT_CONST_BITS);
+        const __m128i out_02_7 = _mm_srai_epi32(out_02_5, DCT_CONST_BITS);
+        const __m128i out_18_6 = _mm_srai_epi32(out_18_4, DCT_CONST_BITS);
+        const __m128i out_18_7 = _mm_srai_epi32(out_18_5, DCT_CONST_BITS);
+        const __m128i out_10_6 = _mm_srai_epi32(out_10_4, DCT_CONST_BITS);
+        const __m128i out_10_7 = _mm_srai_epi32(out_10_5, DCT_CONST_BITS);
+        const __m128i out_26_6 = _mm_srai_epi32(out_26_4, DCT_CONST_BITS);
+        const __m128i out_26_7 = _mm_srai_epi32(out_26_5, DCT_CONST_BITS);
+        const __m128i out_06_6 = _mm_srai_epi32(out_06_4, DCT_CONST_BITS);
+        const __m128i out_06_7 = _mm_srai_epi32(out_06_5, DCT_CONST_BITS);
+        const __m128i out_22_6 = _mm_srai_epi32(out_22_4, DCT_CONST_BITS);
+        const __m128i out_22_7 = _mm_srai_epi32(out_22_5, DCT_CONST_BITS);
+        const __m128i out_14_6 = _mm_srai_epi32(out_14_4, DCT_CONST_BITS);
+        const __m128i out_14_7 = _mm_srai_epi32(out_14_5, DCT_CONST_BITS);
+        const __m128i out_30_6 = _mm_srai_epi32(out_30_4, DCT_CONST_BITS);
+        const __m128i out_30_7 = _mm_srai_epi32(out_30_5, DCT_CONST_BITS);
+        // Combine
+        out[ 2] = _mm_packs_epi32(out_02_6, out_02_7);
+        out[18] = _mm_packs_epi32(out_18_6, out_18_7);
+        out[10] = _mm_packs_epi32(out_10_6, out_10_7);
+        out[26] = _mm_packs_epi32(out_26_6, out_26_7);
+        out[ 6] = _mm_packs_epi32(out_06_6, out_06_7);
+        out[22] = _mm_packs_epi32(out_22_6, out_22_7);
+        out[14] = _mm_packs_epi32(out_14_6, out_14_7);
+        out[30] = _mm_packs_epi32(out_30_6, out_30_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&out[2], &out[18], &out[10],
+                                           &out[26], &out[6], &out[22],
+                                           &out[14], &out[30]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        step1[16] = ADD_EPI16(step3[17], step2[16]);
+        step1[17] = SUB_EPI16(step2[16], step3[17]);
+        step1[18] = SUB_EPI16(step2[19], step3[18]);
+        step1[19] = ADD_EPI16(step3[18], step2[19]);
+        step1[20] = ADD_EPI16(step3[21], step2[20]);
+        step1[21] = SUB_EPI16(step2[20], step3[21]);
+        step1[22] = SUB_EPI16(step2[23], step3[22]);
+        step1[23] = ADD_EPI16(step3[22], step2[23]);
+        step1[24] = ADD_EPI16(step3[25], step2[24]);
+        step1[25] = SUB_EPI16(step2[24], step3[25]);
+        step1[26] = SUB_EPI16(step2[27], step3[26]);
+        step1[27] = ADD_EPI16(step3[26], step2[27]);
+        step1[28] = ADD_EPI16(step3[29], step2[28]);
+        step1[29] = SUB_EPI16(step2[28], step3[29]);
+        step1[30] = SUB_EPI16(step2[31], step3[30]);
+        step1[31] = ADD_EPI16(step3[30], step2[31]);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x16(
+            &step1[16], &step1[17], &step1[18], &step1[19],
+            &step1[20], &step1[21], &step1[22], &step1[23],
+            &step1[24], &step1[25], &step1[26], &step1[27],
+            &step1[28], &step1[29], &step1[30], &step1[31]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+             HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      // Final stage --- outputs indices are bit-reversed.
+      {
+        const __m128i out_01_0 = _mm_unpacklo_epi16(step1[16], step1[31]);
+        const __m128i out_01_1 = _mm_unpackhi_epi16(step1[16], step1[31]);
+        const __m128i out_17_0 = _mm_unpacklo_epi16(step1[17], step1[30]);
+        const __m128i out_17_1 = _mm_unpackhi_epi16(step1[17], step1[30]);
+        const __m128i out_09_0 = _mm_unpacklo_epi16(step1[18], step1[29]);
+        const __m128i out_09_1 = _mm_unpackhi_epi16(step1[18], step1[29]);
+        const __m128i out_25_0 = _mm_unpacklo_epi16(step1[19], step1[28]);
+        const __m128i out_25_1 = _mm_unpackhi_epi16(step1[19], step1[28]);
+        const __m128i out_01_2 = _mm_madd_epi16(out_01_0, k__cospi_p31_p01);
+        const __m128i out_01_3 = _mm_madd_epi16(out_01_1, k__cospi_p31_p01);
+        const __m128i out_17_2 = _mm_madd_epi16(out_17_0, k__cospi_p15_p17);
+        const __m128i out_17_3 = _mm_madd_epi16(out_17_1, k__cospi_p15_p17);
+        const __m128i out_09_2 = _mm_madd_epi16(out_09_0, k__cospi_p23_p09);
+        const __m128i out_09_3 = _mm_madd_epi16(out_09_1, k__cospi_p23_p09);
+        const __m128i out_25_2 = _mm_madd_epi16(out_25_0, k__cospi_p07_p25);
+        const __m128i out_25_3 = _mm_madd_epi16(out_25_1, k__cospi_p07_p25);
+        const __m128i out_07_2 = _mm_madd_epi16(out_25_0, k__cospi_m25_p07);
+        const __m128i out_07_3 = _mm_madd_epi16(out_25_1, k__cospi_m25_p07);
+        const __m128i out_23_2 = _mm_madd_epi16(out_09_0, k__cospi_m09_p23);
+        const __m128i out_23_3 = _mm_madd_epi16(out_09_1, k__cospi_m09_p23);
+        const __m128i out_15_2 = _mm_madd_epi16(out_17_0, k__cospi_m17_p15);
+        const __m128i out_15_3 = _mm_madd_epi16(out_17_1, k__cospi_m17_p15);
+        const __m128i out_31_2 = _mm_madd_epi16(out_01_0, k__cospi_m01_p31);
+        const __m128i out_31_3 = _mm_madd_epi16(out_01_1, k__cospi_m01_p31);
+        // dct_const_round_shift
+        const __m128i out_01_4 = _mm_add_epi32(out_01_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_01_5 = _mm_add_epi32(out_01_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_17_4 = _mm_add_epi32(out_17_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_17_5 = _mm_add_epi32(out_17_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_09_4 = _mm_add_epi32(out_09_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_09_5 = _mm_add_epi32(out_09_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_25_4 = _mm_add_epi32(out_25_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_25_5 = _mm_add_epi32(out_25_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_07_4 = _mm_add_epi32(out_07_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_07_5 = _mm_add_epi32(out_07_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_23_4 = _mm_add_epi32(out_23_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_23_5 = _mm_add_epi32(out_23_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_15_4 = _mm_add_epi32(out_15_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_15_5 = _mm_add_epi32(out_15_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_31_4 = _mm_add_epi32(out_31_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_31_5 = _mm_add_epi32(out_31_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_01_6 = _mm_srai_epi32(out_01_4, DCT_CONST_BITS);
+        const __m128i out_01_7 = _mm_srai_epi32(out_01_5, DCT_CONST_BITS);
+        const __m128i out_17_6 = _mm_srai_epi32(out_17_4, DCT_CONST_BITS);
+        const __m128i out_17_7 = _mm_srai_epi32(out_17_5, DCT_CONST_BITS);
+        const __m128i out_09_6 = _mm_srai_epi32(out_09_4, DCT_CONST_BITS);
+        const __m128i out_09_7 = _mm_srai_epi32(out_09_5, DCT_CONST_BITS);
+        const __m128i out_25_6 = _mm_srai_epi32(out_25_4, DCT_CONST_BITS);
+        const __m128i out_25_7 = _mm_srai_epi32(out_25_5, DCT_CONST_BITS);
+        const __m128i out_07_6 = _mm_srai_epi32(out_07_4, DCT_CONST_BITS);
+        const __m128i out_07_7 = _mm_srai_epi32(out_07_5, DCT_CONST_BITS);
+        const __m128i out_23_6 = _mm_srai_epi32(out_23_4, DCT_CONST_BITS);
+        const __m128i out_23_7 = _mm_srai_epi32(out_23_5, DCT_CONST_BITS);
+        const __m128i out_15_6 = _mm_srai_epi32(out_15_4, DCT_CONST_BITS);
+        const __m128i out_15_7 = _mm_srai_epi32(out_15_5, DCT_CONST_BITS);
+        const __m128i out_31_6 = _mm_srai_epi32(out_31_4, DCT_CONST_BITS);
+        const __m128i out_31_7 = _mm_srai_epi32(out_31_5, DCT_CONST_BITS);
+        // Combine
+        out[ 1] = _mm_packs_epi32(out_01_6, out_01_7);
+        out[17] = _mm_packs_epi32(out_17_6, out_17_7);
+        out[ 9] = _mm_packs_epi32(out_09_6, out_09_7);
+        out[25] = _mm_packs_epi32(out_25_6, out_25_7);
+        out[ 7] = _mm_packs_epi32(out_07_6, out_07_7);
+        out[23] = _mm_packs_epi32(out_23_6, out_23_7);
+        out[15] = _mm_packs_epi32(out_15_6, out_15_7);
+        out[31] = _mm_packs_epi32(out_31_6, out_31_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&out[1], &out[17], &out[9],
+                                           &out[25], &out[7], &out[23],
+                                           &out[15], &out[31]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      {
+        const __m128i out_05_0 = _mm_unpacklo_epi16(step1[20], step1[27]);
+        const __m128i out_05_1 = _mm_unpackhi_epi16(step1[20], step1[27]);
+        const __m128i out_21_0 = _mm_unpacklo_epi16(step1[21], step1[26]);
+        const __m128i out_21_1 = _mm_unpackhi_epi16(step1[21], step1[26]);
+        const __m128i out_13_0 = _mm_unpacklo_epi16(step1[22], step1[25]);
+        const __m128i out_13_1 = _mm_unpackhi_epi16(step1[22], step1[25]);
+        const __m128i out_29_0 = _mm_unpacklo_epi16(step1[23], step1[24]);
+        const __m128i out_29_1 = _mm_unpackhi_epi16(step1[23], step1[24]);
+        const __m128i out_05_2 = _mm_madd_epi16(out_05_0, k__cospi_p27_p05);
+        const __m128i out_05_3 = _mm_madd_epi16(out_05_1, k__cospi_p27_p05);
+        const __m128i out_21_2 = _mm_madd_epi16(out_21_0, k__cospi_p11_p21);
+        const __m128i out_21_3 = _mm_madd_epi16(out_21_1, k__cospi_p11_p21);
+        const __m128i out_13_2 = _mm_madd_epi16(out_13_0, k__cospi_p19_p13);
+        const __m128i out_13_3 = _mm_madd_epi16(out_13_1, k__cospi_p19_p13);
+        const __m128i out_29_2 = _mm_madd_epi16(out_29_0, k__cospi_p03_p29);
+        const __m128i out_29_3 = _mm_madd_epi16(out_29_1, k__cospi_p03_p29);
+        const __m128i out_03_2 = _mm_madd_epi16(out_29_0, k__cospi_m29_p03);
+        const __m128i out_03_3 = _mm_madd_epi16(out_29_1, k__cospi_m29_p03);
+        const __m128i out_19_2 = _mm_madd_epi16(out_13_0, k__cospi_m13_p19);
+        const __m128i out_19_3 = _mm_madd_epi16(out_13_1, k__cospi_m13_p19);
+        const __m128i out_11_2 = _mm_madd_epi16(out_21_0, k__cospi_m21_p11);
+        const __m128i out_11_3 = _mm_madd_epi16(out_21_1, k__cospi_m21_p11);
+        const __m128i out_27_2 = _mm_madd_epi16(out_05_0, k__cospi_m05_p27);
+        const __m128i out_27_3 = _mm_madd_epi16(out_05_1, k__cospi_m05_p27);
+        // dct_const_round_shift
+        const __m128i out_05_4 = _mm_add_epi32(out_05_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_05_5 = _mm_add_epi32(out_05_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_21_4 = _mm_add_epi32(out_21_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_21_5 = _mm_add_epi32(out_21_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_13_4 = _mm_add_epi32(out_13_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_13_5 = _mm_add_epi32(out_13_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_29_4 = _mm_add_epi32(out_29_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_29_5 = _mm_add_epi32(out_29_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_03_4 = _mm_add_epi32(out_03_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_03_5 = _mm_add_epi32(out_03_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_19_4 = _mm_add_epi32(out_19_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_19_5 = _mm_add_epi32(out_19_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_11_4 = _mm_add_epi32(out_11_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_11_5 = _mm_add_epi32(out_11_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_27_4 = _mm_add_epi32(out_27_2, k__DCT_CONST_ROUNDING);
+        const __m128i out_27_5 = _mm_add_epi32(out_27_3, k__DCT_CONST_ROUNDING);
+        const __m128i out_05_6 = _mm_srai_epi32(out_05_4, DCT_CONST_BITS);
+        const __m128i out_05_7 = _mm_srai_epi32(out_05_5, DCT_CONST_BITS);
+        const __m128i out_21_6 = _mm_srai_epi32(out_21_4, DCT_CONST_BITS);
+        const __m128i out_21_7 = _mm_srai_epi32(out_21_5, DCT_CONST_BITS);
+        const __m128i out_13_6 = _mm_srai_epi32(out_13_4, DCT_CONST_BITS);
+        const __m128i out_13_7 = _mm_srai_epi32(out_13_5, DCT_CONST_BITS);
+        const __m128i out_29_6 = _mm_srai_epi32(out_29_4, DCT_CONST_BITS);
+        const __m128i out_29_7 = _mm_srai_epi32(out_29_5, DCT_CONST_BITS);
+        const __m128i out_03_6 = _mm_srai_epi32(out_03_4, DCT_CONST_BITS);
+        const __m128i out_03_7 = _mm_srai_epi32(out_03_5, DCT_CONST_BITS);
+        const __m128i out_19_6 = _mm_srai_epi32(out_19_4, DCT_CONST_BITS);
+        const __m128i out_19_7 = _mm_srai_epi32(out_19_5, DCT_CONST_BITS);
+        const __m128i out_11_6 = _mm_srai_epi32(out_11_4, DCT_CONST_BITS);
+        const __m128i out_11_7 = _mm_srai_epi32(out_11_5, DCT_CONST_BITS);
+        const __m128i out_27_6 = _mm_srai_epi32(out_27_4, DCT_CONST_BITS);
+        const __m128i out_27_7 = _mm_srai_epi32(out_27_5, DCT_CONST_BITS);
+        // Combine
+        out[ 5] = _mm_packs_epi32(out_05_6, out_05_7);
+        out[21] = _mm_packs_epi32(out_21_6, out_21_7);
+        out[13] = _mm_packs_epi32(out_13_6, out_13_7);
+        out[29] = _mm_packs_epi32(out_29_6, out_29_7);
+        out[ 3] = _mm_packs_epi32(out_03_6, out_03_7);
+        out[19] = _mm_packs_epi32(out_19_6, out_19_7);
+        out[11] = _mm_packs_epi32(out_11_6, out_11_7);
+        out[27] = _mm_packs_epi32(out_27_6, out_27_7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&out[5], &out[21], &out[13],
+                                           &out[29], &out[3], &out[19],
+                                           &out[11], &out[27]);
+        if (overflow) {
+          if (pass == 0)
+            HIGH_FDCT32x32_2D_C(input, output_org, stride);
+          else
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+#if FDCT32x32_HIGH_PRECISION
+      } else {
+        __m128i lstep1[64], lstep2[64], lstep3[64];
+        __m128i u[32], v[32], sign[16];
+        const __m128i K32One = _mm_set_epi32(1, 1, 1, 1);
+        // start using 32-bit operations
+        // stage 3
+        {
+          // expanding to 32-bit length priori to addition operations
+          lstep2[ 0] = _mm_unpacklo_epi16(step2[ 0], kZero);
+          lstep2[ 1] = _mm_unpackhi_epi16(step2[ 0], kZero);
+          lstep2[ 2] = _mm_unpacklo_epi16(step2[ 1], kZero);
+          lstep2[ 3] = _mm_unpackhi_epi16(step2[ 1], kZero);
+          lstep2[ 4] = _mm_unpacklo_epi16(step2[ 2], kZero);
+          lstep2[ 5] = _mm_unpackhi_epi16(step2[ 2], kZero);
+          lstep2[ 6] = _mm_unpacklo_epi16(step2[ 3], kZero);
+          lstep2[ 7] = _mm_unpackhi_epi16(step2[ 3], kZero);
+          lstep2[ 8] = _mm_unpacklo_epi16(step2[ 4], kZero);
+          lstep2[ 9] = _mm_unpackhi_epi16(step2[ 4], kZero);
+          lstep2[10] = _mm_unpacklo_epi16(step2[ 5], kZero);
+          lstep2[11] = _mm_unpackhi_epi16(step2[ 5], kZero);
+          lstep2[12] = _mm_unpacklo_epi16(step2[ 6], kZero);
+          lstep2[13] = _mm_unpackhi_epi16(step2[ 6], kZero);
+          lstep2[14] = _mm_unpacklo_epi16(step2[ 7], kZero);
+          lstep2[15] = _mm_unpackhi_epi16(step2[ 7], kZero);
+          lstep2[ 0] = _mm_madd_epi16(lstep2[ 0], kOne);
+          lstep2[ 1] = _mm_madd_epi16(lstep2[ 1], kOne);
+          lstep2[ 2] = _mm_madd_epi16(lstep2[ 2], kOne);
+          lstep2[ 3] = _mm_madd_epi16(lstep2[ 3], kOne);
+          lstep2[ 4] = _mm_madd_epi16(lstep2[ 4], kOne);
+          lstep2[ 5] = _mm_madd_epi16(lstep2[ 5], kOne);
+          lstep2[ 6] = _mm_madd_epi16(lstep2[ 6], kOne);
+          lstep2[ 7] = _mm_madd_epi16(lstep2[ 7], kOne);
+          lstep2[ 8] = _mm_madd_epi16(lstep2[ 8], kOne);
+          lstep2[ 9] = _mm_madd_epi16(lstep2[ 9], kOne);
+          lstep2[10] = _mm_madd_epi16(lstep2[10], kOne);
+          lstep2[11] = _mm_madd_epi16(lstep2[11], kOne);
+          lstep2[12] = _mm_madd_epi16(lstep2[12], kOne);
+          lstep2[13] = _mm_madd_epi16(lstep2[13], kOne);
+          lstep2[14] = _mm_madd_epi16(lstep2[14], kOne);
+          lstep2[15] = _mm_madd_epi16(lstep2[15], kOne);
+
+          lstep3[ 0] = _mm_add_epi32(lstep2[14], lstep2[ 0]);
+          lstep3[ 1] = _mm_add_epi32(lstep2[15], lstep2[ 1]);
+          lstep3[ 2] = _mm_add_epi32(lstep2[12], lstep2[ 2]);
+          lstep3[ 3] = _mm_add_epi32(lstep2[13], lstep2[ 3]);
+          lstep3[ 4] = _mm_add_epi32(lstep2[10], lstep2[ 4]);
+          lstep3[ 5] = _mm_add_epi32(lstep2[11], lstep2[ 5]);
+          lstep3[ 6] = _mm_add_epi32(lstep2[ 8], lstep2[ 6]);
+          lstep3[ 7] = _mm_add_epi32(lstep2[ 9], lstep2[ 7]);
+          lstep3[ 8] = _mm_sub_epi32(lstep2[ 6], lstep2[ 8]);
+          lstep3[ 9] = _mm_sub_epi32(lstep2[ 7], lstep2[ 9]);
+          lstep3[10] = _mm_sub_epi32(lstep2[ 4], lstep2[10]);
+          lstep3[11] = _mm_sub_epi32(lstep2[ 5], lstep2[11]);
+          lstep3[12] = _mm_sub_epi32(lstep2[ 2], lstep2[12]);
+          lstep3[13] = _mm_sub_epi32(lstep2[ 3], lstep2[13]);
+          lstep3[14] = _mm_sub_epi32(lstep2[ 0], lstep2[14]);
+          lstep3[15] = _mm_sub_epi32(lstep2[ 1], lstep2[15]);
+        }
+        {
+          const __m128i s3_10_0 = _mm_unpacklo_epi16(step2[13], step2[10]);
+          const __m128i s3_10_1 = _mm_unpackhi_epi16(step2[13], step2[10]);
+          const __m128i s3_11_0 = _mm_unpacklo_epi16(step2[12], step2[11]);
+          const __m128i s3_11_1 = _mm_unpackhi_epi16(step2[12], step2[11]);
+          const __m128i s3_10_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_m16);
+          const __m128i s3_10_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_m16);
+          const __m128i s3_11_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_m16);
+          const __m128i s3_11_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_m16);
+          const __m128i s3_12_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_p16);
+          const __m128i s3_12_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_p16);
+          const __m128i s3_13_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_p16);
+          const __m128i s3_13_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_p16);
+          // dct_const_round_shift
+          const __m128i s3_10_4 = _mm_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING);
+          const __m128i s3_10_5 = _mm_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING);
+          const __m128i s3_11_4 = _mm_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING);
+          const __m128i s3_11_5 = _mm_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING);
+          const __m128i s3_12_4 = _mm_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING);
+          const __m128i s3_12_5 = _mm_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING);
+          const __m128i s3_13_4 = _mm_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING);
+          const __m128i s3_13_5 = _mm_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING);
