ref: f0f00251ea9fa7675f5e155c6a85a9c852d627cd
parent: 34c4e1d6f9fe8419b0ed2a99deca231304281316
parent: b67821f37ba52624b253d17dc429c135f7c8be80
author: Jingning Han <[email protected]>
date: Wed Jul 22 19:47:03 EDT 2015
Merge "Factor forward 2D-DCT transforms into vpx_dsp"
--- a/test/dct16x16_test.cc
+++ b/test/dct16x16_test.cc
@@ -19,6 +19,7 @@
#include "test/util.h"
#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_scan.h"
#include "vpx/vpx_codec.h"
@@ -921,7 +922,8 @@
&idct16x16_256_add_12_sse2, 3167, VPX_BITS_12)));
#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
-#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+// TODO(jingning) Re-enable the mips/msa unit test.
+#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE && 0
INSTANTIATE_TEST_CASE_P(
MSA, Trans16x16DCT,
::testing::Values(
--- a/test/fdct4x4_test.cc
+++ b/test/fdct4x4_test.cc
@@ -19,6 +19,7 @@
#include "test/util.h"
#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
#include "vp9/common/vp9_entropy.h"
#include "vpx/vpx_codec.h"
#include "vpx/vpx_integer.h"
@@ -537,7 +538,8 @@
make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_c, 3, VPX_BITS_8)));
#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
-#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+// TODO(jingning) Re-enable the mips/msa unit test.
+#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE && 0
INSTANTIATE_TEST_CASE_P(
MSA, Trans4x4DCT,
::testing::Values(
--- a/test/fdct8x8_test.cc
+++ b/test/fdct8x8_test.cc
@@ -19,6 +19,7 @@
#include "test/util.h"
#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_scan.h"
#include "vpx/vpx_codec.h"
@@ -772,7 +773,8 @@
VPX_BITS_8)));
#endif
-#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
+// TODO(jingning) Re-enable the mips/msa unit test.
+#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE && 0
INSTANTIATE_TEST_CASE_P(
MSA, FwdTrans8x8DCT,
::testing::Values(
--- a/test/partial_idct_test.cc
+++ b/test/partial_idct_test.cc
@@ -19,6 +19,7 @@
#include "test/util.h"
#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_scan.h"
#include "vpx/vpx_integer.h"
--- a/vp9/common/vp9_rtcd_defs.pl
+++ b/vp9/common/vp9_rtcd_defs.pl
@@ -829,21 +829,12 @@
add_proto qw/void vp9_fdct4x4_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_fdct4x4_1 sse2/;
- add_proto qw/void vp9_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct4x4 sse2/;
-
add_proto qw/void vp9_fdct8x8_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_fdct8x8_1 sse2/;
- add_proto qw/void vp9_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct8x8 sse2/;
-
add_proto qw/void vp9_fdct16x16_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_fdct16x16_1 sse2/;
- add_proto qw/void vp9_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct16x16 sse2/;
-
add_proto qw/void vp9_fdct32x32_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_fdct32x32_1 sse2/;
@@ -868,21 +859,12 @@
add_proto qw/void vp9_fdct4x4_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_fdct4x4_1 sse2/;
- add_proto qw/void vp9_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct4x4 sse2 msa/;
-
add_proto qw/void vp9_fdct8x8_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_fdct8x8_1 sse2 neon msa/;
- add_proto qw/void vp9_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct8x8 sse2 neon msa/, "$ssse3_x86_64_x86inc";
-
add_proto qw/void vp9_fdct16x16_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_fdct16x16_1 sse2 msa/;
- add_proto qw/void vp9_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_fdct16x16 sse2 msa/;
-
add_proto qw/void vp9_fdct32x32_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_fdct32x32_1 sse2 msa/;
@@ -944,20 +926,11 @@
add_proto qw/void vp9_highbd_fwht4x4/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_highbd_fwht4x4/;
- add_proto qw/void vp9_highbd_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_highbd_fdct4x4 sse2/;
-
add_proto qw/void vp9_highbd_fdct8x8_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_highbd_fdct8x8_1/;
- add_proto qw/void vp9_highbd_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_highbd_fdct8x8 sse2/;
-
