shithub: libvpx

Download patch

ref: 92824a9cbcc8cb21977d274864dac86fbbaf2aad
parent: d84978b84fc8f3b329e60b77d4180000136b81f2
parent: 876c72a093f9d209e98522d1ef17ceef08689a2b
author: Yunqing Wang <[email protected]>
date: Thu Feb 13 04:43:55 EST 2014

Merge "AVX2 Convolve Optimization"

--- a/vp9/common/vp9_rtcd_defs.sh
+++ b/vp9/common/vp9_rtcd_defs.sh
@@ -264,13 +264,13 @@
 specialize vp9_convolve_avg $sse2_x86inc neon dspr2
 
 prototype void vp9_convolve8 "const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h"
-specialize vp9_convolve8 sse2 ssse3 neon dspr2
+specialize vp9_convolve8 sse2 ssse3 avx2 neon dspr2
 
 prototype void vp9_convolve8_horiz "const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h"
-specialize vp9_convolve8_horiz sse2 ssse3 neon dspr2
+specialize vp9_convolve8_horiz sse2 ssse3 avx2 neon dspr2
 
 prototype void vp9_convolve8_vert "const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h"
-specialize vp9_convolve8_vert sse2 ssse3 neon dspr2
+specialize vp9_convolve8_vert sse2 ssse3 avx2 neon dspr2
 
 prototype void vp9_convolve8_avg "const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h"
 specialize vp9_convolve8_avg sse2 ssse3 neon dspr2
--- a/vp9/common/x86/vp9_asm_stubs.c
+++ b/vp9/common/x86/vp9_asm_stubs.c
@@ -139,7 +139,49 @@
                            filter_x, x_step_q4, filter_y, y_step_q4, w, h); \
   } \
 }
+#if HAVE_AVX2
+filter8_1dfunction vp9_filter_block1d16_v8_avx2;
+filter8_1dfunction vp9_filter_block1d16_h8_avx2;
+filter8_1dfunction vp9_filter_block1d8_v8_ssse3;
+filter8_1dfunction vp9_filter_block1d8_h8_ssse3;
+filter8_1dfunction vp9_filter_block1d4_v8_ssse3;
+filter8_1dfunction vp9_filter_block1d4_h8_ssse3;
+filter8_1dfunction vp9_filter_block1d16_v2_ssse3;
+filter8_1dfunction vp9_filter_block1d16_h2_ssse3;
+filter8_1dfunction vp9_filter_block1d8_v2_ssse3;
+filter8_1dfunction vp9_filter_block1d8_h2_ssse3;
+filter8_1dfunction vp9_filter_block1d4_v2_ssse3;
+filter8_1dfunction vp9_filter_block1d4_h2_ssse3;
+#define vp9_filter_block1d8_v8_avx2 vp9_filter_block1d8_v8_ssse3
+#define vp9_filter_block1d8_h8_avx2 vp9_filter_block1d8_h8_ssse3
+#define vp9_filter_block1d4_v8_avx2 vp9_filter_block1d4_v8_ssse3
+#define vp9_filter_block1d4_h8_avx2 vp9_filter_block1d4_h8_ssse3
+#define vp9_filter_block1d16_v2_avx2 vp9_filter_block1d16_v2_ssse3
+#define vp9_filter_block1d16_h2_avx2 vp9_filter_block1d16_h2_ssse3
+#define vp9_filter_block1d8_v2_avx2  vp9_filter_block1d8_v2_ssse3
+#define vp9_filter_block1d8_h2_avx2  vp9_filter_block1d8_h2_ssse3
+#define vp9_filter_block1d4_v2_avx2  vp9_filter_block1d4_v2_ssse3
+#define vp9_filter_block1d4_h2_avx2  vp9_filter_block1d4_h2_ssse3
+// void vp9_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride,
+//                                uint8_t *dst, ptrdiff_t dst_stride,
+//                                const int16_t *filter_x, int x_step_q4,
+//                                const int16_t *filter_y, int y_step_q4,
+//                                int w, int h);
+// void vp9_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride,
+//                               uint8_t *dst, ptrdiff_t dst_stride,
+//                               const int16_t *filter_x, int x_step_q4,
+//                               const int16_t *filter_y, int y_step_q4,
+//                               int w, int h);
+FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2);
+FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2);
 
+// void vp9_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride,
+//                          uint8_t *dst, ptrdiff_t dst_stride,
+//                          const int16_t *filter_x, int x_step_q4,
+//                          const int16_t *filter_y, int y_step_q4,
+//                          int w, int h);
+FUN_CONV_2D(, avx2);
+#endif
 #if HAVE_SSSE3
 filter8_1dfunction vp9_filter_block1d16_v8_ssse3;
 filter8_1dfunction vp9_filter_block1d16_h8_ssse3;
--- /dev/null
+++ b/vp9/common/x86/vp9_subpixel_8t_intrin_avx2.c
@@ -1,0 +1,542 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h>
+#include "vpx_ports/mem.h"
+
+// filters for 16_h8 and 16_v8
+DECLARE_ALIGNED(32, const unsigned char, filt1_global_avx2[32])= {
+  0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8,
+  0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8};
+
+DECLARE_ALIGNED(32, const unsigned char, filt2_global_avx2[32])= {
+  2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