+          lstep3[20] = _mm_srai_epi32(s3_10_4, DCT_CONST_BITS);
+          lstep3[21] = _mm_srai_epi32(s3_10_5, DCT_CONST_BITS);
+          lstep3[22] = _mm_srai_epi32(s3_11_4, DCT_CONST_BITS);
+          lstep3[23] = _mm_srai_epi32(s3_11_5, DCT_CONST_BITS);
+          lstep3[24] = _mm_srai_epi32(s3_12_4, DCT_CONST_BITS);
+          lstep3[25] = _mm_srai_epi32(s3_12_5, DCT_CONST_BITS);
+          lstep3[26] = _mm_srai_epi32(s3_13_4, DCT_CONST_BITS);
+          lstep3[27] = _mm_srai_epi32(s3_13_5, DCT_CONST_BITS);
+        }
+        {
+          lstep2[40] = _mm_unpacklo_epi16(step2[20], kZero);
+          lstep2[41] = _mm_unpackhi_epi16(step2[20], kZero);
+          lstep2[42] = _mm_unpacklo_epi16(step2[21], kZero);
+          lstep2[43] = _mm_unpackhi_epi16(step2[21], kZero);
+          lstep2[44] = _mm_unpacklo_epi16(step2[22], kZero);
+          lstep2[45] = _mm_unpackhi_epi16(step2[22], kZero);
+          lstep2[46] = _mm_unpacklo_epi16(step2[23], kZero);
+          lstep2[47] = _mm_unpackhi_epi16(step2[23], kZero);
+          lstep2[48] = _mm_unpacklo_epi16(step2[24], kZero);
+          lstep2[49] = _mm_unpackhi_epi16(step2[24], kZero);
+          lstep2[50] = _mm_unpacklo_epi16(step2[25], kZero);
+          lstep2[51] = _mm_unpackhi_epi16(step2[25], kZero);
+          lstep2[52] = _mm_unpacklo_epi16(step2[26], kZero);
+          lstep2[53] = _mm_unpackhi_epi16(step2[26], kZero);
+          lstep2[54] = _mm_unpacklo_epi16(step2[27], kZero);
+          lstep2[55] = _mm_unpackhi_epi16(step2[27], kZero);
+          lstep2[40] = _mm_madd_epi16(lstep2[40], kOne);
+          lstep2[41] = _mm_madd_epi16(lstep2[41], kOne);
+          lstep2[42] = _mm_madd_epi16(lstep2[42], kOne);
+          lstep2[43] = _mm_madd_epi16(lstep2[43], kOne);
+          lstep2[44] = _mm_madd_epi16(lstep2[44], kOne);
+          lstep2[45] = _mm_madd_epi16(lstep2[45], kOne);
+          lstep2[46] = _mm_madd_epi16(lstep2[46], kOne);
+          lstep2[47] = _mm_madd_epi16(lstep2[47], kOne);
+          lstep2[48] = _mm_madd_epi16(lstep2[48], kOne);
+          lstep2[49] = _mm_madd_epi16(lstep2[49], kOne);
+          lstep2[50] = _mm_madd_epi16(lstep2[50], kOne);
+          lstep2[51] = _mm_madd_epi16(lstep2[51], kOne);
+          lstep2[52] = _mm_madd_epi16(lstep2[52], kOne);
+          lstep2[53] = _mm_madd_epi16(lstep2[53], kOne);
+          lstep2[54] = _mm_madd_epi16(lstep2[54], kOne);
+          lstep2[55] = _mm_madd_epi16(lstep2[55], kOne);
+
+          lstep1[32] = _mm_unpacklo_epi16(step1[16], kZero);
+          lstep1[33] = _mm_unpackhi_epi16(step1[16], kZero);
+          lstep1[34] = _mm_unpacklo_epi16(step1[17], kZero);
+          lstep1[35] = _mm_unpackhi_epi16(step1[17], kZero);
+          lstep1[36] = _mm_unpacklo_epi16(step1[18], kZero);
+          lstep1[37] = _mm_unpackhi_epi16(step1[18], kZero);
+          lstep1[38] = _mm_unpacklo_epi16(step1[19], kZero);
+          lstep1[39] = _mm_unpackhi_epi16(step1[19], kZero);
+          lstep1[56] = _mm_unpacklo_epi16(step1[28], kZero);
+          lstep1[57] = _mm_unpackhi_epi16(step1[28], kZero);
+          lstep1[58] = _mm_unpacklo_epi16(step1[29], kZero);
+          lstep1[59] = _mm_unpackhi_epi16(step1[29], kZero);
+          lstep1[60] = _mm_unpacklo_epi16(step1[30], kZero);
+          lstep1[61] = _mm_unpackhi_epi16(step1[30], kZero);
+          lstep1[62] = _mm_unpacklo_epi16(step1[31], kZero);
+          lstep1[63] = _mm_unpackhi_epi16(step1[31], kZero);
+          lstep1[32] = _mm_madd_epi16(lstep1[32], kOne);
+          lstep1[33] = _mm_madd_epi16(lstep1[33], kOne);
+          lstep1[34] = _mm_madd_epi16(lstep1[34], kOne);
+          lstep1[35] = _mm_madd_epi16(lstep1[35], kOne);
+          lstep1[36] = _mm_madd_epi16(lstep1[36], kOne);
+          lstep1[37] = _mm_madd_epi16(lstep1[37], kOne);
+          lstep1[38] = _mm_madd_epi16(lstep1[38], kOne);
+          lstep1[39] = _mm_madd_epi16(lstep1[39], kOne);
+          lstep1[56] = _mm_madd_epi16(lstep1[56], kOne);
+          lstep1[57] = _mm_madd_epi16(lstep1[57], kOne);
+          lstep1[58] = _mm_madd_epi16(lstep1[58], kOne);
+          lstep1[59] = _mm_madd_epi16(lstep1[59], kOne);
+          lstep1[60] = _mm_madd_epi16(lstep1[60], kOne);
+          lstep1[61] = _mm_madd_epi16(lstep1[61], kOne);
+          lstep1[62] = _mm_madd_epi16(lstep1[62], kOne);
+          lstep1[63] = _mm_madd_epi16(lstep1[63], kOne);
+
+          lstep3[32] = _mm_add_epi32(lstep2[46], lstep1[32]);
+          lstep3[33] = _mm_add_epi32(lstep2[47], lstep1[33]);
+
+          lstep3[34] = _mm_add_epi32(lstep2[44], lstep1[34]);
+          lstep3[35] = _mm_add_epi32(lstep2[45], lstep1[35]);
+          lstep3[36] = _mm_add_epi32(lstep2[42], lstep1[36]);
+          lstep3[37] = _mm_add_epi32(lstep2[43], lstep1[37]);
+          lstep3[38] = _mm_add_epi32(lstep2[40], lstep1[38]);
+          lstep3[39] = _mm_add_epi32(lstep2[41], lstep1[39]);
+          lstep3[40] = _mm_sub_epi32(lstep1[38], lstep2[40]);
+          lstep3[41] = _mm_sub_epi32(lstep1[39], lstep2[41]);
+          lstep3[42] = _mm_sub_epi32(lstep1[36], lstep2[42]);
+          lstep3[43] = _mm_sub_epi32(lstep1[37], lstep2[43]);
+          lstep3[44] = _mm_sub_epi32(lstep1[34], lstep2[44]);
+          lstep3[45] = _mm_sub_epi32(lstep1[35], lstep2[45]);
+          lstep3[46] = _mm_sub_epi32(lstep1[32], lstep2[46]);
+          lstep3[47] = _mm_sub_epi32(lstep1[33], lstep2[47]);
+          lstep3[48] = _mm_sub_epi32(lstep1[62], lstep2[48]);
+          lstep3[49] = _mm_sub_epi32(lstep1[63], lstep2[49]);
+          lstep3[50] = _mm_sub_epi32(lstep1[60], lstep2[50]);
+          lstep3[51] = _mm_sub_epi32(lstep1[61], lstep2[51]);
+          lstep3[52] = _mm_sub_epi32(lstep1[58], lstep2[52]);
+          lstep3[53] = _mm_sub_epi32(lstep1[59], lstep2[53]);
+          lstep3[54] = _mm_sub_epi32(lstep1[56], lstep2[54]);
+          lstep3[55] = _mm_sub_epi32(lstep1[57], lstep2[55]);
+          lstep3[56] = _mm_add_epi32(lstep2[54], lstep1[56]);
+          lstep3[57] = _mm_add_epi32(lstep2[55], lstep1[57]);
+          lstep3[58] = _mm_add_epi32(lstep2[52], lstep1[58]);
+          lstep3[59] = _mm_add_epi32(lstep2[53], lstep1[59]);
+          lstep3[60] = _mm_add_epi32(lstep2[50], lstep1[60]);
+          lstep3[61] = _mm_add_epi32(lstep2[51], lstep1[61]);
+          lstep3[62] = _mm_add_epi32(lstep2[48], lstep1[62]);
+          lstep3[63] = _mm_add_epi32(lstep2[49], lstep1[63]);
+        }
+
+        // stage 4
+        {
+          // expanding to 32-bit length priori to addition operations
+          lstep2[16] = _mm_unpacklo_epi16(step2[ 8], kZero);
+          lstep2[17] = _mm_unpackhi_epi16(step2[ 8], kZero);
+          lstep2[18] = _mm_unpacklo_epi16(step2[ 9], kZero);
+          lstep2[19] = _mm_unpackhi_epi16(step2[ 9], kZero);
+          lstep2[28] = _mm_unpacklo_epi16(step2[14], kZero);
+          lstep2[29] = _mm_unpackhi_epi16(step2[14], kZero);
+          lstep2[30] = _mm_unpacklo_epi16(step2[15], kZero);
+          lstep2[31] = _mm_unpackhi_epi16(step2[15], kZero);
+          lstep2[16] = _mm_madd_epi16(lstep2[16], kOne);
+          lstep2[17] = _mm_madd_epi16(lstep2[17], kOne);
+          lstep2[18] = _mm_madd_epi16(lstep2[18], kOne);
+          lstep2[19] = _mm_madd_epi16(lstep2[19], kOne);
+          lstep2[28] = _mm_madd_epi16(lstep2[28], kOne);
+          lstep2[29] = _mm_madd_epi16(lstep2[29], kOne);
+          lstep2[30] = _mm_madd_epi16(lstep2[30], kOne);
+          lstep2[31] = _mm_madd_epi16(lstep2[31], kOne);
+
+          lstep1[ 0] = _mm_add_epi32(lstep3[ 6], lstep3[ 0]);
+          lstep1[ 1] = _mm_add_epi32(lstep3[ 7], lstep3[ 1]);
+          lstep1[ 2] = _mm_add_epi32(lstep3[ 4], lstep3[ 2]);
+          lstep1[ 3] = _mm_add_epi32(lstep3[ 5], lstep3[ 3]);
+          lstep1[ 4] = _mm_sub_epi32(lstep3[ 2], lstep3[ 4]);
+          lstep1[ 5] = _mm_sub_epi32(lstep3[ 3], lstep3[ 5]);
+          lstep1[ 6] = _mm_sub_epi32(lstep3[ 0], lstep3[ 6]);
+          lstep1[ 7] = _mm_sub_epi32(lstep3[ 1], lstep3[ 7]);
+          lstep1[16] = _mm_add_epi32(lstep3[22], lstep2[16]);
+          lstep1[17] = _mm_add_epi32(lstep3[23], lstep2[17]);
+          lstep1[18] = _mm_add_epi32(lstep3[20], lstep2[18]);
+          lstep1[19] = _mm_add_epi32(lstep3[21], lstep2[19]);
+          lstep1[20] = _mm_sub_epi32(lstep2[18], lstep3[20]);
+          lstep1[21] = _mm_sub_epi32(lstep2[19], lstep3[21]);
+          lstep1[22] = _mm_sub_epi32(lstep2[16], lstep3[22]);
+          lstep1[23] = _mm_sub_epi32(lstep2[17], lstep3[23]);
+          lstep1[24] = _mm_sub_epi32(lstep2[30], lstep3[24]);
+          lstep1[25] = _mm_sub_epi32(lstep2[31], lstep3[25]);
+          lstep1[26] = _mm_sub_epi32(lstep2[28], lstep3[26]);
+          lstep1[27] = _mm_sub_epi32(lstep2[29], lstep3[27]);
+          lstep1[28] = _mm_add_epi32(lstep3[26], lstep2[28]);
+          lstep1[29] = _mm_add_epi32(lstep3[27], lstep2[29]);
+          lstep1[30] = _mm_add_epi32(lstep3[24], lstep2[30]);
+          lstep1[31] = _mm_add_epi32(lstep3[25], lstep2[31]);
+        }
+        {
+        // to be continued...
+        //
+        const __m128i k32_p16_p16 = pair_set_epi32(cospi_16_64, cospi_16_64);
+        const __m128i k32_p16_m16 = pair_set_epi32(cospi_16_64, -cospi_16_64);
+
+        u[0] = _mm_unpacklo_epi32(lstep3[12], lstep3[10]);
+        u[1] = _mm_unpackhi_epi32(lstep3[12], lstep3[10]);
+        u[2] = _mm_unpacklo_epi32(lstep3[13], lstep3[11]);
+        u[3] = _mm_unpackhi_epi32(lstep3[13], lstep3[11]);
+
+        // TODO(jingning): manually inline k_madd_epi32_ to further hide
+        // instruction latency.
+        v[0] = k_madd_epi32(u[0], k32_p16_m16);
+        v[1] = k_madd_epi32(u[1], k32_p16_m16);
+        v[2] = k_madd_epi32(u[2], k32_p16_m16);
+        v[3] = k_madd_epi32(u[3], k32_p16_m16);
+        v[4] = k_madd_epi32(u[0], k32_p16_p16);
+        v[5] = k_madd_epi32(u[1], k32_p16_p16);
+        v[6] = k_madd_epi32(u[2], k32_p16_p16);
+        v[7] = k_madd_epi32(u[3], k32_p16_p16);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = k_check_epi32_overflow_8(&v[0], &v[1], &v[2], &v[3],
+                                            &v[4], &v[5], &v[6], &v[7], &kZero);
+        if (overflow) {
+          HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+        u[0] = k_packs_epi64(v[0], v[1]);
+        u[1] = k_packs_epi64(v[2], v[3]);
+        u[2] = k_packs_epi64(v[4], v[5]);
+        u[3] = k_packs_epi64(v[6], v[7]);
+
+        v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+        v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+        v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+        v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+
+        lstep1[10] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+        lstep1[11] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+        lstep1[12] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+        lstep1[13] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+        }
+        {
+          const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64);
+          const __m128i k32_m24_m08 = pair_set_epi32(-cospi_24_64, -cospi_8_64);
+          const __m128i k32_p24_p08 = pair_set_epi32(cospi_24_64, cospi_8_64);
+
+          u[ 0] = _mm_unpacklo_epi32(lstep3[36], lstep3[58]);
+          u[ 1] = _mm_unpackhi_epi32(lstep3[36], lstep3[58]);
+          u[ 2] = _mm_unpacklo_epi32(lstep3[37], lstep3[59]);
+          u[ 3] = _mm_unpackhi_epi32(lstep3[37], lstep3[59]);
+          u[ 4] = _mm_unpacklo_epi32(lstep3[38], lstep3[56]);
+          u[ 5] = _mm_unpackhi_epi32(lstep3[38], lstep3[56]);
+          u[ 6] = _mm_unpacklo_epi32(lstep3[39], lstep3[57]);
+          u[ 7] = _mm_unpackhi_epi32(lstep3[39], lstep3[57]);
+          u[ 8] = _mm_unpacklo_epi32(lstep3[40], lstep3[54]);
+          u[ 9] = _mm_unpackhi_epi32(lstep3[40], lstep3[54]);
+          u[10] = _mm_unpacklo_epi32(lstep3[41], lstep3[55]);
+          u[11] = _mm_unpackhi_epi32(lstep3[41], lstep3[55]);
+          u[12] = _mm_unpacklo_epi32(lstep3[42], lstep3[52]);
+          u[13] = _mm_unpackhi_epi32(lstep3[42], lstep3[52]);
+          u[14] = _mm_unpacklo_epi32(lstep3[43], lstep3[53]);
+          u[15] = _mm_unpackhi_epi32(lstep3[43], lstep3[53]);
+
+          v[ 0] = k_madd_epi32(u[ 0], k32_m08_p24);
+          v[ 1] = k_madd_epi32(u[ 1], k32_m08_p24);
+          v[ 2] = k_madd_epi32(u[ 2], k32_m08_p24);
+          v[ 3] = k_madd_epi32(u[ 3], k32_m08_p24);
+          v[ 4] = k_madd_epi32(u[ 4], k32_m08_p24);
+          v[ 5] = k_madd_epi32(u[ 5], k32_m08_p24);
+          v[ 6] = k_madd_epi32(u[ 6], k32_m08_p24);
+          v[ 7] = k_madd_epi32(u[ 7], k32_m08_p24);
+          v[ 8] = k_madd_epi32(u[ 8], k32_m24_m08);
+          v[ 9] = k_madd_epi32(u[ 9], k32_m24_m08);
+          v[10] = k_madd_epi32(u[10], k32_m24_m08);
+          v[11] = k_madd_epi32(u[11], k32_m24_m08);
+          v[12] = k_madd_epi32(u[12], k32_m24_m08);
+          v[13] = k_madd_epi32(u[13], k32_m24_m08);
+          v[14] = k_madd_epi32(u[14], k32_m24_m08);
+          v[15] = k_madd_epi32(u[15], k32_m24_m08);
+          v[16] = k_madd_epi32(u[12], k32_m08_p24);
+          v[17] = k_madd_epi32(u[13], k32_m08_p24);
+          v[18] = k_madd_epi32(u[14], k32_m08_p24);
+          v[19] = k_madd_epi32(u[15], k32_m08_p24);
+          v[20] = k_madd_epi32(u[ 8], k32_m08_p24);
+          v[21] = k_madd_epi32(u[ 9], k32_m08_p24);
+          v[22] = k_madd_epi32(u[10], k32_m08_p24);
+          v[23] = k_madd_epi32(u[11], k32_m08_p24);
+          v[24] = k_madd_epi32(u[ 4], k32_p24_p08);
+          v[25] = k_madd_epi32(u[ 5], k32_p24_p08);
+          v[26] = k_madd_epi32(u[ 6], k32_p24_p08);
+          v[27] = k_madd_epi32(u[ 7], k32_p24_p08);
+          v[28] = k_madd_epi32(u[ 0], k32_p24_p08);
+          v[29] = k_madd_epi32(u[ 1], k32_p24_p08);
+          v[30] = k_madd_epi32(u[ 2], k32_p24_p08);
+          v[31] = k_madd_epi32(u[ 3], k32_p24_p08);
+
+#if DCT_HIGH_BIT_DEPTH
+          overflow = k_check_epi32_overflow_32(
+              &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+              &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+              &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+              &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+              &kZero);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+          u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+          u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+          u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+          u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+          u[ 5] = k_packs_epi64(v[10], v[11]);
+          u[ 6] = k_packs_epi64(v[12], v[13]);
+          u[ 7] = k_packs_epi64(v[14], v[15]);
+          u[ 8] = k_packs_epi64(v[16], v[17]);
+          u[ 9] = k_packs_epi64(v[18], v[19]);
+          u[10] = k_packs_epi64(v[20], v[21]);
+          u[11] = k_packs_epi64(v[22], v[23]);
+          u[12] = k_packs_epi64(v[24], v[25]);
+          u[13] = k_packs_epi64(v[26], v[27]);
+          u[14] = k_packs_epi64(v[28], v[29]);
+          u[15] = k_packs_epi64(v[30], v[31]);
+
+          v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+          v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+          v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+          v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+          v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+          v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+          v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+          v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+          v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+          v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+          v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+          v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+          v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+          v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+          v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+          v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+          lstep1[36] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+          lstep1[37] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+          lstep1[38] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+          lstep1[39] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+          lstep1[40] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+          lstep1[41] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+          lstep1[42] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+          lstep1[43] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+          lstep1[52] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+          lstep1[53] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+          lstep1[54] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+          lstep1[55] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+          lstep1[56] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+          lstep1[57] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+          lstep1[58] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+          lstep1[59] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+        }
+        // stage 5
+        {
+          lstep2[ 8] = _mm_add_epi32(lstep1[10], lstep3[ 8]);
+          lstep2[ 9] = _mm_add_epi32(lstep1[11], lstep3[ 9]);
+          lstep2[10] = _mm_sub_epi32(lstep3[ 8], lstep1[10]);
+          lstep2[11] = _mm_sub_epi32(lstep3[ 9], lstep1[11]);
+          lstep2[12] = _mm_sub_epi32(lstep3[14], lstep1[12]);
+          lstep2[13] = _mm_sub_epi32(lstep3[15], lstep1[13]);
+          lstep2[14] = _mm_add_epi32(lstep1[12], lstep3[14]);
+          lstep2[15] = _mm_add_epi32(lstep1[13], lstep3[15]);
+        }
+        {
+          const __m128i k32_p16_p16 = pair_set_epi32(cospi_16_64, cospi_16_64);
+          const __m128i k32_p16_m16 = pair_set_epi32(cospi_16_64, -cospi_16_64);
+          const __m128i k32_p24_p08 = pair_set_epi32(cospi_24_64, cospi_8_64);
+          const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64);
+
+          u[0] = _mm_unpacklo_epi32(lstep1[0], lstep1[2]);
+          u[1] = _mm_unpackhi_epi32(lstep1[0], lstep1[2]);
+          u[2] = _mm_unpacklo_epi32(lstep1[1], lstep1[3]);
+          u[3] = _mm_unpackhi_epi32(lstep1[1], lstep1[3]);
+          u[4] = _mm_unpacklo_epi32(lstep1[4], lstep1[6]);
+          u[5] = _mm_unpackhi_epi32(lstep1[4], lstep1[6]);
+          u[6] = _mm_unpacklo_epi32(lstep1[5], lstep1[7]);
+          u[7] = _mm_unpackhi_epi32(lstep1[5], lstep1[7]);
+
+          // TODO(jingning): manually inline k_madd_epi32_ to further hide
+          // instruction latency.