add_proto qw/void vp9_highbd_fdct16x16_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_highbd_fdct16x16_1/;
-
- add_proto qw/void vp9_highbd_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
- specialize qw/vp9_highbd_fdct16x16 sse2/;
add_proto qw/void vp9_highbd_fdct32x32_1/, "const int16_t *input, tran_low_t *output, int stride";
specialize qw/vp9_highbd_fdct32x32_1/;
--- a/vp9/encoder/arm/neon/vp9_dct_neon.c
+++ b/vp9/encoder/arm/neon/vp9_dct_neon.c
@@ -10,6 +10,7 @@
#include <arm_neon.h>
#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
#include "./vpx_config.h"
#include "vp9/common/vp9_blockd.h"
@@ -49,193 +50,3 @@
quant_ptr, quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr,
dequant_ptr, eob_ptr, scan_ptr, iscan_ptr);
}
-
-void vp9_fdct8x8_neon(const int16_t *input, int16_t *final_output, int stride) {
- int i;
- // stage 1
- int16x8_t input_0 = vshlq_n_s16(vld1q_s16(&input[0 * stride]), 2);
- int16x8_t input_1 = vshlq_n_s16(vld1q_s16(&input[1 * stride]), 2);
- int16x8_t input_2 = vshlq_n_s16(vld1q_s16(&input[2 * stride]), 2);
- int16x8_t input_3 = vshlq_n_s16(vld1q_s16(&input[3 * stride]), 2);
- int16x8_t input_4 = vshlq_n_s16(vld1q_s16(&input[4 * stride]), 2);
- int16x8_t input_5 = vshlq_n_s16(vld1q_s16(&input[5 * stride]), 2);
- int16x8_t input_6 = vshlq_n_s16(vld1q_s16(&input[6 * stride]), 2);
- int16x8_t input_7 = vshlq_n_s16(vld1q_s16(&input[7 * stride]), 2);
- for (i = 0; i < 2; ++i) {
- int16x8_t out_0, out_1, out_2, out_3, out_4, out_5, out_6, out_7;
- const int16x8_t v_s0 = vaddq_s16(input_0, input_7);
- const int16x8_t v_s1 = vaddq_s16(input_1, input_6);
- const int16x8_t v_s2 = vaddq_s16(input_2, input_5);
- const int16x8_t v_s3 = vaddq_s16(input_3, input_4);
- const int16x8_t v_s4 = vsubq_s16(input_3, input_4);
- const int16x8_t v_s5 = vsubq_s16(input_2, input_5);
- const int16x8_t v_s6 = vsubq_s16(input_1, input_6);
- const int16x8_t v_s7 = vsubq_s16(input_0, input_7);
- // fdct4(step, step);
- int16x8_t v_x0 = vaddq_s16(v_s0, v_s3);
- int16x8_t v_x1 = vaddq_s16(v_s1, v_s2);
- int16x8_t v_x2 = vsubq_s16(v_s1, v_s2);
- int16x8_t v_x3 = vsubq_s16(v_s0, v_s3);
- // fdct4(step, step);
- int32x4_t v_t0_lo = vaddl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1));
- int32x4_t v_t0_hi = vaddl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1));
- int32x4_t v_t1_lo = vsubl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1));
- int32x4_t v_t1_hi = vsubl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1));
- int32x4_t v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), (int16_t)cospi_24_64);
- int32x4_t v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), (int16_t)cospi_24_64);
- int32x4_t v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_24_64);
- int32x4_t v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_24_64);
- v_t2_lo = vmlal_n_s16(v_t2_lo, vget_low_s16(v_x3), (int16_t)cospi_8_64);
- v_t2_hi = vmlal_n_s16(v_t2_hi, vget_high_s16(v_x3), (int16_t)cospi_8_64);
- v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x2), (int16_t)cospi_8_64);
- v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x2), (int16_t)cospi_8_64);
- v_t0_lo = vmulq_n_s32(v_t0_lo, cospi_16_64);
- v_t0_hi = vmulq_n_s32(v_t0_hi, cospi_16_64);
- v_t1_lo = vmulq_n_s32(v_t1_lo, cospi_16_64);
- v_t1_hi = vmulq_n_s32(v_t1_hi, cospi_16_64);
- {
- const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS);
- const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS);
- const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS);
- const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS);
- const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS);
- const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS);
- const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS);
- const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS);
- out_0 = vcombine_s16(a, c); // 00 01 02 03 40 41 42 43
- out_2 = vcombine_s16(e, g); // 20 21 22 23 60 61 62 63
- out_4 = vcombine_s16(b, d); // 04 05 06 07 44 45 46 47
- out_6 = vcombine_s16(f, h); // 24 25 26 27 64 65 66 67
- }
- // Stage 2
- v_x0 = vsubq_s16(v_s6, v_s5);
- v_x1 = vaddq_s16(v_s6, v_s5);
- v_t0_lo = vmull_n_s16(vget_low_s16(v_x0), (int16_t)cospi_16_64);