+  2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10};
+
+DECLARE_ALIGNED(32, const unsigned char, filt3_global_avx2[32])= {
+  4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
+  4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12};
+
+DECLARE_ALIGNED(32, const unsigned char, filt4_global_avx2[32])= {
+  6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14,
+  6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14};
+
+
+void vp9_filter_block1d16_h8_avx2(unsigned char *src_ptr,
+                                  unsigned int src_pixels_per_line,
+                                  unsigned char *output_ptr,
+                                  unsigned int  output_pitch,
+                                  unsigned int  output_height,
+                                  int16_t *filter) {
+  __m128i filtersReg;
+  __m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
+  __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
+  __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
+  __m256i srcReg32b1, srcReg32b2, filtersReg32;
+  unsigned int i;
+  unsigned int src_stride, dst_stride;
+
+  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
+  addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
+  filtersReg = _mm_loadu_si128((__m128i *)filter);
+  // converting the 16 bit (short) to 8 bit (byte) and have the same data
+  // in both lanes of 128 bit register.
+  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
+  // have the same data in both lanes of a 256 bit register
+#if defined (__GNUC__)
+#if ( __GNUC__ < 4 || (__GNUC__ == 4 && \
+(__GNUC_MINOR__ < 6 || (__GNUC_MINOR__ == 6 && __GNUC_PATCHLEVEL__ > 0))))
+  filtersReg32 = _mm_broadcastsi128_si256((__m128i const *)&filtersReg);
+#elif(__GNUC__ == 4 && (__GNUC_MINOR__ == 7 && __GNUC_PATCHLEVEL__ > 0))
+  filtersReg32 = _mm_broadcastsi128_si256(filtersReg);
+#else
+  filtersReg32 = _mm256_broadcastsi128_si256(filtersReg);
+#endif
+#else
+  filtersReg32 = _mm256_broadcastsi128_si256(filtersReg);
+#endif
+
+  // duplicate only the first 16 bits (first and second byte)
+  // across 256 bit register
+  firstFilters = _mm256_shuffle_epi8(filtersReg32,
+                 _mm256_set1_epi16(0x100u));
+  // duplicate only the second 16 bits (third and forth byte)
+  // across 256 bit register
+  secondFilters = _mm256_shuffle_epi8(filtersReg32,
+                  _mm256_set1_epi16(0x302u));
+  // duplicate only the third 16 bits (fifth and sixth byte)
+  // across 256 bit register
+  thirdFilters = _mm256_shuffle_epi8(filtersReg32,
+                 _mm256_set1_epi16(0x504u));
+  // duplicate only the forth 16 bits (seventh and eighth byte)
+  // across 256 bit register
+  forthFilters = _mm256_shuffle_epi8(filtersReg32,
+                 _mm256_set1_epi16(0x706u));
+
+  filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2);
+  filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2);
+  filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2);
+  filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2);
+
+  // multiple the size of the source and destination stride by two
+  src_stride = src_pixels_per_line << 1;
+  dst_stride = output_pitch << 1;
+  for (i = output_height; i > 1; i-=2) {
+    // load the 2 strides of source
+    srcReg32b1 = _mm256_castsi128_si256(
+                 _mm_loadu_si128((__m128i *)(src_ptr-3)));
+    srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
+                 _mm_loadu_si128((__m128i *)
+                 (src_ptr+src_pixels_per_line-3)), 1);
+
+    // filter the source buffer
+    srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
+    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
+    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, secondFilters);
+
+    // add and saturate the results together
+    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
+
+    // filter the source buffer
+    srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt4Reg);
+    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, forthFilters);
+    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
+
+    // add and saturate the results together
+    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
+                       _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
+
+    // reading 2 strides of the next 16 bytes
+    // (part of it was being read by earlier read)
