ref: 7a63e6446b96d994d19d54165d31ba2fb3b35652
dir: /vp9/common/vp9_reconinter.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include "./vpx_scale_rtcd.h" #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" #if CONFIG_VP9_HIGHBITDEPTH void high_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, int ref, const InterpKernel *kernel, int xs, int ys, int bd) { sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref]( src, src_stride, dst, dst_stride, kernel[subpel_x], xs, kernel[subpel_y], ys, w, h, bd); } void vp9_highbd_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, const InterpKernel *kernel, enum mv_precision precision, int x, int y, int bd) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = vp9_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); high_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, ref, kernel, sf->x_step_q4, sf->y_step_q4, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH void vp9_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, const InterpKernel *kernel, enum mv_precision precision, int x, int y) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = vp9_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, ref, kernel, sf->x_step_q4, sf->y_step_q4); } static INLINE int round_mv_comp_q4(int value) { return (value < 0 ? value - 2 : value + 2) / 4; } static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row + mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row), round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col + mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col) }; return res; } static INLINE int round_mv_comp_q2(int value) { return (value < 0 ? value - 1 : value + 1) / 2; } static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) { MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row + mi->bmi[block1].as_mv[idx].as_mv.row), round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col + mi->bmi[block1].as_mv[idx].as_mv.col) }; return res; } // TODO(jkoleszar): yet another mv clamping function :-( MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, int bw, int bh, int ss_x, int ss_y) { // If the MV points so far into the UMV border that no visible pixels // are used for reconstruction, the subpel part of the MV can be // discarded and the MV limited to 16 pixels with equivalent results. const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS; const int spel_right = spel_left - SUBPEL_SHIFTS; const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS; const int spel_bottom = spel_top - SUBPEL_SHIFTS; MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)), src_mv->col * (1 << (1 - ss_x)) }; assert(ss_x <= 1); assert(ss_y <= 1); clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom); return clamped_mv; } MV average_split_mvs(const struct macroblockd_plane *pd, const MODE_INFO *mi, int ref, int block) { const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0); MV res = {0, 0}; switch (ss_idx) { case 0: res = mi->bmi[block].as_mv[ref].as_mv; break; case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break; case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break; case 3: res = mi_mv_pred_q4(mi, ref); break; default: assert(ss_idx <= 3 && ss_idx >= 0); } return res; } void build_inter_predictors(MACROBLOCKD *xd, int plane, int block, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y) { struct macroblockd_plane *const pd = &xd->plane[plane]; const MODE_INFO *mi = xd->mi[0]; const int is_compound = has_second_ref(&mi->mbmi); const InterpKernel *kernel = vp9_filter_kernels[mi->mbmi.interp_filter]; int ref; for (ref = 0; ref < 1 + is_compound; ++ref) { const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; const MV mv = mi->mbmi.sb_type < BLOCK_8X8 ? average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; // TODO(jkoleszar): This clamping is done in the incorrect place for the // scaling case. It needs to be done on the scaled MV, not the pre-scaling // MV. Note however that it performs the subsampling aware scaling so // that the result is always q4. // mv_precision precision is MV_PRECISION_Q4. const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); uint8_t *pre; MV32 scaled_mv; int xs, ys, subpel_x, subpel_y; const int is_scaled = vp9_is_scaled(sf); if (is_scaled) { pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { pre = pre_buf->buf + (y * pre_buf->stride + x); scaled_mv.row = mv_q4.row; scaled_mv.col = mv_q4.col; xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv.col >> SUBPEL_BITS); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { high_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd); } else { inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); } #else inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); #endif // CONFIG_VP9_HIGHBITDEPTH } } static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int plane_from, int plane_to) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { int i = 0, x, y; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors(xd, plane, i++, bw, bh, 4 * x, 4 * y, 4, 4, mi_x, mi_y); } else { build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh, mi_x, mi_y); } } } void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); } void vp9_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, int plane) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, plane, plane); } void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, MAX_MB_PLANE - 1); } void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, MAX_MB_PLANE - 1); } void vp9_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer}; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride}; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &planes[i]; setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL, pd->subsampling_x, pd->subsampling_y); } } void vp9_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf) { if (src != NULL) { int i; uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer}; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride}; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col, sf, pd->subsampling_x, pd->subsampling_y); } } }