- v_t0_hi = vmull_n_s16(vget_high_s16(v_x0), (int16_t)cospi_16_64);
- v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), (int16_t)cospi_16_64);
- v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), (int16_t)cospi_16_64);
- {
- const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS);
- const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS);
- const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS);
- const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS);
- const int16x8_t ab = vcombine_s16(a, b);
- const int16x8_t cd = vcombine_s16(c, d);
- // Stage 3
- v_x0 = vaddq_s16(v_s4, ab);
- v_x1 = vsubq_s16(v_s4, ab);
- v_x2 = vsubq_s16(v_s7, cd);
- v_x3 = vaddq_s16(v_s7, cd);
- }
- // Stage 4
- v_t0_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_4_64);
- v_t0_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_4_64);
- v_t0_lo = vmlal_n_s16(v_t0_lo, vget_low_s16(v_x0), (int16_t)cospi_28_64);
- v_t0_hi = vmlal_n_s16(v_t0_hi, vget_high_s16(v_x0), (int16_t)cospi_28_64);
- v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), (int16_t)cospi_12_64);
- v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), (int16_t)cospi_12_64);
- v_t1_lo = vmlal_n_s16(v_t1_lo, vget_low_s16(v_x2), (int16_t)cospi_20_64);
- v_t1_hi = vmlal_n_s16(v_t1_hi, vget_high_s16(v_x2), (int16_t)cospi_20_64);
- v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), (int16_t)cospi_12_64);
- v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), (int16_t)cospi_12_64);
- v_t2_lo = vmlsl_n_s16(v_t2_lo, vget_low_s16(v_x1), (int16_t)cospi_20_64);
- v_t2_hi = vmlsl_n_s16(v_t2_hi, vget_high_s16(v_x1), (int16_t)cospi_20_64);
- v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_28_64);
- v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_28_64);
- v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x0), (int16_t)cospi_4_64);
- v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x0), (int16_t)cospi_4_64);
- {
- const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS);
- const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS);
- const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS);
- const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS);
- const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS);
- const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS);
- const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS);
- const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS);
- out_1 = vcombine_s16(a, c); // 10 11 12 13 50 51 52 53
- out_3 = vcombine_s16(e, g); // 30 31 32 33 70 71 72 73
- out_5 = vcombine_s16(b, d); // 14 15 16 17 54 55 56 57
- out_7 = vcombine_s16(f, h); // 34 35 36 37 74 75 76 77
- }
- // transpose 8x8
- {
- // 00 01 02 03 40 41 42 43
- // 10 11 12 13 50 51 52 53
- // 20 21 22 23 60 61 62 63
- // 30 31 32 33 70 71 72 73
- // 04 05 06 07 44 45 46 47
- // 14 15 16 17 54 55 56 57
- // 24 25 26 27 64 65 66 67
- // 34 35 36 37 74 75 76 77
- const int32x4x2_t r02_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_0),
- vreinterpretq_s32_s16(out_2));
- const int32x4x2_t r13_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_1),
- vreinterpretq_s32_s16(out_3));
- const int32x4x2_t r46_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_4),
- vreinterpretq_s32_s16(out_6));
- const int32x4x2_t r57_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_5),
- vreinterpretq_s32_s16(out_7));
- const int16x8x2_t r01_s16 =
- vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[0]),
- vreinterpretq_s16_s32(r13_s32.val[0]));
- const int16x8x2_t r23_s16 =
- vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[1]),
- vreinterpretq_s16_s32(r13_s32.val[1]));
- const int16x8x2_t r45_s16 =
- vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[0]),
- vreinterpretq_s16_s32(r57_s32.val[0]));
- const int16x8x2_t r67_s16 =
- vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[1]),
- vreinterpretq_s16_s32(r57_s32.val[1]));
- input_0 = r01_s16.val[0];
- input_1 = r01_s16.val[1];
- input_2 = r23_s16.val[0];
- input_3 = r23_s16.val[1];
- input_4 = r45_s16.val[0];
- input_5 = r45_s16.val[1];
- input_6 = r67_s16.val[0];
- input_7 = r67_s16.val[1];