+          v[ 0] = k_madd_epi32(u[0], k32_p16_p16);
+          v[ 1] = k_madd_epi32(u[1], k32_p16_p16);
+          v[ 2] = k_madd_epi32(u[2], k32_p16_p16);
+          v[ 3] = k_madd_epi32(u[3], k32_p16_p16);
+          v[ 4] = k_madd_epi32(u[0], k32_p16_m16);
+          v[ 5] = k_madd_epi32(u[1], k32_p16_m16);
+          v[ 6] = k_madd_epi32(u[2], k32_p16_m16);
+          v[ 7] = k_madd_epi32(u[3], k32_p16_m16);
+          v[ 8] = k_madd_epi32(u[4], k32_p24_p08);
+          v[ 9] = k_madd_epi32(u[5], k32_p24_p08);
+          v[10] = k_madd_epi32(u[6], k32_p24_p08);
+          v[11] = k_madd_epi32(u[7], k32_p24_p08);
+          v[12] = k_madd_epi32(u[4], k32_m08_p24);
+          v[13] = k_madd_epi32(u[5], k32_m08_p24);
+          v[14] = k_madd_epi32(u[6], k32_m08_p24);
+          v[15] = k_madd_epi32(u[7], k32_m08_p24);
+
+#if DCT_HIGH_BIT_DEPTH
+          overflow = k_check_epi32_overflow_16(
+              &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+              &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+              &kZero);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          u[0] = k_packs_epi64(v[0], v[1]);
+          u[1] = k_packs_epi64(v[2], v[3]);
+          u[2] = k_packs_epi64(v[4], v[5]);
+          u[3] = k_packs_epi64(v[6], v[7]);
+          u[4] = k_packs_epi64(v[8], v[9]);
+          u[5] = k_packs_epi64(v[10], v[11]);
+          u[6] = k_packs_epi64(v[12], v[13]);
+          u[7] = k_packs_epi64(v[14], v[15]);
+
+          v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+          v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+          v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+          v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+          v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+          v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+          v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+          v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+          u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+          u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+          u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+          u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+          u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+          u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+          u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+          u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+
+          sign[0] = _mm_cmplt_epi32(u[0], kZero);
+          sign[1] = _mm_cmplt_epi32(u[1], kZero);
+          sign[2] = _mm_cmplt_epi32(u[2], kZero);
+          sign[3] = _mm_cmplt_epi32(u[3], kZero);
+          sign[4] = _mm_cmplt_epi32(u[4], kZero);
+          sign[5] = _mm_cmplt_epi32(u[5], kZero);
+          sign[6] = _mm_cmplt_epi32(u[6], kZero);
+          sign[7] = _mm_cmplt_epi32(u[7], kZero);
+
+          u[0] = _mm_sub_epi32(u[0], sign[0]);
+          u[1] = _mm_sub_epi32(u[1], sign[1]);
+          u[2] = _mm_sub_epi32(u[2], sign[2]);
+          u[3] = _mm_sub_epi32(u[3], sign[3]);
+          u[4] = _mm_sub_epi32(u[4], sign[4]);
+          u[5] = _mm_sub_epi32(u[5], sign[5]);
+          u[6] = _mm_sub_epi32(u[6], sign[6]);
+          u[7] = _mm_sub_epi32(u[7], sign[7]);
+
+          u[0] = _mm_add_epi32(u[0], K32One);
+          u[1] = _mm_add_epi32(u[1], K32One);
+          u[2] = _mm_add_epi32(u[2], K32One);
+          u[3] = _mm_add_epi32(u[3], K32One);
+          u[4] = _mm_add_epi32(u[4], K32One);
+          u[5] = _mm_add_epi32(u[5], K32One);
+          u[6] = _mm_add_epi32(u[6], K32One);
+          u[7] = _mm_add_epi32(u[7], K32One);
+
+          u[0] = _mm_srai_epi32(u[0], 2);
+          u[1] = _mm_srai_epi32(u[1], 2);
+          u[2] = _mm_srai_epi32(u[2], 2);
+          u[3] = _mm_srai_epi32(u[3], 2);
+          u[4] = _mm_srai_epi32(u[4], 2);
+          u[5] = _mm_srai_epi32(u[5], 2);
+          u[6] = _mm_srai_epi32(u[6], 2);
+          u[7] = _mm_srai_epi32(u[7], 2);
+
+          // Combine
+          out[ 0] = _mm_packs_epi32(u[0], u[1]);
+          out[16] = _mm_packs_epi32(u[2], u[3]);
+          out[ 8] = _mm_packs_epi32(u[4], u[5]);
+          out[24] = _mm_packs_epi32(u[6], u[7]);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x4(&out[0], &out[16],
+                                             &out[8], &out[24]);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        {
+          const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64);
+          const __m128i k32_m24_m08 = pair_set_epi32(-cospi_24_64, -cospi_8_64);
+          const __m128i k32_p24_p08 = pair_set_epi32(cospi_24_64, cospi_8_64);
+
+          u[0] = _mm_unpacklo_epi32(lstep1[18], lstep1[28]);
+          u[1] = _mm_unpackhi_epi32(lstep1[18], lstep1[28]);
+          u[2] = _mm_unpacklo_epi32(lstep1[19], lstep1[29]);
+          u[3] = _mm_unpackhi_epi32(lstep1[19], lstep1[29]);
+          u[4] = _mm_unpacklo_epi32(lstep1[20], lstep1[26]);
+          u[5] = _mm_unpackhi_epi32(lstep1[20], lstep1[26]);
+          u[6] = _mm_unpacklo_epi32(lstep1[21], lstep1[27]);
+          u[7] = _mm_unpackhi_epi32(lstep1[21], lstep1[27]);
+
+          v[0] = k_madd_epi32(u[0], k32_m08_p24);
+          v[1] = k_madd_epi32(u[1], k32_m08_p24);
+          v[2] = k_madd_epi32(u[2], k32_m08_p24);
+          v[3] = k_madd_epi32(u[3], k32_m08_p24);
+          v[4] = k_madd_epi32(u[4], k32_m24_m08);
+          v[5] = k_madd_epi32(u[5], k32_m24_m08);
+          v[6] = k_madd_epi32(u[6], k32_m24_m08);
+          v[7] = k_madd_epi32(u[7], k32_m24_m08);
+          v[ 8] = k_madd_epi32(u[4], k32_m08_p24);
+          v[ 9] = k_madd_epi32(u[5], k32_m08_p24);
+          v[10] = k_madd_epi32(u[6], k32_m08_p24);
+          v[11] = k_madd_epi32(u[7], k32_m08_p24);
+          v[12] = k_madd_epi32(u[0], k32_p24_p08);
+          v[13] = k_madd_epi32(u[1], k32_p24_p08);
+          v[14] = k_madd_epi32(u[2], k32_p24_p08);
+          v[15] = k_madd_epi32(u[3], k32_p24_p08);
+
+#if DCT_HIGH_BIT_DEPTH
+          overflow = k_check_epi32_overflow_16(
+              &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+              &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+              &kZero);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          u[0] = k_packs_epi64(v[0], v[1]);
+          u[1] = k_packs_epi64(v[2], v[3]);
+          u[2] = k_packs_epi64(v[4], v[5]);
+          u[3] = k_packs_epi64(v[6], v[7]);
+          u[4] = k_packs_epi64(v[8], v[9]);
+          u[5] = k_packs_epi64(v[10], v[11]);
+          u[6] = k_packs_epi64(v[12], v[13]);
+          u[7] = k_packs_epi64(v[14], v[15]);
+
+          u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+          u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+          u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+          u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+          u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+          u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+          u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+          u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+          lstep2[18] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+          lstep2[19] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+          lstep2[20] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+          lstep2[21] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+          lstep2[26] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+          lstep2[27] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+          lstep2[28] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+          lstep2[29] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+        }
+        {
+          lstep2[32] = _mm_add_epi32(lstep1[38], lstep3[32]);
+          lstep2[33] = _mm_add_epi32(lstep1[39], lstep3[33]);
+          lstep2[34] = _mm_add_epi32(lstep1[36], lstep3[34]);
+          lstep2[35] = _mm_add_epi32(lstep1[37], lstep3[35]);
+          lstep2[36] = _mm_sub_epi32(lstep3[34], lstep1[36]);
+          lstep2[37] = _mm_sub_epi32(lstep3[35], lstep1[37]);
+          lstep2[38] = _mm_sub_epi32(lstep3[32], lstep1[38]);
+          lstep2[39] = _mm_sub_epi32(lstep3[33], lstep1[39]);
+          lstep2[40] = _mm_sub_epi32(lstep3[46], lstep1[40]);
+          lstep2[41] = _mm_sub_epi32(lstep3[47], lstep1[41]);
+          lstep2[42] = _mm_sub_epi32(lstep3[44], lstep1[42]);
+          lstep2[43] = _mm_sub_epi32(lstep3[45], lstep1[43]);
+          lstep2[44] = _mm_add_epi32(lstep1[42], lstep3[44]);
+          lstep2[45] = _mm_add_epi32(lstep1[43], lstep3[45]);
+          lstep2[46] = _mm_add_epi32(lstep1[40], lstep3[46]);
+          lstep2[47] = _mm_add_epi32(lstep1[41], lstep3[47]);
+          lstep2[48] = _mm_add_epi32(lstep1[54], lstep3[48]);
+          lstep2[49] = _mm_add_epi32(lstep1[55], lstep3[49]);
+          lstep2[50] = _mm_add_epi32(lstep1[52], lstep3[50]);
+          lstep2[51] = _mm_add_epi32(lstep1[53], lstep3[51]);
+          lstep2[52] = _mm_sub_epi32(lstep3[50], lstep1[52]);
+          lstep2[53] = _mm_sub_epi32(lstep3[51], lstep1[53]);
+          lstep2[54] = _mm_sub_epi32(lstep3[48], lstep1[54]);
+          lstep2[55] = _mm_sub_epi32(lstep3[49], lstep1[55]);
+          lstep2[56] = _mm_sub_epi32(lstep3[62], lstep1[56]);
+          lstep2[57] = _mm_sub_epi32(lstep3[63], lstep1[57]);
+          lstep2[58] = _mm_sub_epi32(lstep3[60], lstep1[58]);
+          lstep2[59] = _mm_sub_epi32(lstep3[61], lstep1[59]);
+          lstep2[60] = _mm_add_epi32(lstep1[58], lstep3[60]);
+          lstep2[61] = _mm_add_epi32(lstep1[59], lstep3[61]);
+          lstep2[62] = _mm_add_epi32(lstep1[56], lstep3[62]);
+          lstep2[63] = _mm_add_epi32(lstep1[57], lstep3[63]);
+        }
+        // stage 6
+        {
+          const __m128i k32_p28_p04 = pair_set_epi32(cospi_28_64, cospi_4_64);
+          const __m128i k32_p12_p20 = pair_set_epi32(cospi_12_64, cospi_20_64);
+          const __m128i k32_m20_p12 = pair_set_epi32(-cospi_20_64, cospi_12_64);
+          const __m128i k32_m04_p28 = pair_set_epi32(-cospi_4_64, cospi_28_64);
+
+          u[0] = _mm_unpacklo_epi32(lstep2[ 8], lstep2[14]);
+          u[1] = _mm_unpackhi_epi32(lstep2[ 8], lstep2[14]);
+          u[2] = _mm_unpacklo_epi32(lstep2[ 9], lstep2[15]);
+          u[3] = _mm_unpackhi_epi32(lstep2[ 9], lstep2[15]);
+          u[4] = _mm_unpacklo_epi32(lstep2[10], lstep2[12]);
+          u[5] = _mm_unpackhi_epi32(lstep2[10], lstep2[12]);
+          u[6] = _mm_unpacklo_epi32(lstep2[11], lstep2[13]);
+          u[7] = _mm_unpackhi_epi32(lstep2[11], lstep2[13]);
+          u[8] = _mm_unpacklo_epi32(lstep2[10], lstep2[12]);
+          u[9] = _mm_unpackhi_epi32(lstep2[10], lstep2[12]);
+          u[10] = _mm_unpacklo_epi32(lstep2[11], lstep2[13]);
+          u[11] = _mm_unpackhi_epi32(lstep2[11], lstep2[13]);
+          u[12] = _mm_unpacklo_epi32(lstep2[ 8], lstep2[14]);
+          u[13] = _mm_unpackhi_epi32(lstep2[ 8], lstep2[14]);
+          u[14] = _mm_unpacklo_epi32(lstep2[ 9], lstep2[15]);
+          u[15] = _mm_unpackhi_epi32(lstep2[ 9], lstep2[15]);
+
+          v[0] = k_madd_epi32(u[0], k32_p28_p04);
+          v[1] = k_madd_epi32(u[1], k32_p28_p04);
+          v[2] = k_madd_epi32(u[2], k32_p28_p04);
+          v[3] = k_madd_epi32(u[3], k32_p28_p04);
+          v[4] = k_madd_epi32(u[4], k32_p12_p20);
+          v[5] = k_madd_epi32(u[5], k32_p12_p20);
+          v[6] = k_madd_epi32(u[6], k32_p12_p20);
+          v[7] = k_madd_epi32(u[7], k32_p12_p20);
+          v[ 8] = k_madd_epi32(u[ 8], k32_m20_p12);
+          v[ 9] = k_madd_epi32(u[ 9], k32_m20_p12);
+          v[10] = k_madd_epi32(u[10], k32_m20_p12);
+          v[11] = k_madd_epi32(u[11], k32_m20_p12);
+          v[12] = k_madd_epi32(u[12], k32_m04_p28);
+          v[13] = k_madd_epi32(u[13], k32_m04_p28);
+          v[14] = k_madd_epi32(u[14], k32_m04_p28);
+          v[15] = k_madd_epi32(u[15], k32_m04_p28);
+
+#if DCT_HIGH_BIT_DEPTH
+          overflow = k_check_epi32_overflow_16(
+              &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+              &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+              &kZero);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          u[0] = k_packs_epi64(v[0], v[1]);
+          u[1] = k_packs_epi64(v[2], v[3]);
+          u[2] = k_packs_epi64(v[4], v[5]);
+          u[3] = k_packs_epi64(v[6], v[7]);
+          u[4] = k_packs_epi64(v[8], v[9]);
+          u[5] = k_packs_epi64(v[10], v[11]);
+          u[6] = k_packs_epi64(v[12], v[13]);
+          u[7] = k_packs_epi64(v[14], v[15]);
+
+          v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+          v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+          v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+          v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+          v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+          v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+          v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+          v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+          u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+          u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+          u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+          u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+          u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+          u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+          u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+          u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+
+          sign[0] = _mm_cmplt_epi32(u[0], kZero);
+          sign[1] = _mm_cmplt_epi32(u[1], kZero);
+          sign[2] = _mm_cmplt_epi32(u[2], kZero);
+          sign[3] = _mm_cmplt_epi32(u[3], kZero);
+          sign[4] = _mm_cmplt_epi32(u[4], kZero);
+          sign[5] = _mm_cmplt_epi32(u[5], kZero);
+          sign[6] = _mm_cmplt_epi32(u[6], kZero);
+          sign[7] = _mm_cmplt_epi32(u[7], kZero);
+
+          u[0] = _mm_sub_epi32(u[0], sign[0]);
+          u[1] = _mm_sub_epi32(u[1], sign[1]);
+          u[2] = _mm_sub_epi32(u[2], sign[2]);
+          u[3] = _mm_sub_epi32(u[3], sign[3]);
+          u[4] = _mm_sub_epi32(u[4], sign[4]);
+          u[5] = _mm_sub_epi32(u[5], sign[5]);
+          u[6] = _mm_sub_epi32(u[6], sign[6]);
+          u[7] = _mm_sub_epi32(u[7], sign[7]);
+
+          u[0] = _mm_add_epi32(u[0], K32One);
+          u[1] = _mm_add_epi32(u[1], K32One);
+          u[2] = _mm_add_epi32(u[2], K32One);
+          u[3] = _mm_add_epi32(u[3], K32One);
+          u[4] = _mm_add_epi32(u[4], K32One);
+          u[5] = _mm_add_epi32(u[5], K32One);
+          u[6] = _mm_add_epi32(u[6], K32One);
+          u[7] = _mm_add_epi32(u[7], K32One);
+
+          u[0] = _mm_srai_epi32(u[0], 2);
+          u[1] = _mm_srai_epi32(u[1], 2);
+          u[2] = _mm_srai_epi32(u[2], 2);
+          u[3] = _mm_srai_epi32(u[3], 2);
+          u[4] = _mm_srai_epi32(u[4], 2);
+          u[5] = _mm_srai_epi32(u[5], 2);
+          u[6] = _mm_srai_epi32(u[6], 2);
+          u[7] = _mm_srai_epi32(u[7], 2);
+
+          out[ 4] = _mm_packs_epi32(u[0], u[1]);
+          out[20] = _mm_packs_epi32(u[2], u[3]);
+          out[12] = _mm_packs_epi32(u[4], u[5]);
+          out[28] = _mm_packs_epi32(u[6], u[7]);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x4(&out[4], &out[20],
+                                             &out[12], &out[28]);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        {
+          lstep3[16] = _mm_add_epi32(lstep2[18], lstep1[16]);
+          lstep3[17] = _mm_add_epi32(lstep2[19], lstep1[17]);
+          lstep3[18] = _mm_sub_epi32(lstep1[16], lstep2[18]);
+          lstep3[19] = _mm_sub_epi32(lstep1[17], lstep2[19]);
+          lstep3[20] = _mm_sub_epi32(lstep1[22], lstep2[20]);
+          lstep3[21] = _mm_sub_epi32(lstep1[23], lstep2[21]);
+          lstep3[22] = _mm_add_epi32(lstep2[20], lstep1[22]);
+          lstep3[23] = _mm_add_epi32(lstep2[21], lstep1[23]);
+          lstep3[24] = _mm_add_epi32(lstep2[26], lstep1[24]);
+          lstep3[25] = _mm_add_epi32(lstep2[27], lstep1[25]);
+          lstep3[26] = _mm_sub_epi32(lstep1[24], lstep2[26]);
+          lstep3[27] = _mm_sub_epi32(lstep1[25], lstep2[27]);
+          lstep3[28] = _mm_sub_epi32(lstep1[30], lstep2[28]);
+          lstep3[29] = _mm_sub_epi32(lstep1[31], lstep2[29]);
+          lstep3[30] = _mm_add_epi32(lstep2[28], lstep1[30]);
+          lstep3[31] = _mm_add_epi32(lstep2[29], lstep1[31]);
+        }
+        {
+          const __m128i k32_m04_p28 = pair_set_epi32(-cospi_4_64, cospi_28_64);
+          const __m128i k32_m28_m04 = pair_set_epi32(-cospi_28_64, -cospi_4_64);
+          const __m128i k32_m20_p12 = pair_set_epi32(-cospi_20_64, cospi_12_64);
+          const __m128i k32_m12_m20 = pair_set_epi32(-cospi_12_64,
+                                                     -cospi_20_64);
+          const __m128i k32_p12_p20 = pair_set_epi32(cospi_12_64, cospi_20_64);
+          const __m128i k32_p28_p04 = pair_set_epi32(cospi_28_64, cospi_4_64);
+
+          u[ 0] = _mm_unpacklo_epi32(lstep2[34], lstep2[60]);
+          u[ 1] = _mm_unpackhi_epi32(lstep2[34], lstep2[60]);
+          u[ 2] = _mm_unpacklo_epi32(lstep2[35], lstep2[61]);
+          u[ 3] = _mm_unpackhi_epi32(lstep2[35], lstep2[61]);
+          u[ 4] = _mm_unpacklo_epi32(lstep2[36], lstep2[58]);
+          u[ 5] = _mm_unpackhi_epi32(lstep2[36], lstep2[58]);
+          u[ 6] = _mm_unpacklo_epi32(lstep2[37], lstep2[59]);
+          u[ 7] = _mm_unpackhi_epi32(lstep2[37], lstep2[59]);
+          u[ 8] = _mm_unpacklo_epi32(lstep2[42], lstep2[52]);
+          u[ 9] = _mm_unpackhi_epi32(lstep2[42], lstep2[52]);
+          u[10] = _mm_unpacklo_epi32(lstep2[43], lstep2[53]);
+          u[11] = _mm_unpackhi_epi32(lstep2[43], lstep2[53]);
+          u[12] = _mm_unpacklo_epi32(lstep2[44], lstep2[50]);
+          u[13] = _mm_unpackhi_epi32(lstep2[44], lstep2[50]);
+          u[14] = _mm_unpacklo_epi32(lstep2[45], lstep2[51]);
+          u[15] = _mm_unpackhi_epi32(lstep2[45], lstep2[51]);
+
+          v[ 0] = k_madd_epi32(u[ 0], k32_m04_p28);
+          v[ 1] = k_madd_epi32(u[ 1], k32_m04_p28);
+          v[ 2] = k_madd_epi32(u[ 2], k32_m04_p28);
+          v[ 3] = k_madd_epi32(u[ 3], k32_m04_p28);
+          v[ 4] = k_madd_epi32(u[ 4], k32_m28_m04);
+          v[ 5] = k_madd_epi32(u[ 5], k32_m28_m04);
+          v[ 6] = k_madd_epi32(u[ 6], k32_m28_m04);
+          v[ 7] = k_madd_epi32(u[ 7], k32_m28_m04);
+          v[ 8] = k_madd_epi32(u[ 8], k32_m20_p12);
+          v[ 9] = k_madd_epi32(u[ 9], k32_m20_p12);
+          v[10] = k_madd_epi32(u[10], k32_m20_p12);
+          v[11] = k_madd_epi32(u[11], k32_m20_p12);
+          v[12] = k_madd_epi32(u[12], k32_m12_m20);
+          v[13] = k_madd_epi32(u[13], k32_m12_m20);