+    srcReg32b2 = _mm256_castsi128_si256(
+                 _mm_loadu_si128((__m128i *)(src_ptr+5)));
+    srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
+                 _mm_loadu_si128((__m128i *)
+                 (src_ptr+src_pixels_per_line+5)), 1);
+
+    // add and saturate the results together
+    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
+                       _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
+
+    // filter the source buffer
+    srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg);
+    srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters);
+    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, secondFilters);
+
+    // add and saturate the results together
+    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2);
+
+    // filter the source buffer
+    srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt4Reg);
+    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg);
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, forthFilters);
+    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
+
+    // add and saturate the results together
+    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
+                       _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
+    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
+                       _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
+
+
+    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64);
+
+    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64);
+
+    // shift by 7 bit each 16 bit
+    srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7);
+    srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7);
+
+    // shrink to 8 bit each 16 bits, the first lane contain the first
+    // convolve result and the second lane contain the second convolve
+    // result
+    srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1,
+                                           srcRegFilt32b2_1);
+
+    src_ptr+=src_stride;
+
+    // save 16 bytes
+    _mm_store_si128((__m128i*)output_ptr,
+    _mm256_castsi256_si128(srcRegFilt32b1_1));
+
+    // save the next 16 bits
+    _mm_store_si128((__m128i*)(output_ptr+output_pitch),
+    _mm256_extractf128_si256(srcRegFilt32b1_1, 1));
+    output_ptr+=dst_stride;
+  }
+
+  // if the number of strides is odd.
+  // process only 16 bytes
+  if (i > 0) {
+    __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1;
+    __m128i srcRegFilt2, srcRegFilt3;
+
+    srcReg1 = _mm_loadu_si128((__m128i *)(src_ptr-3));
+
+    // filter the source buffer
+    srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1,
+                    _mm256_castsi256_si128(filt1Reg));
+    srcRegFilt2 = _mm_shuffle_epi8(srcReg1,
+                  _mm256_castsi256_si128(filt2Reg));
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1,
+                    _mm256_castsi256_si128(firstFilters));
+    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
+                  _mm256_castsi256_si128(secondFilters));
+
+    // add and saturate the results together
+    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
+
+    // filter the source buffer
+    srcRegFilt3= _mm_shuffle_epi8(srcReg1,
+                 _mm256_castsi256_si128(filt4Reg));
+    srcRegFilt2= _mm_shuffle_epi8(srcReg1,
+                 _mm256_castsi256_si128(filt3Reg));
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
+                  _mm256_castsi256_si128(forthFilters));
+    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
+                  _mm256_castsi256_si128(thirdFilters));
+
+    // add and saturate the results together
+    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
+                    _mm_min_epi16(srcRegFilt3, srcRegFilt2));
+
+    // reading the next 16 bytes
+    // (part of it was being read by earlier read)
+    srcReg2 = _mm_loadu_si128((__m128i *)(src_ptr+5));
+
+    // add and saturate the results together
+    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
+                    _mm_max_epi16(srcRegFilt3, srcRegFilt2));
+
+    // filter the source buffer
+    srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2,
+                    _mm256_castsi256_si128(filt1Reg));
+    srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
+                  _mm256_castsi256_si128(filt2Reg));
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1,