- // 00 10 20 30 40 50 60 70
- // 01 11 21 31 41 51 61 71
- // 02 12 22 32 42 52 62 72
- // 03 13 23 33 43 53 63 73
- // 04 14 24 34 44 54 64 74
- // 05 15 25 35 45 55 65 75
- // 06 16 26 36 46 56 66 76
- // 07 17 27 37 47 57 67 77
- }
- } // for
- {
- // from vp9_dct_sse2.c
- // Post-condition (division by two)
- // division of two 16 bits signed numbers using shifts
- // n / 2 = (n - (n >> 15)) >> 1
- const int16x8_t sign_in0 = vshrq_n_s16(input_0, 15);
- const int16x8_t sign_in1 = vshrq_n_s16(input_1, 15);
- const int16x8_t sign_in2 = vshrq_n_s16(input_2, 15);
- const int16x8_t sign_in3 = vshrq_n_s16(input_3, 15);
- const int16x8_t sign_in4 = vshrq_n_s16(input_4, 15);
- const int16x8_t sign_in5 = vshrq_n_s16(input_5, 15);
- const int16x8_t sign_in6 = vshrq_n_s16(input_6, 15);
- const int16x8_t sign_in7 = vshrq_n_s16(input_7, 15);
- input_0 = vhsubq_s16(input_0, sign_in0);
- input_1 = vhsubq_s16(input_1, sign_in1);
- input_2 = vhsubq_s16(input_2, sign_in2);
- input_3 = vhsubq_s16(input_3, sign_in3);
- input_4 = vhsubq_s16(input_4, sign_in4);
- input_5 = vhsubq_s16(input_5, sign_in5);
- input_6 = vhsubq_s16(input_6, sign_in6);
- input_7 = vhsubq_s16(input_7, sign_in7);
- // store results
- vst1q_s16(&final_output[0 * 8], input_0);
- vst1q_s16(&final_output[1 * 8], input_1);
- vst1q_s16(&final_output[2 * 8], input_2);
- vst1q_s16(&final_output[3 * 8], input_3);
- vst1q_s16(&final_output[4 * 8], input_4);
- vst1q_s16(&final_output[5 * 8], input_5);
- vst1q_s16(&final_output[6 * 8], input_6);
- vst1q_s16(&final_output[7 * 8], input_7);
- }
-}
-
--- a/vp9/encoder/vp9_dct.c
+++ b/vp9/encoder/vp9_dct.c
@@ -13,21 +13,15 @@
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
-#include "vpx_ports/mem.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_dct.h"
+#include "vpx_ports/mem.h"
+#include "vpx_dsp/fwd_txfm.h"
-static INLINE tran_high_t fdct_round_shift(tran_high_t input) {
- tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
- // TODO(debargha, peter.derivaz): Find new bounds for this assert
- // and make the bounds consts.
- // assert(INT16_MIN <= rv && rv <= INT16_MAX);
- return rv;
-}
-
static void fdct4(const tran_low_t *input, tran_low_t *output) {
tran_high_t step[4];
tran_high_t temp1, temp2;
@@ -546,73 +540,6 @@
output[1] = 0;
}
-void vp9_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
- // The 2D transform is done with two passes which are actually pretty
- // similar. In the first one, we transform the columns and transpose
- // the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we transpose the columns (that
- // is the transposed rows) and transpose the results (so that it goes back
- // in normal/row positions).
- int pass;
- // We need an intermediate buffer between passes.
- tran_low_t intermediate[4 * 4];
- const int16_t *in_pass0 = input;
- const tran_low_t *in = NULL;
- tran_low_t *out = intermediate;
- // Do the two transform/transpose passes
- for (pass = 0; pass < 2; ++pass) {
- tran_high_t input[4]; // canbe16
- tran_high_t step[4]; // canbe16
- tran_high_t temp1, temp2; // needs32
- int i;
- for (i = 0; i < 4; ++i) {
- // Load inputs.
- if (0 == pass) {
- input[0] = in_pass0[0 * stride] * 16;
- input[1] = in_pass0[1 * stride] * 16;
- input[2] = in_pass0[2 * stride] * 16;
- input[3] = in_pass0[3 * stride] * 16;
- if (i == 0 && input[0]) {
- input[0] += 1;
- }
- } else {
- input[0] = in[0 * 4];
- input[1] = in[1 * 4];
- input[2] = in[2 * 4];
- input[3] = in[3 * 4];
- }
- // Transform.
- step[0] = input[0] + input[3];
- step[1] = input[1] + input[2];
- step[2] = input[1] - input[2];
- step[3] = input[0] - input[3];
- temp1 = (step[0] + step[1]) * cospi_16_64;
- temp2 = (step[0] - step[1]) * cospi_16_64;
- out[0] = (tran_low_t)fdct_round_shift(temp1);
- out[2] = (tran_low_t)fdct_round_shift(temp2);
- temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
- temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
- out[1] = (tran_low_t)fdct_round_shift(temp1);
- out[3] = (tran_low_t)fdct_round_shift(temp2);
- // Do next column (which is a transposed row in second/horizontal pass)
- in_pass0++;
- in++;
- out += 4;
- }
- // Setup in/out for next pass.
