ref: 9593db4a38e4cc76b8ef6ac5b60f090fd6ceaf73
parent: ba6bed372bf17af7df6c310860e9a2539ba2e939
parent: 49b4a274a0e30d90496081340a80846a1c371eaf
author: Jingning Han <[email protected]>
date: Fri May 30 11:53:17 EDT 2014
Merge "Add overflow check unit test for 16x16 inverse DCT/ADST transform"
--- a/test/dct16x16_test.cc
+++ b/test/dct16x16_test.cc
@@ -272,10 +272,18 @@
vp9_fdct16x16_c(in, out, stride);
}
+void idct16x16_ref(const int16_t *in, uint8_t *dest, int stride, int tx_type) {
+ vp9_idct16x16_256_add_c(in, dest, stride);
+}
+
void fht16x16_ref(const int16_t *in, int16_t *out, int stride, int tx_type) {
vp9_fht16x16_c(in, out, stride, tx_type);
}
+void iht16x16_ref(const int16_t *in, uint8_t *dest, int stride, int tx_type) {
+ vp9_iht16x16_256_add_c(in, dest, stride, tx_type);
+}
+
class Trans16x16TestBase {
public:
virtual ~Trans16x16TestBase() {}
@@ -378,6 +386,47 @@
}
}
+ void RunQuantCheck(int dc_thred, int ac_thred) {
+ ACMRandom rnd(ACMRandom::DeterministicSeed());
+ const int count_test_block = 1000;
+ DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
+ DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
+ DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
+
+ DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
+ DECLARE_ALIGNED_ARRAY(16, uint8_t, ref, kNumCoeffs);
+
+ for (int i = 0; i < count_test_block; ++i) {
+ // Initialize a test block with input range [-255, 255].
+ for (int j = 0; j < kNumCoeffs; ++j) {
+ input_block[j] = rnd.Rand8() - rnd.Rand8();
+ input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
+ }
+ if (i == 0)
+ for (int j = 0; j < kNumCoeffs; ++j)
+ input_extreme_block[j] = 255;
+ if (i == 1)
+ for (int j = 0; j < kNumCoeffs; ++j)
+ input_extreme_block[j] = -255;
+
+ fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
+
+ // clear reconstructed pixel buffers
+ vpx_memset(dst, 0, kNumCoeffs * sizeof(uint8_t));
+ vpx_memset(ref, 0, kNumCoeffs * sizeof(uint8_t));
+
+ // quantization with maximum allowed step sizes
+ output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred;
+ for (int j = 1; j < kNumCoeffs; ++j)
+ output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred;
+ inv_txfm_ref(output_ref_block, ref, pitch_, tx_type_);
+ REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_));
+
+ for (int j = 0; j < kNumCoeffs; ++j)
+ EXPECT_EQ(ref[j], dst[j]);
+ }
+ }
+
void RunInvAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
@@ -414,6 +463,7 @@
int pitch_;
int tx_type_;
fht_t fwd_txfm_ref;
+ iht_t inv_txfm_ref;
};
class Trans16x16DCT
@@ -428,6 +478,7 @@
tx_type_ = GET_PARAM(2);
pitch_ = 16;
fwd_txfm_ref = fdct16x16_ref;
+ inv_txfm_ref = idct16x16_ref;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
@@ -455,6 +506,12 @@
RunMemCheck();
}
+TEST_P(Trans16x16DCT, QuantCheck) {
+ // Use maximally allowed quantization step sizes for DC and AC
+ // coefficients respectively.
+ RunQuantCheck(1336, 1828);
+}
+
TEST_P(Trans16x16DCT, InvAccuracyCheck) {
RunInvAccuracyCheck();
}
@@ -471,6 +528,7 @@
tx_type_ = GET_PARAM(2);
pitch_ = 16;
fwd_txfm_ref = fht16x16_ref;
+ inv_txfm_ref = iht16x16_ref;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
@@ -496,6 +554,12 @@
TEST_P(Trans16x16HT, MemCheck) {
RunMemCheck();
+}
+
+TEST_P(Trans16x16HT, QuantCheck) {
+ // The encoder skips any non-DC intra prediction modes,
+ // when the quantization step size goes beyond 988.
+ RunQuantCheck(549, 988);
}
using std::tr1::make_tuple;