+                    _mm256_castsi256_si128(firstFilters));
+    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
+                  _mm256_castsi256_si128(secondFilters));
+
+    // add and saturate the results together
+    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);
+
+    // filter the source buffer
+    srcRegFilt3 = _mm_shuffle_epi8(srcReg2,
+                  _mm256_castsi256_si128(filt4Reg));
+    srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
+                  _mm256_castsi256_si128(filt3Reg));
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
+                  _mm256_castsi256_si128(forthFilters));
+    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
+                  _mm256_castsi256_si128(thirdFilters));
+
+    // add and saturate the results together
+    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
+                    _mm_min_epi16(srcRegFilt3, srcRegFilt2));
+    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
+                    _mm_max_epi16(srcRegFilt3, srcRegFilt2));
+
+
+    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
+                    _mm256_castsi256_si128(addFilterReg64));
+
+    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
+                    _mm256_castsi256_si128(addFilterReg64));
+
+    // shift by 7 bit each 16 bit
+    srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
+    srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);
+
+    // shrink to 8 bit each 16 bits, the first lane contain the first
+    // convolve result and the second lane contain the second convolve
+    // result
+    srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);
+
+    // save 16 bytes
+    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);
+  }
+}
+
+void vp9_filter_block1d16_v8_avx2(unsigned char *src_ptr,
+                                  unsigned int src_pitch,
+                                  unsigned char *output_ptr,
+                                  unsigned int out_pitch,
+                                  unsigned int output_height,
+                                  int16_t *filter) {
+  __m128i filtersReg;
+  __m256i addFilterReg64;
+  __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
+  __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
+  __m256i srcReg32b11, srcReg32b12, srcReg32b13, filtersReg32;
+  __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
+  unsigned int i;
+  unsigned int src_stride, dst_stride;
+
+  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
+  addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
+  filtersReg = _mm_loadu_si128((__m128i *)filter);
+  // converting the 16 bit (short) to  8 bit (byte) and have the
+  // same data in both lanes of 128 bit register.
+  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
+  // have the same data in both lanes of a 256 bit register
+#if defined (__GNUC__)
+#if ( __GNUC__ < 4 || (__GNUC__ == 4 && \
+(__GNUC_MINOR__ < 6 || (__GNUC_MINOR__ == 6 && __GNUC_PATCHLEVEL__ > 0))))
+  filtersReg32 = _mm_broadcastsi128_si256((__m128i const *)&filtersReg);
+#elif(__GNUC__ == 4 && (__GNUC_MINOR__ == 7 && __GNUC_PATCHLEVEL__ > 0))
+  filtersReg32 = _mm_broadcastsi128_si256(filtersReg);
+#else
+  filtersReg32 = _mm256_broadcastsi128_si256(filtersReg);
+#endif
+#else
+  filtersReg32 = _mm256_broadcastsi128_si256(filtersReg);
+#endif
+
+  // duplicate only the first 16 bits (first and second byte)
+  // across 256 bit register
+  firstFilters = _mm256_shuffle_epi8(filtersReg32,
+                 _mm256_set1_epi16(0x100u));
+  // duplicate only the second 16 bits (third and forth byte)
+  // across 256 bit register
+  secondFilters = _mm256_shuffle_epi8(filtersReg32,
+                  _mm256_set1_epi16(0x302u));
+  // duplicate only the third 16 bits (fifth and sixth byte)
+  // across 256 bit register
+  thirdFilters = _mm256_shuffle_epi8(filtersReg32,
+                 _mm256_set1_epi16(0x504u));
+  // duplicate only the forth 16 bits (seventh and eighth byte)
+  // across 256 bit register
+  forthFilters = _mm256_shuffle_epi8(filtersReg32,
+                 _mm256_set1_epi16(0x706u));
+
+  // multiple the size of the source and destination stride by two
+  src_stride = src_pitch << 1;
+  dst_stride = out_pitch << 1;
+
+  // load 16 bytes 7 times in stride of src_pitch
+  srcReg32b1 = _mm256_castsi128_si256(
+               _mm_loadu_si128((__m128i *)(src_ptr)));