- in = intermediate;
- out = output;
- }
-
- {
- int i, j;
- for (i = 0; i < 4; ++i) {
- for (j = 0; j < 4; ++j)
- output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
- }
- }
-}
-
void vp9_fht4x4_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
if (tx_type == DCT_DCT) {
@@ -656,77 +583,6 @@
output[1] = 0;
}
-void vp9_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
- int i, j;
- tran_low_t intermediate[64];
-
- // Transform columns
- {
- tran_low_t *output = intermediate;
- tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
- tran_high_t t0, t1, t2, t3; // needs32
- tran_high_t x0, x1, x2, x3; // canbe16
-
- int i;
- for (i = 0; i < 8; i++) {
- // stage 1
- s0 = (input[0 * stride] + input[7 * stride]) * 4;
- s1 = (input[1 * stride] + input[6 * stride]) * 4;
- s2 = (input[2 * stride] + input[5 * stride]) * 4;
- s3 = (input[3 * stride] + input[4 * stride]) * 4;
- s4 = (input[3 * stride] - input[4 * stride]) * 4;
- s5 = (input[2 * stride] - input[5 * stride]) * 4;
- s6 = (input[1 * stride] - input[6 * stride]) * 4;
- s7 = (input[0 * stride] - input[7 * stride]) * 4;
-
- // fdct4(step, step);
- x0 = s0 + s3;
- x1 = s1 + s2;
- x2 = s1 - s2;
- x3 = s0 - s3;
- t0 = (x0 + x1) * cospi_16_64;
- t1 = (x0 - x1) * cospi_16_64;
- t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
- t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
- output[0 * 8] = (tran_low_t)fdct_round_shift(t0);
- output[2 * 8] = (tran_low_t)fdct_round_shift(t2);
- output[4 * 8] = (tran_low_t)fdct_round_shift(t1);
- output[6 * 8] = (tran_low_t)fdct_round_shift(t3);
-
- // Stage 2
- t0 = (s6 - s5) * cospi_16_64;
- t1 = (s6 + s5) * cospi_16_64;
- t2 = fdct_round_shift(t0);
- t3 = fdct_round_shift(t1);
-
- // Stage 3
- x0 = s4 + t2;
- x1 = s4 - t2;
- x2 = s7 - t3;
- x3 = s7 + t3;
-
- // Stage 4
- t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
- t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
- t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
- t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
- output[1 * 8] = (tran_low_t)fdct_round_shift(t0);
- output[3 * 8] = (tran_low_t)fdct_round_shift(t2);
- output[5 * 8] = (tran_low_t)fdct_round_shift(t1);
- output[7 * 8] = (tran_low_t)fdct_round_shift(t3);
- input++;
- output++;
- }
- }
-
- // Rows
- for (i = 0; i < 8; ++i) {
- fdct8(&intermediate[i * 8], &final_output[i * 8]);
- for (j = 0; j < 8; ++j)
- final_output[j + i * 8] /= 2;
- }
-}
-
void vp9_fdct8x8_quant_c(const int16_t *input, int stride,
tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block,
@@ -850,186 +706,6 @@
output[1] = 0;
}
-void vp9_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
- // The 2D transform is done with two passes which are actually pretty
- // similar. In the first one, we transform the columns and transpose
- // the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we transpose the columns (that
- // is the transposed rows) and transpose the results (so that it goes back
- // in normal/row positions).
- int pass;
- // We need an intermediate buffer between passes.
- tran_low_t intermediate[256];
- const int16_t *in_pass0 = input;
- const tran_low_t *in = NULL;
- tran_low_t *out = intermediate;
- // Do the two transform/transpose passes
- for (pass = 0; pass < 2; ++pass) {
- tran_high_t step1[8]; // canbe16
- tran_high_t step2[8]; // canbe16
- tran_high_t step3[8]; // canbe16
- tran_high_t input[8]; // canbe16
- tran_high_t temp1, temp2; // needs32
- int i;
- for (i = 0; i < 16; i++) {
- if (0 == pass) {
- // Calculate input for the first 8 results.
- input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4;
- input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4;
- input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4;
- input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4;
- input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4;
- input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4;
- input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4;
- input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4;
- // Calculate input for the next 8 results.
- step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4;
- step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4;
- step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4;
- step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4;
- step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4;
- step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4;
- step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4;
- step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4;
- } else {
- // Calculate input for the first 8 results.
- input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
- input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
- input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
- input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
- input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
- input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
- input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
- input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
- // Calculate input for the next 8 results.