+          v[14] = k_madd_epi32(u[14], k32_m12_m20);
+          v[15] = k_madd_epi32(u[15], k32_m12_m20);
+          v[16] = k_madd_epi32(u[12], k32_m20_p12);
+          v[17] = k_madd_epi32(u[13], k32_m20_p12);
+          v[18] = k_madd_epi32(u[14], k32_m20_p12);
+          v[19] = k_madd_epi32(u[15], k32_m20_p12);
+          v[20] = k_madd_epi32(u[ 8], k32_p12_p20);
+          v[21] = k_madd_epi32(u[ 9], k32_p12_p20);
+          v[22] = k_madd_epi32(u[10], k32_p12_p20);
+          v[23] = k_madd_epi32(u[11], k32_p12_p20);
+          v[24] = k_madd_epi32(u[ 4], k32_m04_p28);
+          v[25] = k_madd_epi32(u[ 5], k32_m04_p28);
+          v[26] = k_madd_epi32(u[ 6], k32_m04_p28);
+          v[27] = k_madd_epi32(u[ 7], k32_m04_p28);
+          v[28] = k_madd_epi32(u[ 0], k32_p28_p04);
+          v[29] = k_madd_epi32(u[ 1], k32_p28_p04);
+          v[30] = k_madd_epi32(u[ 2], k32_p28_p04);
+          v[31] = k_madd_epi32(u[ 3], k32_p28_p04);
+
+#if DCT_HIGH_BIT_DEPTH
+          overflow = k_check_epi32_overflow_32(
+              &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+              &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+              &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+              &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+              &kZero);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+          u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+          u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+          u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+          u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+          u[ 5] = k_packs_epi64(v[10], v[11]);
+          u[ 6] = k_packs_epi64(v[12], v[13]);
+          u[ 7] = k_packs_epi64(v[14], v[15]);
+          u[ 8] = k_packs_epi64(v[16], v[17]);
+          u[ 9] = k_packs_epi64(v[18], v[19]);
+          u[10] = k_packs_epi64(v[20], v[21]);
+          u[11] = k_packs_epi64(v[22], v[23]);
+          u[12] = k_packs_epi64(v[24], v[25]);
+          u[13] = k_packs_epi64(v[26], v[27]);
+          u[14] = k_packs_epi64(v[28], v[29]);
+          u[15] = k_packs_epi64(v[30], v[31]);
+
+          v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+          v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+          v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+          v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+          v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+          v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+          v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+          v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+          v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+          v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+          v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+          v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+          v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+          v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+          v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+          v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+          lstep3[34] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+          lstep3[35] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+          lstep3[36] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+          lstep3[37] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+          lstep3[42] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+          lstep3[43] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+          lstep3[44] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+          lstep3[45] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+          lstep3[50] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+          lstep3[51] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+          lstep3[52] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+          lstep3[53] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+          lstep3[58] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+          lstep3[59] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+          lstep3[60] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+          lstep3[61] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+        }
+        // stage 7
+        {
+          const __m128i k32_p30_p02 = pair_set_epi32(cospi_30_64, cospi_2_64);
+          const __m128i k32_p14_p18 = pair_set_epi32(cospi_14_64, cospi_18_64);
+          const __m128i k32_p22_p10 = pair_set_epi32(cospi_22_64, cospi_10_64);
+          const __m128i k32_p06_p26 = pair_set_epi32(cospi_6_64,  cospi_26_64);
+          const __m128i k32_m26_p06 = pair_set_epi32(-cospi_26_64, cospi_6_64);
+          const __m128i k32_m10_p22 = pair_set_epi32(-cospi_10_64, cospi_22_64);
+          const __m128i k32_m18_p14 = pair_set_epi32(-cospi_18_64, cospi_14_64);
+          const __m128i k32_m02_p30 = pair_set_epi32(-cospi_2_64, cospi_30_64);
+
+          u[ 0] = _mm_unpacklo_epi32(lstep3[16], lstep3[30]);
+          u[ 1] = _mm_unpackhi_epi32(lstep3[16], lstep3[30]);
+          u[ 2] = _mm_unpacklo_epi32(lstep3[17], lstep3[31]);
+          u[ 3] = _mm_unpackhi_epi32(lstep3[17], lstep3[31]);
+          u[ 4] = _mm_unpacklo_epi32(lstep3[18], lstep3[28]);
+          u[ 5] = _mm_unpackhi_epi32(lstep3[18], lstep3[28]);
+          u[ 6] = _mm_unpacklo_epi32(lstep3[19], lstep3[29]);
+          u[ 7] = _mm_unpackhi_epi32(lstep3[19], lstep3[29]);
+          u[ 8] = _mm_unpacklo_epi32(lstep3[20], lstep3[26]);
+          u[ 9] = _mm_unpackhi_epi32(lstep3[20], lstep3[26]);
+          u[10] = _mm_unpacklo_epi32(lstep3[21], lstep3[27]);
+          u[11] = _mm_unpackhi_epi32(lstep3[21], lstep3[27]);
+          u[12] = _mm_unpacklo_epi32(lstep3[22], lstep3[24]);
+          u[13] = _mm_unpackhi_epi32(lstep3[22], lstep3[24]);
+          u[14] = _mm_unpacklo_epi32(lstep3[23], lstep3[25]);
+          u[15] = _mm_unpackhi_epi32(lstep3[23], lstep3[25]);
+
+          v[ 0] = k_madd_epi32(u[ 0], k32_p30_p02);
+          v[ 1] = k_madd_epi32(u[ 1], k32_p30_p02);
+          v[ 2] = k_madd_epi32(u[ 2], k32_p30_p02);
+          v[ 3] = k_madd_epi32(u[ 3], k32_p30_p02);
+          v[ 4] = k_madd_epi32(u[ 4], k32_p14_p18);
+          v[ 5] = k_madd_epi32(u[ 5], k32_p14_p18);
+          v[ 6] = k_madd_epi32(u[ 6], k32_p14_p18);
+          v[ 7] = k_madd_epi32(u[ 7], k32_p14_p18);
+          v[ 8] = k_madd_epi32(u[ 8], k32_p22_p10);
+          v[ 9] = k_madd_epi32(u[ 9], k32_p22_p10);
+          v[10] = k_madd_epi32(u[10], k32_p22_p10);
+          v[11] = k_madd_epi32(u[11], k32_p22_p10);
+          v[12] = k_madd_epi32(u[12], k32_p06_p26);
+          v[13] = k_madd_epi32(u[13], k32_p06_p26);
+          v[14] = k_madd_epi32(u[14], k32_p06_p26);
+          v[15] = k_madd_epi32(u[15], k32_p06_p26);
+          v[16] = k_madd_epi32(u[12], k32_m26_p06);
+          v[17] = k_madd_epi32(u[13], k32_m26_p06);
+          v[18] = k_madd_epi32(u[14], k32_m26_p06);
+          v[19] = k_madd_epi32(u[15], k32_m26_p06);
+          v[20] = k_madd_epi32(u[ 8], k32_m10_p22);
+          v[21] = k_madd_epi32(u[ 9], k32_m10_p22);
+          v[22] = k_madd_epi32(u[10], k32_m10_p22);
+          v[23] = k_madd_epi32(u[11], k32_m10_p22);
+          v[24] = k_madd_epi32(u[ 4], k32_m18_p14);
+          v[25] = k_madd_epi32(u[ 5], k32_m18_p14);
+          v[26] = k_madd_epi32(u[ 6], k32_m18_p14);
+          v[27] = k_madd_epi32(u[ 7], k32_m18_p14);
+          v[28] = k_madd_epi32(u[ 0], k32_m02_p30);
+          v[29] = k_madd_epi32(u[ 1], k32_m02_p30);
+          v[30] = k_madd_epi32(u[ 2], k32_m02_p30);
+          v[31] = k_madd_epi32(u[ 3], k32_m02_p30);
+
+#if DCT_HIGH_BIT_DEPTH
+          overflow = k_check_epi32_overflow_32(
+              &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+              &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+              &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+              &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+              &kZero);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+          u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+          u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+          u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+          u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+          u[ 5] = k_packs_epi64(v[10], v[11]);
+          u[ 6] = k_packs_epi64(v[12], v[13]);
+          u[ 7] = k_packs_epi64(v[14], v[15]);
+          u[ 8] = k_packs_epi64(v[16], v[17]);
+          u[ 9] = k_packs_epi64(v[18], v[19]);
+          u[10] = k_packs_epi64(v[20], v[21]);
+          u[11] = k_packs_epi64(v[22], v[23]);
+          u[12] = k_packs_epi64(v[24], v[25]);
+          u[13] = k_packs_epi64(v[26], v[27]);
+          u[14] = k_packs_epi64(v[28], v[29]);
+          u[15] = k_packs_epi64(v[30], v[31]);
+
+          v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+          v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+          v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+          v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+          v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+          v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+          v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+          v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+          v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+          v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+          v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+          v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+          v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+          v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+          v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+          v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+          u[ 0] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+          u[ 1] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+          u[ 2] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+          u[ 3] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+          u[ 4] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+          u[ 5] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+          u[ 6] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+          u[ 7] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+          u[ 8] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+          u[ 9] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+          u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+          u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+          u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+          u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+          u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+          u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+
+          v[ 0] = _mm_cmplt_epi32(u[ 0], kZero);
+          v[ 1] = _mm_cmplt_epi32(u[ 1], kZero);
+          v[ 2] = _mm_cmplt_epi32(u[ 2], kZero);
+          v[ 3] = _mm_cmplt_epi32(u[ 3], kZero);
+          v[ 4] = _mm_cmplt_epi32(u[ 4], kZero);
+          v[ 5] = _mm_cmplt_epi32(u[ 5], kZero);
+          v[ 6] = _mm_cmplt_epi32(u[ 6], kZero);
+          v[ 7] = _mm_cmplt_epi32(u[ 7], kZero);
+          v[ 8] = _mm_cmplt_epi32(u[ 8], kZero);
+          v[ 9] = _mm_cmplt_epi32(u[ 9], kZero);
+          v[10] = _mm_cmplt_epi32(u[10], kZero);
+          v[11] = _mm_cmplt_epi32(u[11], kZero);
+          v[12] = _mm_cmplt_epi32(u[12], kZero);
+          v[13] = _mm_cmplt_epi32(u[13], kZero);
+          v[14] = _mm_cmplt_epi32(u[14], kZero);
+          v[15] = _mm_cmplt_epi32(u[15], kZero);
+
+          u[ 0] = _mm_sub_epi32(u[ 0], v[ 0]);
+          u[ 1] = _mm_sub_epi32(u[ 1], v[ 1]);
+          u[ 2] = _mm_sub_epi32(u[ 2], v[ 2]);
+          u[ 3] = _mm_sub_epi32(u[ 3], v[ 3]);
+          u[ 4] = _mm_sub_epi32(u[ 4], v[ 4]);
+          u[ 5] = _mm_sub_epi32(u[ 5], v[ 5]);
+          u[ 6] = _mm_sub_epi32(u[ 6], v[ 6]);
+          u[ 7] = _mm_sub_epi32(u[ 7], v[ 7]);
+          u[ 8] = _mm_sub_epi32(u[ 8], v[ 8]);
+          u[ 9] = _mm_sub_epi32(u[ 9], v[ 9]);
+          u[10] = _mm_sub_epi32(u[10], v[10]);
+          u[11] = _mm_sub_epi32(u[11], v[11]);
+          u[12] = _mm_sub_epi32(u[12], v[12]);
+          u[13] = _mm_sub_epi32(u[13], v[13]);
+          u[14] = _mm_sub_epi32(u[14], v[14]);
+          u[15] = _mm_sub_epi32(u[15], v[15]);
+
+          v[ 0] = _mm_add_epi32(u[ 0], K32One);
+          v[ 1] = _mm_add_epi32(u[ 1], K32One);
+          v[ 2] = _mm_add_epi32(u[ 2], K32One);
+          v[ 3] = _mm_add_epi32(u[ 3], K32One);
+          v[ 4] = _mm_add_epi32(u[ 4], K32One);
+          v[ 5] = _mm_add_epi32(u[ 5], K32One);
+          v[ 6] = _mm_add_epi32(u[ 6], K32One);
+          v[ 7] = _mm_add_epi32(u[ 7], K32One);
+          v[ 8] = _mm_add_epi32(u[ 8], K32One);
+          v[ 9] = _mm_add_epi32(u[ 9], K32One);
+          v[10] = _mm_add_epi32(u[10], K32One);
+          v[11] = _mm_add_epi32(u[11], K32One);
+          v[12] = _mm_add_epi32(u[12], K32One);
+          v[13] = _mm_add_epi32(u[13], K32One);
+          v[14] = _mm_add_epi32(u[14], K32One);
+          v[15] = _mm_add_epi32(u[15], K32One);
+
+          u[ 0] = _mm_srai_epi32(v[ 0], 2);
+          u[ 1] = _mm_srai_epi32(v[ 1], 2);
+          u[ 2] = _mm_srai_epi32(v[ 2], 2);
+          u[ 3] = _mm_srai_epi32(v[ 3], 2);
+          u[ 4] = _mm_srai_epi32(v[ 4], 2);
+          u[ 5] = _mm_srai_epi32(v[ 5], 2);
+          u[ 6] = _mm_srai_epi32(v[ 6], 2);
+          u[ 7] = _mm_srai_epi32(v[ 7], 2);
+          u[ 8] = _mm_srai_epi32(v[ 8], 2);
+          u[ 9] = _mm_srai_epi32(v[ 9], 2);
+          u[10] = _mm_srai_epi32(v[10], 2);
+          u[11] = _mm_srai_epi32(v[11], 2);
+          u[12] = _mm_srai_epi32(v[12], 2);
+          u[13] = _mm_srai_epi32(v[13], 2);
+          u[14] = _mm_srai_epi32(v[14], 2);
+          u[15] = _mm_srai_epi32(v[15], 2);
+
+          out[ 2] = _mm_packs_epi32(u[0], u[1]);
+          out[18] = _mm_packs_epi32(u[2], u[3]);
+          out[10] = _mm_packs_epi32(u[4], u[5]);
+          out[26] = _mm_packs_epi32(u[6], u[7]);
+          out[ 6] = _mm_packs_epi32(u[8], u[9]);
+          out[22] = _mm_packs_epi32(u[10], u[11]);
+          out[14] = _mm_packs_epi32(u[12], u[13]);
+          out[30] = _mm_packs_epi32(u[14], u[15]);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x8(&out[2], &out[18], &out[10],
+                                             &out[26], &out[6], &out[22],
+                                             &out[14], &out[30]);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        {
+          lstep1[32] = _mm_add_epi32(lstep3[34], lstep2[32]);
+          lstep1[33] = _mm_add_epi32(lstep3[35], lstep2[33]);
+          lstep1[34] = _mm_sub_epi32(lstep2[32], lstep3[34]);
+          lstep1[35] = _mm_sub_epi32(lstep2[33], lstep3[35]);
+          lstep1[36] = _mm_sub_epi32(lstep2[38], lstep3[36]);
+          lstep1[37] = _mm_sub_epi32(lstep2[39], lstep3[37]);
+          lstep1[38] = _mm_add_epi32(lstep3[36], lstep2[38]);
+          lstep1[39] = _mm_add_epi32(lstep3[37], lstep2[39]);
+          lstep1[40] = _mm_add_epi32(lstep3[42], lstep2[40]);
+          lstep1[41] = _mm_add_epi32(lstep3[43], lstep2[41]);
+          lstep1[42] = _mm_sub_epi32(lstep2[40], lstep3[42]);
+          lstep1[43] = _mm_sub_epi32(lstep2[41], lstep3[43]);
+          lstep1[44] = _mm_sub_epi32(lstep2[46], lstep3[44]);
+          lstep1[45] = _mm_sub_epi32(lstep2[47], lstep3[45]);
+          lstep1[46] = _mm_add_epi32(lstep3[44], lstep2[46]);
+          lstep1[47] = _mm_add_epi32(lstep3[45], lstep2[47]);
+          lstep1[48] = _mm_add_epi32(lstep3[50], lstep2[48]);
+          lstep1[49] = _mm_add_epi32(lstep3[51], lstep2[49]);
+          lstep1[50] = _mm_sub_epi32(lstep2[48], lstep3[50]);
+          lstep1[51] = _mm_sub_epi32(lstep2[49], lstep3[51]);
+          lstep1[52] = _mm_sub_epi32(lstep2[54], lstep3[52]);
+          lstep1[53] = _mm_sub_epi32(lstep2[55], lstep3[53]);
+          lstep1[54] = _mm_add_epi32(lstep3[52], lstep2[54]);
+          lstep1[55] = _mm_add_epi32(lstep3[53], lstep2[55]);
+          lstep1[56] = _mm_add_epi32(lstep3[58], lstep2[56]);
+          lstep1[57] = _mm_add_epi32(lstep3[59], lstep2[57]);
+          lstep1[58] = _mm_sub_epi32(lstep2[56], lstep3[58]);
+          lstep1[59] = _mm_sub_epi32(lstep2[57], lstep3[59]);
+          lstep1[60] = _mm_sub_epi32(lstep2[62], lstep3[60]);
+          lstep1[61] = _mm_sub_epi32(lstep2[63], lstep3[61]);
+          lstep1[62] = _mm_add_epi32(lstep3[60], lstep2[62]);
+          lstep1[63] = _mm_add_epi32(lstep3[61], lstep2[63]);
+        }
+        // stage 8
+        {
+          const __m128i k32_p31_p01 = pair_set_epi32(cospi_31_64, cospi_1_64);
+          const __m128i k32_p15_p17 = pair_set_epi32(cospi_15_64, cospi_17_64);
+          const __m128i k32_p23_p09 = pair_set_epi32(cospi_23_64, cospi_9_64);
+          const __m128i k32_p07_p25 = pair_set_epi32(cospi_7_64, cospi_25_64);
+          const __m128i k32_m25_p07 = pair_set_epi32(-cospi_25_64, cospi_7_64);
+          const __m128i k32_m09_p23 = pair_set_epi32(-cospi_9_64, cospi_23_64);
+          const __m128i k32_m17_p15 = pair_set_epi32(-cospi_17_64, cospi_15_64);
+          const __m128i k32_m01_p31 = pair_set_epi32(-cospi_1_64, cospi_31_64);
+
+          u[ 0] = _mm_unpacklo_epi32(lstep1[32], lstep1[62]);
+          u[ 1] = _mm_unpackhi_epi32(lstep1[32], lstep1[62]);
+          u[ 2] = _mm_unpacklo_epi32(lstep1[33], lstep1[63]);
+          u[ 3] = _mm_unpackhi_epi32(lstep1[33], lstep1[63]);
+          u[ 4] = _mm_unpacklo_epi32(lstep1[34], lstep1[60]);
+          u[ 5] = _mm_unpackhi_epi32(lstep1[34], lstep1[60]);
+          u[ 6] = _mm_unpacklo_epi32(lstep1[35], lstep1[61]);
+          u[ 7] = _mm_unpackhi_epi32(lstep1[35], lstep1[61]);
+          u[ 8] = _mm_unpacklo_epi32(lstep1[36], lstep1[58]);
+          u[ 9] = _mm_unpackhi_epi32(lstep1[36], lstep1[58]);
+          u[10] = _mm_unpacklo_epi32(lstep1[37], lstep1[59]);
+          u[11] = _mm_unpackhi_epi32(lstep1[37], lstep1[59]);
+          u[12] = _mm_unpacklo_epi32(lstep1[38], lstep1[56]);
+          u[13] = _mm_unpackhi_epi32(lstep1[38], lstep1[56]);
+          u[14] = _mm_unpacklo_epi32(lstep1[39], lstep1[57]);
+          u[15] = _mm_unpackhi_epi32(lstep1[39], lstep1[57]);
+
+          v[ 0] = k_madd_epi32(u[ 0], k32_p31_p01);
+          v[ 1] = k_madd_epi32(u[ 1], k32_p31_p01);
+          v[ 2] = k_madd_epi32(u[ 2], k32_p31_p01);
+          v[ 3] = k_madd_epi32(u[ 3], k32_p31_p01);
+          v[ 4] = k_madd_epi32(u[ 4], k32_p15_p17);
+          v[ 5] = k_madd_epi32(u[ 5], k32_p15_p17);
+          v[ 6] = k_madd_epi32(u[ 6], k32_p15_p17);