+  srcReg32b2 = _mm256_castsi128_si256(
+               _mm_loadu_si128((__m128i *)(src_ptr+src_pitch)));
+  srcReg32b3 = _mm256_castsi128_si256(
+               _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*2)));
+  srcReg32b4 = _mm256_castsi128_si256(
+               _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*3)));
+  srcReg32b5 = _mm256_castsi128_si256(
+               _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*4)));
+  srcReg32b6 = _mm256_castsi128_si256(
+               _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*5)));
+  srcReg32b7 = _mm256_castsi128_si256(
+               _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*6)));
+
+  // have each consecutive loads on the same 256 register
+  srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
+               _mm256_castsi256_si128(srcReg32b2), 1);
+  srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
+               _mm256_castsi256_si128(srcReg32b3), 1);
+  srcReg32b3 = _mm256_inserti128_si256(srcReg32b3,
+               _mm256_castsi256_si128(srcReg32b4), 1);
+  srcReg32b4 = _mm256_inserti128_si256(srcReg32b4,
+               _mm256_castsi256_si128(srcReg32b5), 1);
+  srcReg32b5 = _mm256_inserti128_si256(srcReg32b5,
+               _mm256_castsi256_si128(srcReg32b6), 1);
+  srcReg32b6 = _mm256_inserti128_si256(srcReg32b6,
+               _mm256_castsi256_si128(srcReg32b7), 1);
+
+  // merge every two consecutive registers except the last one
+  srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
+  srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2);
+
+  // save
+  srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);
+
+  // save
+  srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4);
+
+  // save
+  srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);
+
+  // save
+  srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6);
+
+
+  for (i = output_height; i > 1; i-=2) {
+     // load the last 2 loads of 16 bytes and have every two
+     // consecutive loads in the same 256 bit register
+     srcReg32b8 = _mm256_castsi128_si256(
+     _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*7)));
+     srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
+     _mm256_castsi256_si128(srcReg32b8), 1);
+     srcReg32b9 = _mm256_castsi128_si256(
+     _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*8)));
+     srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
+     _mm256_castsi256_si128(srcReg32b9), 1);
+
+     // merge every two consecutive registers
+     // save
+     srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
+     srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8);
+
+     // multiply 2 adjacent elements with the filter and add the result
+     srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
+     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);
+     srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters);
+     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b7, forthFilters);
+
+     // add and saturate the results together
+     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);
+     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b8);
+
+
+     // multiply 2 adjacent elements with the filter and add the result
+     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
+     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b3, secondFilters);
+
+     // multiply 2 adjacent elements with the filter and add the result
+     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);
+     srcReg32b13 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters);
+
+
+     // add and saturate the results together
+     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
+                   _mm256_min_epi16(srcReg32b8, srcReg32b12));
+     srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
+                  _mm256_min_epi16(srcReg32b6, srcReg32b13));
+
+     // add and saturate the results together
+     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
+                   _mm256_max_epi16(srcReg32b8, srcReg32b12));
+     srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
+                  _mm256_max_epi16(srcReg32b6, srcReg32b13));
+
+
+     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64);
+     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64);
+
+     // shift by 7 bit each 16 bit