- step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
- step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
- step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
- step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
- step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
- step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
- step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
- step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
- }
- // Work on the first eight values; fdct8(input, even_results);
- {
- tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
- tran_high_t t0, t1, t2, t3; // needs32
- tran_high_t x0, x1, x2, x3; // canbe16
-
- // stage 1
- s0 = input[0] + input[7];
- s1 = input[1] + input[6];
- s2 = input[2] + input[5];
- s3 = input[3] + input[4];
- s4 = input[3] - input[4];
- s5 = input[2] - input[5];
- s6 = input[1] - input[6];
- s7 = input[0] - input[7];
-
- // fdct4(step, step);
- x0 = s0 + s3;
- x1 = s1 + s2;
- x2 = s1 - s2;
- x3 = s0 - s3;
- t0 = (x0 + x1) * cospi_16_64;
- t1 = (x0 - x1) * cospi_16_64;
- t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
- t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
- out[0] = (tran_low_t)fdct_round_shift(t0);
- out[4] = (tran_low_t)fdct_round_shift(t2);
- out[8] = (tran_low_t)fdct_round_shift(t1);
- out[12] = (tran_low_t)fdct_round_shift(t3);
-
- // Stage 2
- t0 = (s6 - s5) * cospi_16_64;
- t1 = (s6 + s5) * cospi_16_64;
- t2 = fdct_round_shift(t0);
- t3 = fdct_round_shift(t1);
-
- // Stage 3
- x0 = s4 + t2;
- x1 = s4 - t2;
- x2 = s7 - t3;
- x3 = s7 + t3;
-
- // Stage 4
- t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
- t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
- t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
- t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
- out[2] = (tran_low_t)fdct_round_shift(t0);
- out[6] = (tran_low_t)fdct_round_shift(t2);
- out[10] = (tran_low_t)fdct_round_shift(t1);
- out[14] = (tran_low_t)fdct_round_shift(t3);
- }
- // Work on the next eight values; step1 -> odd_results
- {
- // step 2
- temp1 = (step1[5] - step1[2]) * cospi_16_64;
- temp2 = (step1[4] - step1[3]) * cospi_16_64;
- step2[2] = fdct_round_shift(temp1);
- step2[3] = fdct_round_shift(temp2);
- temp1 = (step1[4] + step1[3]) * cospi_16_64;
- temp2 = (step1[5] + step1[2]) * cospi_16_64;
- step2[4] = fdct_round_shift(temp1);
- step2[5] = fdct_round_shift(temp2);
- // step 3
- step3[0] = step1[0] + step2[3];
- step3[1] = step1[1] + step2[2];
- step3[2] = step1[1] - step2[2];
- step3[3] = step1[0] - step2[3];
- step3[4] = step1[7] - step2[4];
- step3[5] = step1[6] - step2[5];
- step3[6] = step1[6] + step2[5];
- step3[7] = step1[7] + step2[4];
- // step 4
- temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
- temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
- step2[1] = fdct_round_shift(temp1);
- step2[2] = fdct_round_shift(temp2);
- temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
- temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
- step2[5] = fdct_round_shift(temp1);
- step2[6] = fdct_round_shift(temp2);
- // step 5
- step1[0] = step3[0] + step2[1];
- step1[1] = step3[0] - step2[1];
- step1[2] = step3[3] + step2[2];
- step1[3] = step3[3] - step2[2];
- step1[4] = step3[4] - step2[5];
- step1[5] = step3[4] + step2[5];
- step1[6] = step3[7] - step2[6];
- step1[7] = step3[7] + step2[6];
- // step 6
- temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
- temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
- out[1] = (tran_low_t)fdct_round_shift(temp1);
- out[9] = (tran_low_t)fdct_round_shift(temp2);
- temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
- temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
- out[5] = (tran_low_t)fdct_round_shift(temp1);
- out[13] = (tran_low_t)fdct_round_shift(temp2);
- temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
- temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
- out[3] = (tran_low_t)fdct_round_shift(temp1);
- out[11] = (tran_low_t)fdct_round_shift(temp2);
- temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
- temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
- out[7] = (tran_low_t)fdct_round_shift(temp1);
- out[15] = (tran_low_t)fdct_round_shift(temp2);
- }
- // Do next column (which is a transposed row in second/horizontal pass)
- in++;
- in_pass0++;
- out += 16;
- }
- // Setup in/out for next pass.