+          v[ 7] = k_madd_epi32(u[ 7], k32_p15_p17);
+          v[ 8] = k_madd_epi32(u[ 8], k32_p23_p09);
+          v[ 9] = k_madd_epi32(u[ 9], k32_p23_p09);
+          v[10] = k_madd_epi32(u[10], k32_p23_p09);
+          v[11] = k_madd_epi32(u[11], k32_p23_p09);
+          v[12] = k_madd_epi32(u[12], k32_p07_p25);
+          v[13] = k_madd_epi32(u[13], k32_p07_p25);
+          v[14] = k_madd_epi32(u[14], k32_p07_p25);
+          v[15] = k_madd_epi32(u[15], k32_p07_p25);
+          v[16] = k_madd_epi32(u[12], k32_m25_p07);
+          v[17] = k_madd_epi32(u[13], k32_m25_p07);
+          v[18] = k_madd_epi32(u[14], k32_m25_p07);
+          v[19] = k_madd_epi32(u[15], k32_m25_p07);
+          v[20] = k_madd_epi32(u[ 8], k32_m09_p23);
+          v[21] = k_madd_epi32(u[ 9], k32_m09_p23);
+          v[22] = k_madd_epi32(u[10], k32_m09_p23);
+          v[23] = k_madd_epi32(u[11], k32_m09_p23);
+          v[24] = k_madd_epi32(u[ 4], k32_m17_p15);
+          v[25] = k_madd_epi32(u[ 5], k32_m17_p15);
+          v[26] = k_madd_epi32(u[ 6], k32_m17_p15);
+          v[27] = k_madd_epi32(u[ 7], k32_m17_p15);
+          v[28] = k_madd_epi32(u[ 0], k32_m01_p31);
+          v[29] = k_madd_epi32(u[ 1], k32_m01_p31);
+          v[30] = k_madd_epi32(u[ 2], k32_m01_p31);
+          v[31] = k_madd_epi32(u[ 3], k32_m01_p31);
+
+#if DCT_HIGH_BIT_DEPTH
+          overflow = k_check_epi32_overflow_32(
+              &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+              &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+              &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+              &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+              &kZero);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+          u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+          u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+          u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+          u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+          u[ 5] = k_packs_epi64(v[10], v[11]);
+          u[ 6] = k_packs_epi64(v[12], v[13]);
+          u[ 7] = k_packs_epi64(v[14], v[15]);
+          u[ 8] = k_packs_epi64(v[16], v[17]);
+          u[ 9] = k_packs_epi64(v[18], v[19]);
+          u[10] = k_packs_epi64(v[20], v[21]);
+          u[11] = k_packs_epi64(v[22], v[23]);
+          u[12] = k_packs_epi64(v[24], v[25]);
+          u[13] = k_packs_epi64(v[26], v[27]);
+          u[14] = k_packs_epi64(v[28], v[29]);
+          u[15] = k_packs_epi64(v[30], v[31]);
+
+          v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+          v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+          v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+          v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+          v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+          v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+          v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+          v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+          v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+          v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+          v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+          v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+          v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+          v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+          v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+          v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+          u[ 0] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+          u[ 1] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+          u[ 2] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+          u[ 3] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+          u[ 4] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+          u[ 5] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+          u[ 6] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+          u[ 7] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+          u[ 8] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+          u[ 9] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+          u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+          u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+          u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+          u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+          u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+          u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+
+          v[ 0] = _mm_cmplt_epi32(u[ 0], kZero);
+          v[ 1] = _mm_cmplt_epi32(u[ 1], kZero);
+          v[ 2] = _mm_cmplt_epi32(u[ 2], kZero);
+          v[ 3] = _mm_cmplt_epi32(u[ 3], kZero);
+          v[ 4] = _mm_cmplt_epi32(u[ 4], kZero);
+          v[ 5] = _mm_cmplt_epi32(u[ 5], kZero);
+          v[ 6] = _mm_cmplt_epi32(u[ 6], kZero);
+          v[ 7] = _mm_cmplt_epi32(u[ 7], kZero);
+          v[ 8] = _mm_cmplt_epi32(u[ 8], kZero);
+          v[ 9] = _mm_cmplt_epi32(u[ 9], kZero);
+          v[10] = _mm_cmplt_epi32(u[10], kZero);
+          v[11] = _mm_cmplt_epi32(u[11], kZero);
+          v[12] = _mm_cmplt_epi32(u[12], kZero);
+          v[13] = _mm_cmplt_epi32(u[13], kZero);
+          v[14] = _mm_cmplt_epi32(u[14], kZero);
+          v[15] = _mm_cmplt_epi32(u[15], kZero);
+
+          u[ 0] = _mm_sub_epi32(u[ 0], v[ 0]);
+          u[ 1] = _mm_sub_epi32(u[ 1], v[ 1]);
+          u[ 2] = _mm_sub_epi32(u[ 2], v[ 2]);
+          u[ 3] = _mm_sub_epi32(u[ 3], v[ 3]);
+          u[ 4] = _mm_sub_epi32(u[ 4], v[ 4]);
+          u[ 5] = _mm_sub_epi32(u[ 5], v[ 5]);
+          u[ 6] = _mm_sub_epi32(u[ 6], v[ 6]);
+          u[ 7] = _mm_sub_epi32(u[ 7], v[ 7]);
+          u[ 8] = _mm_sub_epi32(u[ 8], v[ 8]);
+          u[ 9] = _mm_sub_epi32(u[ 9], v[ 9]);
+          u[10] = _mm_sub_epi32(u[10], v[10]);
+          u[11] = _mm_sub_epi32(u[11], v[11]);
+          u[12] = _mm_sub_epi32(u[12], v[12]);
+          u[13] = _mm_sub_epi32(u[13], v[13]);
+          u[14] = _mm_sub_epi32(u[14], v[14]);
+          u[15] = _mm_sub_epi32(u[15], v[15]);
+
+          v[0] = _mm_add_epi32(u[0], K32One);
+          v[1] = _mm_add_epi32(u[1], K32One);
+          v[2] = _mm_add_epi32(u[2], K32One);
+          v[3] = _mm_add_epi32(u[3], K32One);
+          v[4] = _mm_add_epi32(u[4], K32One);
+          v[5] = _mm_add_epi32(u[5], K32One);
+          v[6] = _mm_add_epi32(u[6], K32One);
+          v[7] = _mm_add_epi32(u[7], K32One);
+          v[8] = _mm_add_epi32(u[8], K32One);
+          v[9] = _mm_add_epi32(u[9], K32One);
+          v[10] = _mm_add_epi32(u[10], K32One);
+          v[11] = _mm_add_epi32(u[11], K32One);
+          v[12] = _mm_add_epi32(u[12], K32One);
+          v[13] = _mm_add_epi32(u[13], K32One);
+          v[14] = _mm_add_epi32(u[14], K32One);
+          v[15] = _mm_add_epi32(u[15], K32One);
+
+          u[0] = _mm_srai_epi32(v[0], 2);
+          u[1] = _mm_srai_epi32(v[1], 2);
+          u[2] = _mm_srai_epi32(v[2], 2);
+          u[3] = _mm_srai_epi32(v[3], 2);
+          u[4] = _mm_srai_epi32(v[4], 2);
+          u[5] = _mm_srai_epi32(v[5], 2);
+          u[6] = _mm_srai_epi32(v[6], 2);
+          u[7] = _mm_srai_epi32(v[7], 2);
+          u[8] = _mm_srai_epi32(v[8], 2);
+          u[9] = _mm_srai_epi32(v[9], 2);
+          u[10] = _mm_srai_epi32(v[10], 2);
+          u[11] = _mm_srai_epi32(v[11], 2);
+          u[12] = _mm_srai_epi32(v[12], 2);
+          u[13] = _mm_srai_epi32(v[13], 2);
+          u[14] = _mm_srai_epi32(v[14], 2);
+          u[15] = _mm_srai_epi32(v[15], 2);
+
+          out[ 1] = _mm_packs_epi32(u[0], u[1]);
+          out[17] = _mm_packs_epi32(u[2], u[3]);
+          out[ 9] = _mm_packs_epi32(u[4], u[5]);
+          out[25] = _mm_packs_epi32(u[6], u[7]);
+          out[ 7] = _mm_packs_epi32(u[8], u[9]);
+          out[23] = _mm_packs_epi32(u[10], u[11]);
+          out[15] = _mm_packs_epi32(u[12], u[13]);
+          out[31] = _mm_packs_epi32(u[14], u[15]);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x8(&out[1], &out[17], &out[9],
+                                             &out[25], &out[7], &out[23],
+                                             &out[15], &out[31]);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        {
+          const __m128i k32_p27_p05 = pair_set_epi32(cospi_27_64, cospi_5_64);
+          const __m128i k32_p11_p21 = pair_set_epi32(cospi_11_64, cospi_21_64);
+          const __m128i k32_p19_p13 = pair_set_epi32(cospi_19_64, cospi_13_64);
+          const __m128i k32_p03_p29 = pair_set_epi32(cospi_3_64, cospi_29_64);
+          const __m128i k32_m29_p03 = pair_set_epi32(-cospi_29_64, cospi_3_64);
+          const __m128i k32_m13_p19 = pair_set_epi32(-cospi_13_64, cospi_19_64);
+          const __m128i k32_m21_p11 = pair_set_epi32(-cospi_21_64, cospi_11_64);
+          const __m128i k32_m05_p27 = pair_set_epi32(-cospi_5_64, cospi_27_64);
+
+          u[ 0] = _mm_unpacklo_epi32(lstep1[40], lstep1[54]);
+          u[ 1] = _mm_unpackhi_epi32(lstep1[40], lstep1[54]);
+          u[ 2] = _mm_unpacklo_epi32(lstep1[41], lstep1[55]);
+          u[ 3] = _mm_unpackhi_epi32(lstep1[41], lstep1[55]);
+          u[ 4] = _mm_unpacklo_epi32(lstep1[42], lstep1[52]);
+          u[ 5] = _mm_unpackhi_epi32(lstep1[42], lstep1[52]);
+          u[ 6] = _mm_unpacklo_epi32(lstep1[43], lstep1[53]);
+          u[ 7] = _mm_unpackhi_epi32(lstep1[43], lstep1[53]);
+          u[ 8] = _mm_unpacklo_epi32(lstep1[44], lstep1[50]);
+          u[ 9] = _mm_unpackhi_epi32(lstep1[44], lstep1[50]);
+          u[10] = _mm_unpacklo_epi32(lstep1[45], lstep1[51]);
+          u[11] = _mm_unpackhi_epi32(lstep1[45], lstep1[51]);
+          u[12] = _mm_unpacklo_epi32(lstep1[46], lstep1[48]);
+          u[13] = _mm_unpackhi_epi32(lstep1[46], lstep1[48]);
+          u[14] = _mm_unpacklo_epi32(lstep1[47], lstep1[49]);
+          u[15] = _mm_unpackhi_epi32(lstep1[47], lstep1[49]);
+
+          v[ 0] = k_madd_epi32(u[ 0], k32_p27_p05);
+          v[ 1] = k_madd_epi32(u[ 1], k32_p27_p05);
+          v[ 2] = k_madd_epi32(u[ 2], k32_p27_p05);
+          v[ 3] = k_madd_epi32(u[ 3], k32_p27_p05);
+          v[ 4] = k_madd_epi32(u[ 4], k32_p11_p21);
+          v[ 5] = k_madd_epi32(u[ 5], k32_p11_p21);
+          v[ 6] = k_madd_epi32(u[ 6], k32_p11_p21);
+          v[ 7] = k_madd_epi32(u[ 7], k32_p11_p21);
+          v[ 8] = k_madd_epi32(u[ 8], k32_p19_p13);
+          v[ 9] = k_madd_epi32(u[ 9], k32_p19_p13);
+          v[10] = k_madd_epi32(u[10], k32_p19_p13);
+          v[11] = k_madd_epi32(u[11], k32_p19_p13);
+          v[12] = k_madd_epi32(u[12], k32_p03_p29);
+          v[13] = k_madd_epi32(u[13], k32_p03_p29);
+          v[14] = k_madd_epi32(u[14], k32_p03_p29);
+          v[15] = k_madd_epi32(u[15], k32_p03_p29);
+          v[16] = k_madd_epi32(u[12], k32_m29_p03);
+          v[17] = k_madd_epi32(u[13], k32_m29_p03);
+          v[18] = k_madd_epi32(u[14], k32_m29_p03);
+          v[19] = k_madd_epi32(u[15], k32_m29_p03);
+          v[20] = k_madd_epi32(u[ 8], k32_m13_p19);
+          v[21] = k_madd_epi32(u[ 9], k32_m13_p19);
+          v[22] = k_madd_epi32(u[10], k32_m13_p19);
+          v[23] = k_madd_epi32(u[11], k32_m13_p19);
+          v[24] = k_madd_epi32(u[ 4], k32_m21_p11);
+          v[25] = k_madd_epi32(u[ 5], k32_m21_p11);
+          v[26] = k_madd_epi32(u[ 6], k32_m21_p11);
+          v[27] = k_madd_epi32(u[ 7], k32_m21_p11);
+          v[28] = k_madd_epi32(u[ 0], k32_m05_p27);
+          v[29] = k_madd_epi32(u[ 1], k32_m05_p27);
+          v[30] = k_madd_epi32(u[ 2], k32_m05_p27);
+          v[31] = k_madd_epi32(u[ 3], k32_m05_p27);
+
+#if DCT_HIGH_BIT_DEPTH
+          overflow = k_check_epi32_overflow_32(
+              &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+              &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+              &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+              &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+              &kZero);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+          u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+          u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+          u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+          u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+          u[ 5] = k_packs_epi64(v[10], v[11]);
+          u[ 6] = k_packs_epi64(v[12], v[13]);
+          u[ 7] = k_packs_epi64(v[14], v[15]);
+          u[ 8] = k_packs_epi64(v[16], v[17]);
+          u[ 9] = k_packs_epi64(v[18], v[19]);
+          u[10] = k_packs_epi64(v[20], v[21]);
+          u[11] = k_packs_epi64(v[22], v[23]);
+          u[12] = k_packs_epi64(v[24], v[25]);
+          u[13] = k_packs_epi64(v[26], v[27]);
+          u[14] = k_packs_epi64(v[28], v[29]);
+          u[15] = k_packs_epi64(v[30], v[31]);
+
+          v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+          v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+          v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+          v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+          v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+          v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+          v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+          v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+          v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+          v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+          v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+          v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+          v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+          v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+          v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+          v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+          u[ 0] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+          u[ 1] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+          u[ 2] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+          u[ 3] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+          u[ 4] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+          u[ 5] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+          u[ 6] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+          u[ 7] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+          u[ 8] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+          u[ 9] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+          u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+          u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+          u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+          u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+          u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+          u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+
+          v[ 0] = _mm_cmplt_epi32(u[ 0], kZero);
+          v[ 1] = _mm_cmplt_epi32(u[ 1], kZero);
+          v[ 2] = _mm_cmplt_epi32(u[ 2], kZero);
+          v[ 3] = _mm_cmplt_epi32(u[ 3], kZero);
+          v[ 4] = _mm_cmplt_epi32(u[ 4], kZero);
+          v[ 5] = _mm_cmplt_epi32(u[ 5], kZero);
+          v[ 6] = _mm_cmplt_epi32(u[ 6], kZero);
+          v[ 7] = _mm_cmplt_epi32(u[ 7], kZero);
+          v[ 8] = _mm_cmplt_epi32(u[ 8], kZero);
+          v[ 9] = _mm_cmplt_epi32(u[ 9], kZero);
+          v[10] = _mm_cmplt_epi32(u[10], kZero);
+          v[11] = _mm_cmplt_epi32(u[11], kZero);
+          v[12] = _mm_cmplt_epi32(u[12], kZero);
+          v[13] = _mm_cmplt_epi32(u[13], kZero);
+          v[14] = _mm_cmplt_epi32(u[14], kZero);
+          v[15] = _mm_cmplt_epi32(u[15], kZero);
+
+          u[ 0] = _mm_sub_epi32(u[ 0], v[ 0]);
+          u[ 1] = _mm_sub_epi32(u[ 1], v[ 1]);
+          u[ 2] = _mm_sub_epi32(u[ 2], v[ 2]);
+          u[ 3] = _mm_sub_epi32(u[ 3], v[ 3]);
+          u[ 4] = _mm_sub_epi32(u[ 4], v[ 4]);
+          u[ 5] = _mm_sub_epi32(u[ 5], v[ 5]);
+          u[ 6] = _mm_sub_epi32(u[ 6], v[ 6]);
+          u[ 7] = _mm_sub_epi32(u[ 7], v[ 7]);
+          u[ 8] = _mm_sub_epi32(u[ 8], v[ 8]);
+          u[ 9] = _mm_sub_epi32(u[ 9], v[ 9]);
+          u[10] = _mm_sub_epi32(u[10], v[10]);
+          u[11] = _mm_sub_epi32(u[11], v[11]);
+          u[12] = _mm_sub_epi32(u[12], v[12]);
+          u[13] = _mm_sub_epi32(u[13], v[13]);
+          u[14] = _mm_sub_epi32(u[14], v[14]);
+          u[15] = _mm_sub_epi32(u[15], v[15]);
+
+          v[0] = _mm_add_epi32(u[0], K32One);
+          v[1] = _mm_add_epi32(u[1], K32One);
+          v[2] = _mm_add_epi32(u[2], K32One);
+          v[3] = _mm_add_epi32(u[3], K32One);
+          v[4] = _mm_add_epi32(u[4], K32One);
+          v[5] = _mm_add_epi32(u[5], K32One);
+          v[6] = _mm_add_epi32(u[6], K32One);
+          v[7] = _mm_add_epi32(u[7], K32One);
+          v[8] = _mm_add_epi32(u[8], K32One);
+          v[9] = _mm_add_epi32(u[9], K32One);
+          v[10] = _mm_add_epi32(u[10], K32One);
+          v[11] = _mm_add_epi32(u[11], K32One);
+          v[12] = _mm_add_epi32(u[12], K32One);
+          v[13] = _mm_add_epi32(u[13], K32One);
+          v[14] = _mm_add_epi32(u[14], K32One);
+          v[15] = _mm_add_epi32(u[15], K32One);
+
+          u[0] = _mm_srai_epi32(v[0], 2);
+          u[1] = _mm_srai_epi32(v[1], 2);
+          u[2] = _mm_srai_epi32(v[2], 2);
+          u[3] = _mm_srai_epi32(v[3], 2);
+          u[4] = _mm_srai_epi32(v[4], 2);
+          u[5] = _mm_srai_epi32(v[5], 2);
+          u[6] = _mm_srai_epi32(v[6], 2);
+          u[7] = _mm_srai_epi32(v[7], 2);
+          u[8] = _mm_srai_epi32(v[8], 2);
+          u[9] = _mm_srai_epi32(v[9], 2);
+          u[10] = _mm_srai_epi32(v[10], 2);
+          u[11] = _mm_srai_epi32(v[11], 2);
+          u[12] = _mm_srai_epi32(v[12], 2);
+          u[13] = _mm_srai_epi32(v[13], 2);
+          u[14] = _mm_srai_epi32(v[14], 2);
+          u[15] = _mm_srai_epi32(v[15], 2);
+
+          out[ 5] = _mm_packs_epi32(u[0], u[1]);
+          out[21] = _mm_packs_epi32(u[2], u[3]);
+          out[13] = _mm_packs_epi32(u[4], u[5]);
+          out[29] = _mm_packs_epi32(u[6], u[7]);
+          out[ 3] = _mm_packs_epi32(u[8], u[9]);
+          out[19] = _mm_packs_epi32(u[10], u[11]);
+          out[11] = _mm_packs_epi32(u[12], u[13]);
+          out[27] = _mm_packs_epi32(u[14], u[15]);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x8(&out[5], &out[21], &out[13],
+                                             &out[29], &out[3], &out[19],
+                                             &out[11], &out[27]);
+          if (overflow) {
+            HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+      }
+#endif  // FDCT32x32_HIGH_PRECISION
+      // Transpose the results, do it as four 8x8 transposes.