+     srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7);
+     srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7);
+
+     // shrink to 8 bit each 16 bits, the first lane contain the first
+     // convolve result and the second lane contain the second convolve
+     // result
+     srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1);
+
+     src_ptr+=src_stride;
+
+     // save 16 bytes
+     _mm_store_si128((__m128i*)output_ptr,
+     _mm256_castsi256_si128(srcReg32b1));
+
+     // save the next 16 bits
+     _mm_store_si128((__m128i*)(output_ptr+out_pitch),
+     _mm256_extractf128_si256(srcReg32b1, 1));
+
+     output_ptr+=dst_stride;
+
+     // save part of the registers for next strides
+     srcReg32b10 = srcReg32b11;
+     srcReg32b1 = srcReg32b3;
+     srcReg32b11 = srcReg32b2;
+     srcReg32b3 = srcReg32b5;
+     srcReg32b2 = srcReg32b4;
+     srcReg32b5 = srcReg32b7;
+     srcReg32b7 = srcReg32b9;
+  }
+  if (i > 0) {
+    __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5;
+    __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8;
+    // load the last 16 bytes
+    srcRegFilt8 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*7));
+
+    // merge the last 2 results together
+    srcRegFilt4 = _mm_unpacklo_epi8(
+                  _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
+    srcRegFilt7 = _mm_unpackhi_epi8(
+                  _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
+                  _mm256_castsi256_si128(firstFilters));
+    srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4,
+                  _mm256_castsi256_si128(forthFilters));
+    srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1),
+                  _mm256_castsi256_si128(firstFilters));
+    srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7,
+                  _mm256_castsi256_si128(forthFilters));
+
+    // add and saturate the results together
+    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
+    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7);
+
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
+                  _mm256_castsi256_si128(secondFilters));
+    srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3),
+                  _mm256_castsi256_si128(secondFilters));
+
+    // multiply 2 adjacent elements with the filter and add the result
+    srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
+                  _mm256_castsi256_si128(thirdFilters));
+    srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5),
+                  _mm256_castsi256_si128(thirdFilters));
+
+    // add and saturate the results together
+    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
+                  _mm_min_epi16(srcRegFilt4, srcRegFilt6));
+    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
+                  _mm_min_epi16(srcRegFilt5, srcRegFilt7));
+
+    // add and saturate the results together
+    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
+                  _mm_max_epi16(srcRegFilt4, srcRegFilt6));
+    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
+                  _mm_max_epi16(srcRegFilt5, srcRegFilt7));
+
+
+    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
+                  _mm256_castsi256_si128(addFilterReg64));
+    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
+                  _mm256_castsi256_si128(addFilterReg64));
+
+    // shift by 7 bit each 16 bit
+    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
+    srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7);
+
+    // shrink to 8 bit each 16 bits, the first lane contain the first
+    // convolve result and the second lane contain the second convolve
+    // result
+    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3);
+
+    // save 16 bytes
+    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1);
+  }
+}
--- a/vp9/vp9_common.mk
+++ b/vp9/vp9_common.mk
@@ -79,6 +79,7 @@
 VP9_COMMON_SRCS-$(HAVE_SSE2) += common/x86/vp9_subpixel_bilinear_sse2.asm
 VP9_COMMON_SRCS-$(HAVE_SSSE3) += common/x86/vp9_subpixel_8t_ssse3.asm
 VP9_COMMON_SRCS-$(HAVE_SSSE3) += common/x86/vp9_subpixel_bilinear_ssse3.asm
+VP9_COMMON_SRCS-$(HAVE_AVX2) += common/x86/vp9_subpixel_8t_intrin_avx2.c
 ifeq ($(CONFIG_VP9_POSTPROC),yes)
 VP9_COMMON_SRCS-$(HAVE_MMX) += common/x86/vp9_postproc_mmx.asm
 VP9_COMMON_SRCS-$(HAVE_SSE2) += common/x86/vp9_postproc_sse2.asm