- in = intermediate;
- out = output;
- }
-}
-
void vp9_fht8x8_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
if (tx_type == DCT_DCT) {
@@ -1551,11 +1227,6 @@
}
#if CONFIG_VP9_HIGHBITDEPTH
-void vp9_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
- int stride) {
- vp9_fdct4x4_c(input, output, stride);
-}
-
void vp9_highbd_fht4x4_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
vp9_fht4x4_c(input, output, stride, tx_type);
@@ -1566,19 +1237,9 @@
vp9_fdct8x8_1_c(input, final_output, stride);
}
-void vp9_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
- int stride) {
- vp9_fdct8x8_c(input, final_output, stride);
-}
-
void vp9_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output,
int stride) {
vp9_fdct16x16_1_c(input, output, stride);
-}
-
-void vp9_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
- int stride) {
- vp9_fdct16x16_c(input, output, stride);
}
void vp9_highbd_fht8x8_c(const int16_t *input, tran_low_t *output,
--- a/vp9/encoder/x86/vp9_dct_sse2.c
+++ b/vp9/encoder/x86/vp9_dct_sse2.c
@@ -2275,14 +2275,6 @@
#define DCT_HIGH_BIT_DEPTH 0
-#define FDCT4x4_2D vp9_fdct4x4_sse2
-#define FDCT8x8_2D vp9_fdct8x8_sse2
-#define FDCT16x16_2D vp9_fdct16x16_sse2
-#include "vp9/encoder/x86/vp9_dct_sse2_impl.h"
-#undef FDCT4x4_2D
-#undef FDCT8x8_2D
-#undef FDCT16x16_2D
-
#define FDCT32x32_2D vp9_fdct32x32_rd_sse2
#define FDCT32x32_HIGH_PRECISION 0
#include "vp9/encoder/x86/vp9_dct32x32_sse2_impl.h"
@@ -2301,14 +2293,6 @@
#if CONFIG_VP9_HIGHBITDEPTH
#define DCT_HIGH_BIT_DEPTH 1
-
-#define FDCT4x4_2D vp9_highbd_fdct4x4_sse2
-#define FDCT8x8_2D vp9_highbd_fdct8x8_sse2
-#define FDCT16x16_2D vp9_highbd_fdct16x16_sse2
-#include "vp9/encoder/x86/vp9_dct_sse2_impl.h" // NOLINT
-#undef FDCT4x4_2D
-#undef FDCT8x8_2D
-#undef FDCT16x16_2D
#define FDCT32x32_2D vp9_highbd_fdct32x32_rd_sse2
#define FDCT32x32_HIGH_PRECISION 0
--- a/vp9/encoder/x86/vp9_dct_sse2_impl.h
+++ /dev/null
@@ -1,1024 +1,0 @@
-/*
- * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#include <emmintrin.h> // SSE2
-
-#include "./vp9_rtcd.h"
-#include "vp9/common/vp9_idct.h" // for cospi constants
-#include "vp9/encoder/vp9_dct.h"
-#include "vp9/encoder/x86/vp9_dct_sse2.h"
-#include "vpx_ports/mem.h"
-
-#if DCT_HIGH_BIT_DEPTH
-#define ADD_EPI16 _mm_adds_epi16
-#define SUB_EPI16 _mm_subs_epi16
-
-#else
-#define ADD_EPI16 _mm_add_epi16
-#define SUB_EPI16 _mm_sub_epi16
-#endif
-
-void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) {
- // This 2D transform implements 4 vertical 1D transforms followed
- // by 4 horizontal 1D transforms. The multiplies and adds are as given
- // by Chen, Smith and Fralick ('77). The commands for moving the data
- // around have been minimized by hand.
- // For the purposes of the comments, the 16 inputs are referred to at i0
- // through iF (in raster order), intermediate variables are a0, b0, c0
- // through f, and correspond to the in-place computations mapped to input
- // locations. The outputs, o0 through oF are labeled according to the
- // output locations.
-
- // Constants
- // These are the coefficients used for the multiplies.
- // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
- // where cospi_N_64 = cos(N pi /64)
- const __m128i k__cospi_A = octa_set_epi16(cospi_16_64, cospi_16_64,
- cospi_16_64, cospi_16_64,
- cospi_16_64, -cospi_16_64,
- cospi_16_64, -cospi_16_64);
- const __m128i k__cospi_B = octa_set_epi16(cospi_16_64, -cospi_16_64,
- cospi_16_64, -cospi_16_64,
- cospi_16_64, cospi_16_64,
- cospi_16_64, cospi_16_64);
- const __m128i k__cospi_C = octa_set_epi16(cospi_8_64, cospi_24_64,
- cospi_8_64, cospi_24_64,
- cospi_24_64, -cospi_8_64,
- cospi_24_64, -cospi_8_64);
- const __m128i k__cospi_D = octa_set_epi16(cospi_24_64, -cospi_8_64,
- cospi_24_64, -cospi_8_64,
- cospi_8_64, cospi_24_64,
- cospi_8_64, cospi_24_64);
- const __m128i k__cospi_E = octa_set_epi16(cospi_16_64, cospi_16_64,
- cospi_16_64, cospi_16_64,
- cospi_16_64, cospi_16_64,
- cospi_16_64, cospi_16_64);
- const __m128i k__cospi_F = octa_set_epi16(cospi_16_64, -cospi_16_64,
- cospi_16_64, -cospi_16_64,
- cospi_16_64, -cospi_16_64,
- cospi_16_64, -cospi_16_64);
- const __m128i k__cospi_G = octa_set_epi16(cospi_8_64, cospi_24_64,
- cospi_8_64, cospi_24_64,
- -cospi_8_64, -cospi_24_64,
- -cospi_8_64, -cospi_24_64);
- const __m128i k__cospi_H = octa_set_epi16(cospi_24_64, -cospi_8_64,
- cospi_24_64, -cospi_8_64,
- -cospi_24_64, cospi_8_64,
- -cospi_24_64, cospi_8_64);
-
- const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
- // This second rounding constant saves doing some extra adds at the end
- const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING
- +(DCT_CONST_ROUNDING << 1));
- const int DCT_CONST_BITS2 = DCT_CONST_BITS + 2;
- const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
- const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
- __m128i in0, in1;
-#if DCT_HIGH_BIT_DEPTH
- __m128i cmp0, cmp1;
- int test, overflow;
-#endif
-
- // Load inputs.