+      {
+        int transpose_block;
+        int16_t *output0 = &intermediate[column_start * 32];
+        tran_low_t *output1 = &output_org[column_start * 32];
+        for (transpose_block = 0; transpose_block < 4; ++transpose_block) {
+          __m128i *this_out = &out[8 * transpose_block];
+          // 00 01 02 03 04 05 06 07
+          // 10 11 12 13 14 15 16 17
+          // 20 21 22 23 24 25 26 27
+          // 30 31 32 33 34 35 36 37
+          // 40 41 42 43 44 45 46 47
+          // 50 51 52 53 54 55 56 57
+          // 60 61 62 63 64 65 66 67
+          // 70 71 72 73 74 75 76 77
+          const __m128i tr0_0 = _mm_unpacklo_epi16(this_out[0], this_out[1]);
+          const __m128i tr0_1 = _mm_unpacklo_epi16(this_out[2], this_out[3]);
+          const __m128i tr0_2 = _mm_unpackhi_epi16(this_out[0], this_out[1]);
+          const __m128i tr0_3 = _mm_unpackhi_epi16(this_out[2], this_out[3]);
+          const __m128i tr0_4 = _mm_unpacklo_epi16(this_out[4], this_out[5]);
+          const __m128i tr0_5 = _mm_unpacklo_epi16(this_out[6], this_out[7]);
+          const __m128i tr0_6 = _mm_unpackhi_epi16(this_out[4], this_out[5]);
+          const __m128i tr0_7 = _mm_unpackhi_epi16(this_out[6], this_out[7]);
+          // 00 10 01 11 02 12 03 13
+          // 20 30 21 31 22 32 23 33
+          // 04 14 05 15 06 16 07 17
+          // 24 34 25 35 26 36 27 37
+          // 40 50 41 51 42 52 43 53
+          // 60 70 61 71 62 72 63 73
+          // 54 54 55 55 56 56 57 57
+          // 64 74 65 75 66 76 67 77
+          const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+          const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+          const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+          const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+          const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+          const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+          const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+          const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+          // 00 10 20 30 01 11 21 31
+          // 40 50 60 70 41 51 61 71
+          // 02 12 22 32 03 13 23 33
+          // 42 52 62 72 43 53 63 73
+          // 04 14 24 34 05 15 21 36
+          // 44 54 64 74 45 55 61 76
+          // 06 16 26 36 07 17 27 37
+          // 46 56 66 76 47 57 67 77
+          __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+          __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+          __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+          __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+          __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+          __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+          __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+          __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+          // 00 10 20 30 40 50 60 70
+          // 01 11 21 31 41 51 61 71
+          // 02 12 22 32 42 52 62 72
+          // 03 13 23 33 43 53 63 73
+          // 04 14 24 34 44 54 64 74
+          // 05 15 25 35 45 55 65 75
+          // 06 16 26 36 46 56 66 76
+          // 07 17 27 37 47 57 67 77
+          if (0 == pass) {
+            // output[j] = (output[j] + 1 + (output[j] > 0)) >> 2;
+            // TODO(cd): see quality impact of only doing
+            //           output[j] = (output[j] + 1) >> 2;
+            //           which would remove the code between here ...
+            __m128i tr2_0_0 = _mm_cmpgt_epi16(tr2_0, kZero);
+            __m128i tr2_1_0 = _mm_cmpgt_epi16(tr2_1, kZero);
+            __m128i tr2_2_0 = _mm_cmpgt_epi16(tr2_2, kZero);
+            __m128i tr2_3_0 = _mm_cmpgt_epi16(tr2_3, kZero);
+            __m128i tr2_4_0 = _mm_cmpgt_epi16(tr2_4, kZero);
+            __m128i tr2_5_0 = _mm_cmpgt_epi16(tr2_5, kZero);
+            __m128i tr2_6_0 = _mm_cmpgt_epi16(tr2_6, kZero);
+            __m128i tr2_7_0 = _mm_cmpgt_epi16(tr2_7, kZero);
+            tr2_0 = _mm_sub_epi16(tr2_0, tr2_0_0);
+            tr2_1 = _mm_sub_epi16(tr2_1, tr2_1_0);
+            tr2_2 = _mm_sub_epi16(tr2_2, tr2_2_0);
+            tr2_3 = _mm_sub_epi16(tr2_3, tr2_3_0);
+            tr2_4 = _mm_sub_epi16(tr2_4, tr2_4_0);
+            tr2_5 = _mm_sub_epi16(tr2_5, tr2_5_0);
+            tr2_6 = _mm_sub_epi16(tr2_6, tr2_6_0);
+            tr2_7 = _mm_sub_epi16(tr2_7, tr2_7_0);
+            //           ... and here.
+            //           PS: also change code in vp9/encoder/vp9_dct.c
+            tr2_0 = _mm_add_epi16(tr2_0, kOne);
+            tr2_1 = _mm_add_epi16(tr2_1, kOne);
+            tr2_2 = _mm_add_epi16(tr2_2, kOne);
+            tr2_3 = _mm_add_epi16(tr2_3, kOne);
+            tr2_4 = _mm_add_epi16(tr2_4, kOne);
+            tr2_5 = _mm_add_epi16(tr2_5, kOne);
+            tr2_6 = _mm_add_epi16(tr2_6, kOne);
+            tr2_7 = _mm_add_epi16(tr2_7, kOne);
+            tr2_0 = _mm_srai_epi16(tr2_0, 2);
+            tr2_1 = _mm_srai_epi16(tr2_1, 2);
+            tr2_2 = _mm_srai_epi16(tr2_2, 2);
+            tr2_3 = _mm_srai_epi16(tr2_3, 2);
+            tr2_4 = _mm_srai_epi16(tr2_4, 2);
+            tr2_5 = _mm_srai_epi16(tr2_5, 2);
+            tr2_6 = _mm_srai_epi16(tr2_6, 2);
+            tr2_7 = _mm_srai_epi16(tr2_7, 2);
+          }
+          // Note: even though all these stores are aligned, using the aligned
+          //       intrinsic make the code slightly slower.
+          if (pass == 0) {
+            _mm_storeu_si128((__m128i *)(output0 + 0 * 32), tr2_0);
+            _mm_storeu_si128((__m128i *)(output0 + 1 * 32), tr2_1);
+            _mm_storeu_si128((__m128i *)(output0 + 2 * 32), tr2_2);
+            _mm_storeu_si128((__m128i *)(output0 + 3 * 32), tr2_3);
+            _mm_storeu_si128((__m128i *)(output0 + 4 * 32), tr2_4);
+            _mm_storeu_si128((__m128i *)(output0 + 5 * 32), tr2_5);
+            _mm_storeu_si128((__m128i *)(output0 + 6 * 32), tr2_6);
+            _mm_storeu_si128((__m128i *)(output0 + 7 * 32), tr2_7);
+            // Process next 8x8
+            output0 += 8;
+          } else {
+            storeu_output(&tr2_0, (output1 + 0 * 32));
+            storeu_output(&tr2_1, (output1 + 1 * 32));
+            storeu_output(&tr2_2, (output1 + 2 * 32));
+            storeu_output(&tr2_3, (output1 + 3 * 32));
+            storeu_output(&tr2_4, (output1 + 4 * 32));
+            storeu_output(&tr2_5, (output1 + 5 * 32));
+            storeu_output(&tr2_6, (output1 + 6 * 32));
+            storeu_output(&tr2_7, (output1 + 7 * 32));
+            // Process next 8x8
+            output1 += 8;
+          }
+        }
+      }
+    }
+  }
+}  // NOLINT
+
+#undef ADD_EPI16
+#undef SUB_EPI16
+#undef HIGH_FDCT32x32_2D_C
+#undef HIGH_FDCT32x32_2D_ROWS_C
--- /dev/null
+++ b/vp10/common/x86/vp10_fwd_txfm_impl_sse2.h
@@ -1,0 +1,1027 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>  // SSE2
+
+#include "./vpx_dsp_rtcd.h"
+#include "vpx_dsp/txfm_common.h"
+#include "vpx_dsp/x86/fwd_txfm_sse2.h"
+#include "vpx_dsp/x86/txfm_common_sse2.h"
+#include "vpx_ports/mem.h"
+
+// TODO(jingning) The high bit-depth functions need rework for performance.
+// After we properly fix the high bit-depth function implementations, this
+// file's dependency should be substantially simplified.
+#if DCT_HIGH_BIT_DEPTH
+#define ADD_EPI16 _mm_adds_epi16
+#define SUB_EPI16 _mm_subs_epi16
+
+#else
+#define ADD_EPI16 _mm_add_epi16
+#define SUB_EPI16 _mm_sub_epi16
+#endif
+
+void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) {
+  // This 2D transform implements 4 vertical 1D transforms followed
+  // by 4 horizontal 1D transforms.  The multiplies and adds are as given
+  // by Chen, Smith and Fralick ('77).  The commands for moving the data
+  // around have been minimized by hand.
+  // For the purposes of the comments, the 16 inputs are referred to at i0
+  // through iF (in raster order), intermediate variables are a0, b0, c0
+  // through f, and correspond to the in-place computations mapped to input
+  // locations.  The outputs, o0 through oF are labeled according to the
+  // output locations.
+
+  // Constants
+  // These are the coefficients used for the multiplies.
+  // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
+  // where cospi_N_64 = cos(N pi /64)
+  const __m128i k__cospi_A = octa_set_epi16(cospi_16_64, cospi_16_64,
+                                            cospi_16_64, cospi_16_64,
+                                            cospi_16_64, -cospi_16_64,
+                                            cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_B = octa_set_epi16(cospi_16_64, -cospi_16_64,
+                                            cospi_16_64, -cospi_16_64,
+                                            cospi_16_64, cospi_16_64,
+                                            cospi_16_64, cospi_16_64);
+  const __m128i k__cospi_C = octa_set_epi16(cospi_8_64, cospi_24_64,
+                                            cospi_8_64, cospi_24_64,
+                                            cospi_24_64, -cospi_8_64,
+                                            cospi_24_64, -cospi_8_64);
+  const __m128i k__cospi_D = octa_set_epi16(cospi_24_64, -cospi_8_64,
+                                            cospi_24_64, -cospi_8_64,
+                                            cospi_8_64, cospi_24_64,
+                                            cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_E = octa_set_epi16(cospi_16_64, cospi_16_64,
+                                            cospi_16_64, cospi_16_64,
+                                            cospi_16_64, cospi_16_64,
+                                            cospi_16_64, cospi_16_64);
+  const __m128i k__cospi_F = octa_set_epi16(cospi_16_64, -cospi_16_64,
+                                            cospi_16_64, -cospi_16_64,
+                                            cospi_16_64, -cospi_16_64,
+                                            cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_G = octa_set_epi16(cospi_8_64, cospi_24_64,
+                                            cospi_8_64, cospi_24_64,
+                                            -cospi_8_64, -cospi_24_64,
+                                            -cospi_8_64, -cospi_24_64);
+  const __m128i k__cospi_H = octa_set_epi16(cospi_24_64, -cospi_8_64,
+                                            cospi_24_64, -cospi_8_64,
+                                            -cospi_24_64, cospi_8_64,
+                                            -cospi_24_64, cospi_8_64);
+
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+  // This second rounding constant saves doing some extra adds at the end
+  const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING
+                                               +(DCT_CONST_ROUNDING << 1));
+  const int DCT_CONST_BITS2 =  DCT_CONST_BITS + 2;
+  const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
+  const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
+  __m128i in0, in1;
+#if DCT_HIGH_BIT_DEPTH
+  __m128i cmp0, cmp1;
+  int test, overflow;
+#endif
+
+  // Load inputs.
+  in0  = _mm_loadl_epi64((const __m128i *)(input +  0 * stride));
+  in1  = _mm_loadl_epi64((const __m128i *)(input +  1 * stride));
+  in1  = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
+                                                 (input +  2 * stride)));
+  in0  = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
+                                                 (input +  3 * stride)));
+  // in0 = [i0 i1 i2 i3 iC iD iE iF]
+  // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+#if DCT_HIGH_BIT_DEPTH
+  // Check inputs small enough to use optimised code
+  cmp0 = _mm_xor_si128(_mm_cmpgt_epi16(in0, _mm_set1_epi16(0x3ff)),
+                       _mm_cmplt_epi16(in0, _mm_set1_epi16(0xfc00)));
+  cmp1 = _mm_xor_si128(_mm_cmpgt_epi16(in1, _mm_set1_epi16(0x3ff)),
+                       _mm_cmplt_epi16(in1, _mm_set1_epi16(0xfc00)));
+  test = _mm_movemask_epi8(_mm_or_si128(cmp0, cmp1));
+  if (test) {
+    vpx_highbd_fdct4x4_c(input, output, stride);
+    return;
+  }
+#endif  // DCT_HIGH_BIT_DEPTH
+
+  // multiply by 16 to give some extra precision
+  in0 = _mm_slli_epi16(in0, 4);
+  in1 = _mm_slli_epi16(in1, 4);
+  // if (i == 0 && input[0]) input[0] += 1;
+  // add 1 to the upper left pixel if it is non-zero, which helps reduce
+  // the round-trip error
+  {
+    // The mask will only contain whether the first value is zero, all
+    // other comparison will fail as something shifted by 4 (above << 4)
+    // can never be equal to one. To increment in the non-zero case, we
+    // add the mask and one for the first element:
+    //   - if zero, mask = -1, v = v - 1 + 1 = v
+    //   - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
+    __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a);
+    in0 = _mm_add_epi16(in0, mask);
+    in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
+  }
+  // There are 4 total stages, alternating between an add/subtract stage
+  // followed by an multiply-and-add stage.
+  {
+    // Stage 1: Add/subtract
+
+    // in0 = [i0 i1 i2 i3 iC iD iE iF]
+    // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+    const __m128i r0 = _mm_unpacklo_epi16(in0, in1);
+    const __m128i r1 = _mm_unpackhi_epi16(in0, in1);
+    // r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
+    // r1 = [iC i8 iD i9 iE iA iF iB]
+    const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
+    const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
+    // r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
+    // r3 = [iC i8 iD i9 iF iB iE iA]
+
+    const __m128i t0 = _mm_add_epi16(r2, r3);
+    const __m128i t1 = _mm_sub_epi16(r2, r3);
+    // t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
+    // t1 = [aC a8 aD a9 aF aB aE aA]
+
+    // Stage 2: multiply by constants (which gets us into 32 bits).
+    // The constants needed here are:
+    // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
+    // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
+    // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
+    // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
+    const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
+    const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
+    const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
+    const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
+    // Then add and right-shift to get back to 16-bit range
+    const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+    const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+    const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+    const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+    const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+    const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+    const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+    const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+    // w0 = [b0 b1 b7 b6]
+    // w1 = [b8 b9 bF bE]
+    // w2 = [b4 b5 b3 b2]
+    // w3 = [bC bD bB bA]
+    const __m128i x0 = _mm_packs_epi32(w0, w1);
+    const __m128i x1 = _mm_packs_epi32(w2, w3);
+#if DCT_HIGH_BIT_DEPTH
+    overflow = check_epi16_overflow_x2(&x0, &x1);
+    if (overflow) {
+      vpx_highbd_fdct4x4_c(input, output, stride);
+      return;
+    }
+#endif  // DCT_HIGH_BIT_DEPTH
+    // x0 = [b0 b1 b7 b6 b8 b9 bF bE]
+    // x1 = [b4 b5 b3 b2 bC bD bB bA]
+    in0 = _mm_shuffle_epi32(x0, 0xD8);
+    in1 = _mm_shuffle_epi32(x1, 0x8D);
+    // in0 = [b0 b1 b8 b9 b7 b6 bF bE]
+    // in1 = [b3 b2 bB bA b4 b5 bC bD]
+  }
+  {
+    // vertical DCTs finished. Now we do the horizontal DCTs.
+    // Stage 3: Add/subtract
+
+    const __m128i t0 = ADD_EPI16(in0, in1);
+    const __m128i t1 = SUB_EPI16(in0, in1);
+    // t0 = [c0 c1 c8 c9  c4  c5  cC  cD]
+    // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE]
+#if DCT_HIGH_BIT_DEPTH
+    overflow = check_epi16_overflow_x2(&t0, &t1);
+    if (overflow) {
+      vpx_highbd_fdct4x4_c(input, output, stride);
+      return;
+    }
+#endif  // DCT_HIGH_BIT_DEPTH
+
+    // Stage 4: multiply by constants (which gets us into 32 bits).
+    {
+      // The constants needed here are:
+      // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
+      // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
+      // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
+      // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
+      const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
+      const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
+      const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
+      const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
+      // Then add and right-shift to get back to 16-bit range
+      // but this combines the final right-shift as well to save operations
+      // This unusual rounding operations is to maintain bit-accurate
+      // compatibility with the c version of this function which has two
+      // rounding steps in a row.
+      const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
+      const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
+      const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
+      const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
+      const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
+      const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
+      const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
+      const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
+      // w0 = [o0 o4 o8 oC]
+      // w1 = [o2 o6 oA oE]
+      // w2 = [o1 o5 o9 oD]
+      // w3 = [o3 o7 oB oF]
+      // remember the o's are numbered according to the correct output location
+      const __m128i x0 = _mm_packs_epi32(w0, w1);
+      const __m128i x1 = _mm_packs_epi32(w2, w3);
+#if DCT_HIGH_BIT_DEPTH
+      overflow = check_epi16_overflow_x2(&x0, &x1);
+      if (overflow) {
+        vpx_highbd_fdct4x4_c(input, output, stride);
+        return;
+      }
+#endif  // DCT_HIGH_BIT_DEPTH
+      {
+        // x0 = [o0 o4 o8 oC o2 o6 oA oE]
+        // x1 = [o1 o5 o9 oD o3 o7 oB oF]
+        const __m128i y0 = _mm_unpacklo_epi16(x0, x1);
+        const __m128i y1 = _mm_unpackhi_epi16(x0, x1);
+        // y0 = [o0 o1 o4 o5 o8 o9 oC oD]
+        // y1 = [o2 o3 o6 o7 oA oB oE oF]
+        in0 = _mm_unpacklo_epi32(y0, y1);
+        // in0 = [o0 o1 o2 o3 o4 o5 o6 o7]
+        in1 = _mm_unpackhi_epi32(y0, y1);
+        // in1 = [o8 o9 oA oB oC oD oE oF]
+      }
+    }
+  }
+  // Post-condition (v + 1) >> 2 is now incorporated into previous
+  // add and right-shift commands.  Only 2 store instructions needed
+  // because we are using the fact that 1/3 are stored just after 0/2.
+  storeu_output(&in0, output + 0 * 4);
+  storeu_output(&in1, output + 2 * 4);
+}
+
+
+void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) {
+  int pass;
+  // Constants
+  //    When we use them, in one case, they are all the same. In all others
+  //    it's a pair of them that we need to repeat four times. This is done
+  //    by constructing the 32 bit constant corresponding to that pair.
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+  const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+  const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+  const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+  const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+#if DCT_HIGH_BIT_DEPTH
+  int overflow;
+#endif
+  // Load input
+  __m128i in0  = _mm_load_si128((const __m128i *)(input + 0 * stride));
+  __m128i in1  = _mm_load_si128((const __m128i *)(input + 1 * stride));
+  __m128i in2  = _mm_load_si128((const __m128i *)(input + 2 * stride));
+  __m128i in3  = _mm_load_si128((const __m128i *)(input + 3 * stride));
+  __m128i in4  = _mm_load_si128((const __m128i *)(input + 4 * stride));
+  __m128i in5  = _mm_load_si128((const __m128i *)(input + 5 * stride));
+  __m128i in6  = _mm_load_si128((const __m128i *)(input + 6 * stride));
+  __m128i in7  = _mm_load_si128((const __m128i *)(input + 7 * stride));
+  // Pre-condition input (shift by two)
+  in0 = _mm_slli_epi16(in0, 2);
+  in1 = _mm_slli_epi16(in1, 2);
+  in2 = _mm_slli_epi16(in2, 2);
+  in3 = _mm_slli_epi16(in3, 2);
+  in4 = _mm_slli_epi16(in4, 2);
+  in5 = _mm_slli_epi16(in5, 2);
+  in6 = _mm_slli_epi16(in6, 2);
+  in7 = _mm_slli_epi16(in7, 2);
+
+  // We do two passes, first the columns, then the rows. The results of the
+  // first pass are transposed so that the same column code can be reused. The
+  // results of the second pass are also transposed so that the rows (processed
+  // as columns) are put back in row positions.
+  for (pass = 0; pass < 2; pass++) {
+    // To store results of each pass before the transpose.
+    __m128i res0, res1, res2, res3, res4, res5, res6, res7;
+    // Add/subtract
+    const __m128i q0 = ADD_EPI16(in0, in7);
+    const __m128i q1 = ADD_EPI16(in1, in6);
+    const __m128i q2 = ADD_EPI16(in2, in5);
+    const __m128i q3 = ADD_EPI16(in3, in4);
+    const __m128i q4 = SUB_EPI16(in3, in4);
+    const __m128i q5 = SUB_EPI16(in2, in5);
+    const __m128i q6 = SUB_EPI16(in1, in6);
+    const __m128i q7 = SUB_EPI16(in0, in7);
+#if DCT_HIGH_BIT_DEPTH
+    if (pass == 1) {
+      overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3,
+                                         &q4, &q5, &q6, &q7);
+      if (overflow) {
+        vpx_highbd_fdct8x8_c(input, output, stride);
+        return;
+      }
+    }
+#endif  // DCT_HIGH_BIT_DEPTH
+    // Work on first four results
+    {
+      // Add/subtract
+      const __m128i r0 = ADD_EPI16(q0, q3);
+      const __m128i r1 = ADD_EPI16(q1, q2);
+      const __m128i r2 = SUB_EPI16(q1, q2);
+      const __m128i r3 = SUB_EPI16(q0, q3);
+#if DCT_HIGH_BIT_DEPTH
+      overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
+      if (overflow) {
+        vpx_highbd_fdct8x8_c(input, output, stride);
+        return;
+      }
+#endif  // DCT_HIGH_BIT_DEPTH
+      // Interleave to do the multiply by constants which gets us into 32bits
+      {
+        const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+        const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+        const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+        const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+        const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+        const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+        const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+        const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+        const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+        const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+        const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+        const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+        // dct_const_round_shift
+        const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+        const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+        const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+        const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+        const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+        const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+        const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+        const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+        const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+        const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+        const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+        const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+        const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+        const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+        const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+        const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+        // Combine
+        res0 = _mm_packs_epi32(w0, w1);
+        res4 = _mm_packs_epi32(w2, w3);
+        res2 = _mm_packs_epi32(w4, w5);
+        res6 = _mm_packs_epi32(w6, w7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6);
+        if (overflow) {
+          vpx_highbd_fdct8x8_c(input, output, stride);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+    }
+    // Work on next four results
+    {
+      // Interleave to do the multiply by constants which gets us into 32bits
+      const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+      const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+      const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
+      const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
+      const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
+      const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
+      // dct_const_round_shift
+      const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
+      const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
+      const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
+      const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
+      const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
+      const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
+      const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
+      const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
+      // Combine
+      const __m128i r0 = _mm_packs_epi32(s0, s1);
+      const __m128i r1 = _mm_packs_epi32(s2, s3);
+#if DCT_HIGH_BIT_DEPTH
+      overflow = check_epi16_overflow_x2(&r0, &r1);
+      if (overflow) {
+        vpx_highbd_fdct8x8_c(input, output, stride);
+        return;
+      }
+#endif  // DCT_HIGH_BIT_DEPTH
+      {
+        // Add/subtract
+        const __m128i x0 = ADD_EPI16(q4, r0);
+        const __m128i x1 = SUB_EPI16(q4, r0);
+        const __m128i x2 = SUB_EPI16(q7, r1);
+        const __m128i x3 = ADD_EPI16(q7, r1);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
+        if (overflow) {
+          vpx_highbd_fdct8x8_c(input, output, stride);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+        // Interleave to do the multiply by constants which gets us into 32bits
+        {
+          const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+          const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+          const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+          const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+          const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+          const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+          const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+          const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+          const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+          const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+          const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+          const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+          // dct_const_round_shift
+          const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+          const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+          const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+          const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+          const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+          const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+          const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+          const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+          const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+          const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+          const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+          const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+          const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+          const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+          const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+          const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+          // Combine
+          res1 = _mm_packs_epi32(w0, w1);
+          res7 = _mm_packs_epi32(w2, w3);
+          res5 = _mm_packs_epi32(w4, w5);
+          res3 = _mm_packs_epi32(w6, w7);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3);
+          if (overflow) {
+            vpx_highbd_fdct8x8_c(input, output, stride);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+      }
+    }
+    // Transpose the 8x8.
+    {
+      // 00 01 02 03 04 05 06 07
+      // 10 11 12 13 14 15 16 17
+      // 20 21 22 23 24 25 26 27
+      // 30 31 32 33 34 35 36 37
+      // 40 41 42 43 44 45 46 47
+      // 50 51 52 53 54 55 56 57
+      // 60 61 62 63 64 65 66 67
+      // 70 71 72 73 74 75 76 77
+      const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+      const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
+      const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
+      const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
+      const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
+      const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
+      const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
+      const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
+      // 00 10 01 11 02 12 03 13
+      // 20 30 21 31 22 32 23 33
+      // 04 14 05 15 06 16 07 17
+      // 24 34 25 35 26 36 27 37
+      // 40 50 41 51 42 52 43 53
+      // 60 70 61 71 62 72 63 73
+      // 54 54 55 55 56 56 57 57
+      // 64 74 65 75 66 76 67 77
+      const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+      const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+      const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+      const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+      const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+      const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+      const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+      const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+      // 00 10 20 30 01 11 21 31
+      // 40 50 60 70 41 51 61 71
+      // 02 12 22 32 03 13 23 33
+      // 42 52 62 72 43 53 63 73
+      // 04 14 24 34 05 15 21 36
+      // 44 54 64 74 45 55 61 76
+      // 06 16 26 36 07 17 27 37
+      // 46 56 66 76 47 57 67 77
+      in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+      in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+      in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+      in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+      in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+      in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+      in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+      in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+      // 00 10 20 30 40 50 60 70
+      // 01 11 21 31 41 51 61 71
+      // 02 12 22 32 42 52 62 72
+      // 03 13 23 33 43 53 63 73
+      // 04 14 24 34 44 54 64 74
+      // 05 15 25 35 45 55 65 75
+      // 06 16 26 36 46 56 66 76
+      // 07 17 27 37 47 57 67 77
+    }
+  }
+  // Post-condition output and store it
+  {
+    // Post-condition (division by two)
+    //    division of two 16 bits signed numbers using shifts
+    //    n / 2 = (n - (n >> 15)) >> 1
+    const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
+    const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
+    const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
+    const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
+    const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
+    const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
+    const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
+    const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
+    in0 = _mm_sub_epi16(in0, sign_in0);
+    in1 = _mm_sub_epi16(in1, sign_in1);
+    in2 = _mm_sub_epi16(in2, sign_in2);
+    in3 = _mm_sub_epi16(in3, sign_in3);
+    in4 = _mm_sub_epi16(in4, sign_in4);
+    in5 = _mm_sub_epi16(in5, sign_in5);
+    in6 = _mm_sub_epi16(in6, sign_in6);
+    in7 = _mm_sub_epi16(in7, sign_in7);
+    in0 = _mm_srai_epi16(in0, 1);
+    in1 = _mm_srai_epi16(in1, 1);
+    in2 = _mm_srai_epi16(in2, 1);
+    in3 = _mm_srai_epi16(in3, 1);
+    in4 = _mm_srai_epi16(in4, 1);
+    in5 = _mm_srai_epi16(in5, 1);
+    in6 = _mm_srai_epi16(in6, 1);
+    in7 = _mm_srai_epi16(in7, 1);
+    // store results
+    store_output(&in0, (output + 0 * 8));
+    store_output(&in1, (output + 1 * 8));
+    store_output(&in2, (output + 2 * 8));
+    store_output(&in3, (output + 3 * 8));
+    store_output(&in4, (output + 4 * 8));
+    store_output(&in5, (output + 5 * 8));
+    store_output(&in6, (output + 6 * 8));
+    store_output(&in7, (output + 7 * 8));
+  }
+}
+
+void FDCT16x16_2D(const int16_t *input, tran_low_t *output, int stride) {
+  // The 2D transform is done with two passes which are actually pretty
+  // similar. In the first one, we transform the columns and transpose
+  // the results. In the second one, we transform the rows. To achieve that,
+  // as the first pass results are transposed, we transpose the columns (that
+  // is the transposed rows) and transpose the results (so that it goes back
+  // in normal/row positions).
+  int pass;
+  // We need an intermediate buffer between passes.
+  DECLARE_ALIGNED(16, int16_t, intermediate[256]);
+  const int16_t *in = input;
+  int16_t *out0 = intermediate;
+  tran_low_t *out1 = output;
+  // Constants
+  //    When we use them, in one case, they are all the same. In all others
+  //    it's a pair of them that we need to repeat four times. This is done
+  //    by constructing the 32 bit constant corresponding to that pair.
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+  const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
+  const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+  const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+  const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+  const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+  const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
+  const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
+  const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
+  const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
+  const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
+  const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
+  const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
+  const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+  const __m128i kOne = _mm_set1_epi16(1);
+  // Do the two transform/transpose passes
+  for (pass = 0; pass < 2; ++pass) {
+    // We process eight columns (transposed rows in second pass) at a time.
+    int column_start;
+#if DCT_HIGH_BIT_DEPTH
+    int overflow;
+#endif
+    for (column_start = 0; column_start < 16; column_start += 8) {
+      __m128i in00, in01, in02, in03, in04, in05, in06, in07;
+      __m128i in08, in09, in10, in11, in12, in13, in14, in15;
+      __m128i input0, input1, input2, input3, input4, input5, input6, input7;
+      __m128i step1_0, step1_1, step1_2, step1_3;
+      __m128i step1_4, step1_5, step1_6, step1_7;
+      __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6;
+      __m128i step3_0, step3_1, step3_2, step3_3;
+      __m128i step3_4, step3_5, step3_6, step3_7;
+      __m128i res00, res01, res02, res03, res04, res05, res06, res07;
+      __m128i res08, res09, res10, res11, res12, res13, res14, res15;
+      // Load and pre-condition input.
+      if (0 == pass) {
+        in00  = _mm_load_si128((const __m128i *)(in +  0 * stride));
+        in01  = _mm_load_si128((const __m128i *)(in +  1 * stride));
+        in02  = _mm_load_si128((const __m128i *)(in +  2 * stride));
+        in03  = _mm_load_si128((const __m128i *)(in +  3 * stride));
+        in04  = _mm_load_si128((const __m128i *)(in +  4 * stride));
+        in05  = _mm_load_si128((const __m128i *)(in +  5 * stride));
+        in06  = _mm_load_si128((const __m128i *)(in +  6 * stride));
+        in07  = _mm_load_si128((const __m128i *)(in +  7 * stride));
+        in08  = _mm_load_si128((const __m128i *)(in +  8 * stride));
+        in09  = _mm_load_si128((const __m128i *)(in +  9 * stride));
+        in10  = _mm_load_si128((const __m128i *)(in + 10 * stride));
+        in11  = _mm_load_si128((const __m128i *)(in + 11 * stride));
+        in12  = _mm_load_si128((const __m128i *)(in + 12 * stride));
+        in13  = _mm_load_si128((const __m128i *)(in + 13 * stride));
+        in14  = _mm_load_si128((const __m128i *)(in + 14 * stride));
+        in15  = _mm_load_si128((const __m128i *)(in + 15 * stride));
+        // x = x << 2
+        in00 = _mm_slli_epi16(in00, 2);
+        in01 = _mm_slli_epi16(in01, 2);
+        in02 = _mm_slli_epi16(in02, 2);
+        in03 = _mm_slli_epi16(in03, 2);
+        in04 = _mm_slli_epi16(in04, 2);
+        in05 = _mm_slli_epi16(in05, 2);
+        in06 = _mm_slli_epi16(in06, 2);
+        in07 = _mm_slli_epi16(in07, 2);
+        in08 = _mm_slli_epi16(in08, 2);
+        in09 = _mm_slli_epi16(in09, 2);
+        in10 = _mm_slli_epi16(in10, 2);
+        in11 = _mm_slli_epi16(in11, 2);
+        in12 = _mm_slli_epi16(in12, 2);
+        in13 = _mm_slli_epi16(in13, 2);
+        in14 = _mm_slli_epi16(in14, 2);
+        in15 = _mm_slli_epi16(in15, 2);
+      } else {
+        in00  = _mm_load_si128((const __m128i *)(in +  0 * 16));
+        in01  = _mm_load_si128((const __m128i *)(in +  1 * 16));
+        in02  = _mm_load_si128((const __m128i *)(in +  2 * 16));
+        in03  = _mm_load_si128((const __m128i *)(in +  3 * 16));
+        in04  = _mm_load_si128((const __m128i *)(in +  4 * 16));
+        in05  = _mm_load_si128((const __m128i *)(in +  5 * 16));
+        in06  = _mm_load_si128((const __m128i *)(in +  6 * 16));
+        in07  = _mm_load_si128((const __m128i *)(in +  7 * 16));
+        in08  = _mm_load_si128((const __m128i *)(in +  8 * 16));
+        in09  = _mm_load_si128((const __m128i *)(in +  9 * 16));
+        in10  = _mm_load_si128((const __m128i *)(in + 10 * 16));
+        in11  = _mm_load_si128((const __m128i *)(in + 11 * 16));
+        in12  = _mm_load_si128((const __m128i *)(in + 12 * 16));
+        in13  = _mm_load_si128((const __m128i *)(in + 13 * 16));
+        in14  = _mm_load_si128((const __m128i *)(in + 14 * 16));
+        in15  = _mm_load_si128((const __m128i *)(in + 15 * 16));
+        // x = (x + 1) >> 2
+        in00 = _mm_add_epi16(in00, kOne);
+        in01 = _mm_add_epi16(in01, kOne);
+        in02 = _mm_add_epi16(in02, kOne);
+        in03 = _mm_add_epi16(in03, kOne);
+        in04 = _mm_add_epi16(in04, kOne);
+        in05 = _mm_add_epi16(in05, kOne);
+        in06 = _mm_add_epi16(in06, kOne);
+        in07 = _mm_add_epi16(in07, kOne);
+        in08 = _mm_add_epi16(in08, kOne);
+        in09 = _mm_add_epi16(in09, kOne);
+        in10 = _mm_add_epi16(in10, kOne);
+        in11 = _mm_add_epi16(in11, kOne);
+        in12 = _mm_add_epi16(in12, kOne);
+        in13 = _mm_add_epi16(in13, kOne);
+        in14 = _mm_add_epi16(in14, kOne);
+        in15 = _mm_add_epi16(in15, kOne);
+        in00 = _mm_srai_epi16(in00, 2);
+        in01 = _mm_srai_epi16(in01, 2);
+        in02 = _mm_srai_epi16(in02, 2);
+        in03 = _mm_srai_epi16(in03, 2);
+        in04 = _mm_srai_epi16(in04, 2);
+        in05 = _mm_srai_epi16(in05, 2);
+        in06 = _mm_srai_epi16(in06, 2);
+        in07 = _mm_srai_epi16(in07, 2);
+        in08 = _mm_srai_epi16(in08, 2);
+        in09 = _mm_srai_epi16(in09, 2);
+        in10 = _mm_srai_epi16(in10, 2);
+        in11 = _mm_srai_epi16(in11, 2);
+        in12 = _mm_srai_epi16(in12, 2);
+        in13 = _mm_srai_epi16(in13, 2);
+        in14 = _mm_srai_epi16(in14, 2);
+        in15 = _mm_srai_epi16(in15, 2);
+      }
+      in += 8;
+      // Calculate input for the first 8 results.
+      {
+        input0 = ADD_EPI16(in00, in15);
+        input1 = ADD_EPI16(in01, in14);
+        input2 = ADD_EPI16(in02, in13);
+        input3 = ADD_EPI16(in03, in12);
+        input4 = ADD_EPI16(in04, in11);
+        input5 = ADD_EPI16(in05, in10);
+        input6 = ADD_EPI16(in06, in09);
+        input7 = ADD_EPI16(in07, in08);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&input0, &input1, &input2, &input3,
+                                           &input4, &input5, &input6, &input7);
+        if (overflow) {
+          vpx_highbd_fdct16x16_c(input, output, stride);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      // Calculate input for the next 8 results.
+      {
+        step1_0 = SUB_EPI16(in07, in08);
+        step1_1 = SUB_EPI16(in06, in09);
+        step1_2 = SUB_EPI16(in05, in10);
+        step1_3 = SUB_EPI16(in04, in11);
+        step1_4 = SUB_EPI16(in03, in12);
+        step1_5 = SUB_EPI16(in02, in13);
+        step1_6 = SUB_EPI16(in01, in14);
+        step1_7 = SUB_EPI16(in00, in15);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&step1_0, &step1_1,
+                                           &step1_2, &step1_3,
+                                           &step1_4, &step1_5,
+                                           &step1_6, &step1_7);
+        if (overflow) {
+          vpx_highbd_fdct16x16_c(input, output, stride);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+      }
+      // Work on the first eight values; fdct8(input, even_results);
+      {
+        // Add/subtract
+        const __m128i q0 = ADD_EPI16(input0, input7);
+        const __m128i q1 = ADD_EPI16(input1, input6);
+        const __m128i q2 = ADD_EPI16(input2, input5);
+        const __m128i q3 = ADD_EPI16(input3, input4);
+        const __m128i q4 = SUB_EPI16(input3, input4);
+        const __m128i q5 = SUB_EPI16(input2, input5);
+        const __m128i q6 = SUB_EPI16(input1, input6);
+        const __m128i q7 = SUB_EPI16(input0, input7);
+#if DCT_HIGH_BIT_DEPTH
+        overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3,
+                                           &q4, &q5, &q6, &q7);
+        if (overflow) {
+          vpx_highbd_fdct16x16_c(input, output, stride);
+          return;
+        }
+#endif  // DCT_HIGH_BIT_DEPTH
+        // Work on first four results
+        {
+          // Add/subtract
+          const __m128i r0 = ADD_EPI16(q0, q3);
+          const __m128i r1 = ADD_EPI16(q1, q2);
+          const __m128i r2 = SUB_EPI16(q1, q2);
+          const __m128i r3 = SUB_EPI16(q0, q3);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
+          if (overflow) {
+            vpx_highbd_fdct16x16_c(input, output, stride);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          // Interleave to do the multiply by constants which gets us
+          // into 32 bits.
+          {
+            const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+            const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+            const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+            const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+            res00 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+            res08 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+            res04 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+            res12 = mult_round_shift(&t2, &t3, &k__cospi_m08_p24,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+            overflow = check_epi16_overflow_x4(&res00, &res08, &res04, &res12);
+            if (overflow) {
+              vpx_highbd_fdct16x16_c(input, output, stride);
+              return;
+            }
+#endif  // DCT_HIGH_BIT_DEPTH
+          }
+        }
+        // Work on next four results
+        {
+          // Interleave to do the multiply by constants which gets us
+          // into 32 bits.
+          const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+          const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+          const __m128i r0 = mult_round_shift(&d0, &d1, &k__cospi_p16_m16,
+                                              &k__DCT_CONST_ROUNDING,
+                                              DCT_CONST_BITS);
+          const __m128i r1 = mult_round_shift(&d0, &d1, &k__cospi_p16_p16,
+                                              &k__DCT_CONST_ROUNDING,
+                                              DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x2(&r0, &r1);
+          if (overflow) {
+            vpx_highbd_fdct16x16_c(input, output, stride);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+          {
+            // Add/subtract
+            const __m128i x0 = ADD_EPI16(q4, r0);
+            const __m128i x1 = SUB_EPI16(q4, r0);
+            const __m128i x2 = SUB_EPI16(q7, r1);
+            const __m128i x3 = ADD_EPI16(q7, r1);
+#if DCT_HIGH_BIT_DEPTH
+            overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
+            if (overflow) {
+              vpx_highbd_fdct16x16_c(input, output, stride);
+              return;
+            }
+#endif  // DCT_HIGH_BIT_DEPTH
+            // Interleave to do the multiply by constants which gets us
+            // into 32 bits.
+            {
+              const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+              const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+              const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+              const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+              res02 = mult_round_shift(&t0, &t1, &k__cospi_p28_p04,
+                                       &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+              res14 = mult_round_shift(&t0, &t1, &k__cospi_m04_p28,
+                                       &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+              res10 = mult_round_shift(&t2, &t3, &k__cospi_p12_p20,
+                                       &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+              res06 = mult_round_shift(&t2, &t3, &k__cospi_m20_p12,
+                                       &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+              overflow = check_epi16_overflow_x4(&res02, &res14,
+                                                 &res10, &res06);
+              if (overflow) {
+                vpx_highbd_fdct16x16_c(input, output, stride);
+                return;
+              }
+#endif  // DCT_HIGH_BIT_DEPTH
+            }
+          }
+        }
+      }
+      // Work on the next eight values; step1 -> odd_results
+      {
+        // step 2
+        {
+          const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
+          const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
+          const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
+          const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
+          step2_2 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          step2_3 = mult_round_shift(&t2, &t3, &k__cospi_p16_m16,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          step2_5 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          step2_4 = mult_round_shift(&t2, &t3, &k__cospi_p16_p16,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x4(&step2_2, &step2_3, &step2_5,
+                                             &step2_4);
+          if (overflow) {
+            vpx_highbd_fdct16x16_c(input, output, stride);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        // step 3
+        {
+          step3_0 = ADD_EPI16(step1_0, step2_3);
+          step3_1 = ADD_EPI16(step1_1, step2_2);
+          step3_2 = SUB_EPI16(step1_1, step2_2);
+          step3_3 = SUB_EPI16(step1_0, step2_3);
+          step3_4 = SUB_EPI16(step1_7, step2_4);
+          step3_5 = SUB_EPI16(step1_6, step2_5);
+          step3_6 = ADD_EPI16(step1_6, step2_5);
+          step3_7 = ADD_EPI16(step1_7, step2_4);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x8(&step3_0, &step3_1,
+                                             &step3_2, &step3_3,
+                                             &step3_4, &step3_5,
+                                             &step3_6, &step3_7);
+          if (overflow) {
+            vpx_highbd_fdct16x16_c(input, output, stride);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        // step 4
+        {
+          const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
+          const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
+          const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
+          const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
+          step2_1 = mult_round_shift(&t0, &t1, &k__cospi_m08_p24,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          step2_2 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          step2_6 = mult_round_shift(&t0, &t1, &k__cospi_p24_p08,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          step2_5 = mult_round_shift(&t2, &t3, &k__cospi_p08_m24,
+                                     &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x4(&step2_1, &step2_2, &step2_6,
+                                             &step2_5);
+          if (overflow) {
+            vpx_highbd_fdct16x16_c(input, output, stride);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        // step 5
+        {
+          step1_0 = ADD_EPI16(step3_0, step2_1);
+          step1_1 = SUB_EPI16(step3_0, step2_1);
+          step1_2 = ADD_EPI16(step3_3, step2_2);
+          step1_3 = SUB_EPI16(step3_3, step2_2);
+          step1_4 = SUB_EPI16(step3_4, step2_5);
+          step1_5 = ADD_EPI16(step3_4, step2_5);
+          step1_6 = SUB_EPI16(step3_7, step2_6);
+          step1_7 = ADD_EPI16(step3_7, step2_6);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x8(&step1_0, &step1_1,
+                                             &step1_2, &step1_3,
+                                             &step1_4, &step1_5,
+                                             &step1_6, &step1_7);
+          if (overflow) {
+            vpx_highbd_fdct16x16_c(input, output, stride);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        // step 6
+        {
+          const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
+          const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
+          const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
+          const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
+          res01 = mult_round_shift(&t0, &t1, &k__cospi_p30_p02,
+                                   &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          res09 = mult_round_shift(&t2, &t3, &k__cospi_p14_p18,
+                                   &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          res15 = mult_round_shift(&t0, &t1, &k__cospi_m02_p30,
+                                   &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          res07 = mult_round_shift(&t2, &t3, &k__cospi_m18_p14,
+                                   &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x4(&res01, &res09, &res15, &res07);
+          if (overflow) {
+            vpx_highbd_fdct16x16_c(input, output, stride);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+        {
+          const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
+          const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
+          const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
+          const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
+          res05 = mult_round_shift(&t0, &t1, &k__cospi_p22_p10,
+                                   &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          res13 = mult_round_shift(&t2, &t3, &k__cospi_p06_p26,
+                                   &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          res11 = mult_round_shift(&t0, &t1, &k__cospi_m10_p22,
+                                   &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+          res03 = mult_round_shift(&t2, &t3, &k__cospi_m26_p06,
+                                   &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+          overflow = check_epi16_overflow_x4(&res05, &res13, &res11, &res03);
+          if (overflow) {
+            vpx_highbd_fdct16x16_c(input, output, stride);
+            return;
+          }
+#endif  // DCT_HIGH_BIT_DEPTH
+        }
+      }
+      // Transpose the results, do it as two 8x8 transposes.
+      transpose_and_output8x8(&res00, &res01, &res02, &res03,
+                              &res04, &res05, &res06, &res07,
+                              pass, out0, out1);
+      transpose_and_output8x8(&res08, &res09, &res10, &res11,
+                              &res12, &res13, &res14, &res15,
+                              pass, out0 + 8, out1 + 8);
+      if (pass == 0) {
+        out0 += 8*16;
+      } else {
+        out1 += 8*16;
+      }
+    }
+    // Setup in/out for next pass.
+    in = intermediate;
+  }
+}
+
+#undef ADD_EPI16
+#undef SUB_EPI16
--- /dev/null
+++ b/vp10/common/x86/vp10_fwd_txfm_sse2.c
@@ -1,0 +1,271 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>  // SSE2
+
+#include "./vpx_config.h"
+#include "vpx_dsp/vpx_dsp_common.h"
+#include "vpx_dsp/x86/fwd_txfm_sse2.h"
+
+void vp10_fdct4x4_1_sse2(const int16_t *input, tran_low_t *output, int stride) {
+  __m128i in0, in1;
+  __m128i tmp;
+  const __m128i zero = _mm_setzero_si128();
+  in0  = _mm_loadl_epi64((const __m128i *)(input +  0 * stride));
+  in1  = _mm_loadl_epi64((const __m128i *)(input +  1 * stride));
+  in1  = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
+         (input +  2 * stride)));
+  in0  = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
+         (input +  3 * stride)));
+
+  tmp = _mm_add_epi16(in0, in1);
+  in0 = _mm_unpacklo_epi16(zero, tmp);
+  in1 = _mm_unpackhi_epi16(zero, tmp);
+  in0 = _mm_srai_epi32(in0, 16);
+  in1 = _mm_srai_epi32(in1, 16);
+
+  tmp = _mm_add_epi32(in0, in1);
+  in0 = _mm_unpacklo_epi32(tmp, zero);
+  in1 = _mm_unpackhi_epi32(tmp, zero);
+
+  tmp = _mm_add_epi32(in0, in1);
+  in0 = _mm_srli_si128(tmp, 8);
+
+  in1 = _mm_add_epi32(tmp, in0);
+  in0 = _mm_slli_epi32(in1, 1);
+  store_output(&in0, output);
+}
+
+void vp10_fdct8x8_1_sse2(const int16_t *input, tran_low_t *output, int stride) {
+  __m128i in0  = _mm_load_si128((const __m128i *)(input + 0 * stride));
+  __m128i in1  = _mm_load_si128((const __m128i *)(input + 1 * stride));
+  __m128i in2  = _mm_load_si128((const __m128i *)(input + 2 * stride));
+  __m128i in3  = _mm_load_si128((const __m128i *)(input + 3 * stride));
+  __m128i u0, u1, sum;
+
+  u0 = _mm_add_epi16(in0, in1);
+  u1 = _mm_add_epi16(in2, in3);
+
+  in0  = _mm_load_si128((const __m128i *)(input + 4 * stride));
+  in1  = _mm_load_si128((const __m128i *)(input + 5 * stride));
+  in2  = _mm_load_si128((const __m128i *)(input + 6 * stride));
+  in3  = _mm_load_si128((const __m128i *)(input + 7 * stride));
+
+  sum = _mm_add_epi16(u0, u1);
+
+  in0 = _mm_add_epi16(in0, in1);
+  in2 = _mm_add_epi16(in2, in3);
+  sum = _mm_add_epi16(sum, in0);
+
+  u0  = _mm_setzero_si128();
+  sum = _mm_add_epi16(sum, in2);
+
+  in0 = _mm_unpacklo_epi16(u0, sum);
+  in1 = _mm_unpackhi_epi16(u0, sum);
+  in0 = _mm_srai_epi32(in0, 16);
+  in1 = _mm_srai_epi32(in1, 16);
+
+  sum = _mm_add_epi32(in0, in1);
+  in0 = _mm_unpacklo_epi32(sum, u0);
+  in1 = _mm_unpackhi_epi32(sum, u0);
+
+  sum = _mm_add_epi32(in0, in1);
+  in0 = _mm_srli_si128(sum, 8);
+
+  in1 = _mm_add_epi32(sum, in0);
+  store_output(&in1, output);
+}
+
+void vp10_fdct16x16_1_sse2(const int16_t *input, tran_low_t *output,
+                          int stride) {
+  __m128i in0, in1, in2, in3;
+  __m128i u0, u1;
+  __m128i sum = _mm_setzero_si128();
+  int i;
+
+  for (i = 0; i < 2; ++i) {
+    input += 8 * i;
+    in0  = _mm_load_si128((const __m128i *)(input +  0 * stride));
+    in1  = _mm_load_si128((const __m128i *)(input +  1 * stride));
+    in2  = _mm_load_si128((const __m128i *)(input +  2 * stride));
+    in3  = _mm_load_si128((const __m128i *)(input +  3 * stride));
+
+    u0 = _mm_add_epi16(in0, in1);
+    u1 = _mm_add_epi16(in2, in3);
+    sum = _mm_add_epi16(sum, u0);
+
+    in0  = _mm_load_si128((const __m128i *)(input +  4 * stride));
+    in1  = _mm_load_si128((const __m128i *)(input +  5 * stride));
+    in2  = _mm_load_si128((const __m128i *)(input +  6 * stride));
+    in3  = _mm_load_si128((const __m128i *)(input +  7 * stride));
+
+    sum = _mm_add_epi16(sum, u1);
+    u0  = _mm_add_epi16(in0, in1);
+    u1  = _mm_add_epi16(in2, in3);
+    sum = _mm_add_epi16(sum, u0);
+
+    in0  = _mm_load_si128((const __m128i *)(input +  8 * stride));
+    in1  = _mm_load_si128((const __m128i *)(input +  9 * stride));
+    in2  = _mm_load_si128((const __m128i *)(input + 10 * stride));
+    in3  = _mm_load_si128((const __m128i *)(input + 11 * stride));
+
+    sum = _mm_add_epi16(sum, u1);
+    u0  = _mm_add_epi16(in0, in1);
+    u1  = _mm_add_epi16(in2, in3);
+    sum = _mm_add_epi16(sum, u0);
+
+    in0  = _mm_load_si128((const __m128i *)(input + 12 * stride));
+    in1  = _mm_load_si128((const __m128i *)(input + 13 * stride));
+    in2  = _mm_load_si128((const __m128i *)(input + 14 * stride));
+    in3  = _mm_load_si128((const __m128i *)(input + 15 * stride));
+
+    sum = _mm_add_epi16(sum, u1);
+    u0  = _mm_add_epi16(in0, in1);
+    u1  = _mm_add_epi16(in2, in3);
+    sum = _mm_add_epi16(sum, u0);
+
+    sum = _mm_add_epi16(sum, u1);
+  }
+
+  u0  = _mm_setzero_si128();
+  in0 = _mm_unpacklo_epi16(u0, sum);
+  in1 = _mm_unpackhi_epi16(u0, sum);
+  in0 = _mm_srai_epi32(in0, 16);
+  in1 = _mm_srai_epi32(in1, 16);
+
+  sum = _mm_add_epi32(in0, in1);
+  in0 = _mm_unpacklo_epi32(sum, u0);
+  in1 = _mm_unpackhi_epi32(sum, u0);
+
+  sum = _mm_add_epi32(in0, in1);
+  in0 = _mm_srli_si128(sum, 8);
+
+  in1 = _mm_add_epi32(sum, in0);
+  in1 = _mm_srai_epi32(in1, 1);
+  store_output(&in1, output);
+}
+
+void vp10_fdct32x32_1_sse2(const int16_t *input, tran_low_t *output,
+                          int stride) {
+  __m128i in0, in1, in2, in3;
+  __m128i u0, u1;
+  __m128i sum = _mm_setzero_si128();
+  int i;
+
+  for (i = 0; i < 8; ++i) {
+    in0  = _mm_load_si128((const __m128i *)(input +  0));
+    in1  = _mm_load_si128((const __m128i *)(input +  8));
+    in2  = _mm_load_si128((const __m128i *)(input + 16));
+    in3  = _mm_load_si128((const __m128i *)(input + 24));
+
+    input += stride;
+    u0 = _mm_add_epi16(in0, in1);
+    u1 = _mm_add_epi16(in2, in3);
+    sum = _mm_add_epi16(sum, u0);
+
+    in0  = _mm_load_si128((const __m128i *)(input +  0));
+    in1  = _mm_load_si128((const __m128i *)(input +  8));
+    in2  = _mm_load_si128((const __m128i *)(input + 16));
+    in3  = _mm_load_si128((const __m128i *)(input + 24));
+
+    input += stride;
+    sum = _mm_add_epi16(sum, u1);
+    u0  = _mm_add_epi16(in0, in1);
+    u1  = _mm_add_epi16(in2, in3);
+    sum = _mm_add_epi16(sum, u0);
+
+    in0  = _mm_load_si128((const __m128i *)(input +  0));
+    in1  = _mm_load_si128((const __m128i *)(input +  8));
+    in2  = _mm_load_si128((const __m128i *)(input + 16));
+    in3  = _mm_load_si128((const __m128i *)(input + 24));
+
+    input += stride;
+    sum = _mm_add_epi16(sum, u1);
+    u0  = _mm_add_epi16(in0, in1);
+    u1  = _mm_add_epi16(in2, in3);
+    sum = _mm_add_epi16(sum, u0);
+
+    in0  = _mm_load_si128((const __m128i *)(input +  0));
+    in1  = _mm_load_si128((const __m128i *)(input +  8));
+    in2  = _mm_load_si128((const __m128i *)(input + 16));
+    in3  = _mm_load_si128((const __m128i *)(input + 24));
+
+    input += stride;
+    sum = _mm_add_epi16(sum, u1);
+    u0  = _mm_add_epi16(in0, in1);
+    u1  = _mm_add_epi16(in2, in3);
+    sum = _mm_add_epi16(sum, u0);
+
+    sum = _mm_add_epi16(sum, u1);
+  }
+
+  u0  = _mm_setzero_si128();
+  in0 = _mm_unpacklo_epi16(u0, sum);
+  in1 = _mm_unpackhi_epi16(u0, sum);
+  in0 = _mm_srai_epi32(in0, 16);
+  in1 = _mm_srai_epi32(in1, 16);
+
+  sum = _mm_add_epi32(in0, in1);
+  in0 = _mm_unpacklo_epi32(sum, u0);
+  in1 = _mm_unpackhi_epi32(sum, u0);
+
+  sum = _mm_add_epi32(in0, in1);
+  in0 = _mm_srli_si128(sum, 8);
+
+  in1 = _mm_add_epi32(sum, in0);
+  in1 = _mm_srai_epi32(in1, 3);
+  store_output(&in1, output);
+}
+
+#define DCT_HIGH_BIT_DEPTH 0
+#define FDCT4x4_2D vp10_fdct4x4_sse2
+#define FDCT8x8_2D vp10_fdct8x8_sse2
+#define FDCT16x16_2D vp10_fdct16x16_sse2
+#include "vp10/common/x86/vp10_fwd_txfm_impl_sse2.h"
+#undef  FDCT4x4_2D
+#undef  FDCT8x8_2D
+#undef  FDCT16x16_2D
+
+#define FDCT32x32_2D vp10_fdct32x32_rd_sse2
+#define FDCT32x32_HIGH_PRECISION 0
+#include "vp10/common/x86/vp10_fwd_dct32x32_impl_sse2.h"
+#undef  FDCT32x32_2D
+#undef  FDCT32x32_HIGH_PRECISION
+
+#define FDCT32x32_2D vp10_fdct32x32_sse2
+#define FDCT32x32_HIGH_PRECISION 1
+#include "vp10/common/x86/vp10_fwd_dct32x32_impl_sse2.h"  // NOLINT
+#undef  FDCT32x32_2D
+#undef  FDCT32x32_HIGH_PRECISION
+#undef  DCT_HIGH_BIT_DEPTH
+
+#if CONFIG_VP9_HIGHBITDEPTH
+#define DCT_HIGH_BIT_DEPTH 1
+#define FDCT4x4_2D vp10_highbd_fdct4x4_sse2
+#define FDCT8x8_2D vp10_highbd_fdct8x8_sse2
+#define FDCT16x16_2D vp10_highbd_fdct16x16_sse2
+#include "vp10/common/x86/vp10_fwd_txfm_impl_sse2.h" // NOLINT
+#undef  FDCT4x4_2D
+#undef  FDCT8x8_2D
+#undef  FDCT16x16_2D
+
+#define FDCT32x32_2D vp10_highbd_fdct32x32_rd_sse2
+#define FDCT32x32_HIGH_PRECISION 0
+#include "vp10/common/x86/vp10_fwd_dct32x32_impl_sse2.h" // NOLINT
+#undef  FDCT32x32_2D
+#undef  FDCT32x32_HIGH_PRECISION
+
+#define FDCT32x32_2D vp10_highbd_fdct32x32_sse2
+#define FDCT32x32_HIGH_PRECISION 1
+#include "vp10/common/x86/vp10_fwd_dct32x32_impl_sse2.h" // NOLINT
+#undef  FDCT32x32_2D
+#undef  FDCT32x32_HIGH_PRECISION
+#undef  DCT_HIGH_BIT_DEPTH
+#endif  // CONFIG_VP9_HIGHBITDEPTH
--- a/vp10/vp10_common.mk
+++ b/vp10/vp10_common.mk
@@ -61,6 +61,8 @@
 VP10_COMMON_SRCS-yes += common/common_data.h
 VP10_COMMON_SRCS-yes += common/scan.c
 VP10_COMMON_SRCS-yes += common/scan.h
+VP10_COMMON_SRCS-yes += common/vp10_fwd_txfm.h
+VP10_COMMON_SRCS-yes += common/vp10_fwd_txfm.c
 
 VP10_COMMON_SRCS-$(CONFIG_VP9_POSTPROC) += common/postproc.h
 VP10_COMMON_SRCS-$(CONFIG_VP9_POSTPROC) += common/postproc.c
@@ -87,6 +89,9 @@
 endif
 
 VP10_COMMON_SRCS-$(HAVE_SSE2) += common/x86/idct_intrin_sse2.c
+VP10_COMMON_SRCS-$(HAVE_SSE2) += common/x86/vp10_fwd_txfm_sse2.c
+VP10_COMMON_SRCS-$(HAVE_SSE2) += common/x86/vp10_fwd_dct32x32_impl_sse2.h
+VP10_COMMON_SRCS-$(HAVE_SSE2) += common/x86/vp10_fwd_txfm_impl_sse2.h
 
 ifneq ($(CONFIG_VP9_HIGHBITDEPTH),yes)
 VP10_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/iht4x4_add_neon.c