- in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
- in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
- in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
- (input + 2 * stride)));
- in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
- (input + 3 * stride)));
- // in0 = [i0 i1 i2 i3 iC iD iE iF]
- // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
-#if DCT_HIGH_BIT_DEPTH
- // Check inputs small enough to use optimised code
- cmp0 = _mm_xor_si128(_mm_cmpgt_epi16(in0, _mm_set1_epi16(0x3ff)),
- _mm_cmplt_epi16(in0, _mm_set1_epi16(0xfc00)));
- cmp1 = _mm_xor_si128(_mm_cmpgt_epi16(in1, _mm_set1_epi16(0x3ff)),
- _mm_cmplt_epi16(in1, _mm_set1_epi16(0xfc00)));
- test = _mm_movemask_epi8(_mm_or_si128(cmp0, cmp1));
- if (test) {
- vp9_highbd_fdct4x4_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
-
- // multiply by 16 to give some extra precision
- in0 = _mm_slli_epi16(in0, 4);
- in1 = _mm_slli_epi16(in1, 4);
- // if (i == 0 && input[0]) input[0] += 1;
- // add 1 to the upper left pixel if it is non-zero, which helps reduce
- // the round-trip error
- {
- // The mask will only contain whether the first value is zero, all
- // other comparison will fail as something shifted by 4 (above << 4)
- // can never be equal to one. To increment in the non-zero case, we
- // add the mask and one for the first element:
- // - if zero, mask = -1, v = v - 1 + 1 = v
- // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
- __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a);
- in0 = _mm_add_epi16(in0, mask);
- in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
- }
- // There are 4 total stages, alternating between an add/subtract stage
- // followed by an multiply-and-add stage.
- {
- // Stage 1: Add/subtract
-
- // in0 = [i0 i1 i2 i3 iC iD iE iF]
- // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
- const __m128i r0 = _mm_unpacklo_epi16(in0, in1);
- const __m128i r1 = _mm_unpackhi_epi16(in0, in1);
- // r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
- // r1 = [iC i8 iD i9 iE iA iF iB]
- const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
- const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
- // r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
- // r3 = [iC i8 iD i9 iF iB iE iA]
-
- const __m128i t0 = _mm_add_epi16(r2, r3);
- const __m128i t1 = _mm_sub_epi16(r2, r3);
- // t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
- // t1 = [aC a8 aD a9 aF aB aE aA]
-
- // Stage 2: multiply by constants (which gets us into 32 bits).
- // The constants needed here are:
- // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
- // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
- // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
- // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
- // Then add and right-shift to get back to 16-bit range
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- // w0 = [b0 b1 b7 b6]
- // w1 = [b8 b9 bF bE]
- // w2 = [b4 b5 b3 b2]
- // w3 = [bC bD bB bA]
- const __m128i x0 = _mm_packs_epi32(w0, w1);
- const __m128i x1 = _mm_packs_epi32(w2, w3);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x2(&x0, &x1);
- if (overflow) {
- vp9_highbd_fdct4x4_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- // x0 = [b0 b1 b7 b6 b8 b9 bF bE]
- // x1 = [b4 b5 b3 b2 bC bD bB bA]
- in0 = _mm_shuffle_epi32(x0, 0xD8);
- in1 = _mm_shuffle_epi32(x1, 0x8D);
- // in0 = [b0 b1 b8 b9 b7 b6 bF bE]
- // in1 = [b3 b2 bB bA b4 b5 bC bD]
- }
- {
- // vertical DCTs finished. Now we do the horizontal DCTs.
- // Stage 3: Add/subtract
-
- const __m128i t0 = ADD_EPI16(in0, in1);
- const __m128i t1 = SUB_EPI16(in0, in1);
- // t0 = [c0 c1 c8 c9 c4 c5 cC cD]
- // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE]
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x2(&t0, &t1);
- if (overflow) {
- vp9_highbd_fdct4x4_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
-
- // Stage 4: multiply by constants (which gets us into 32 bits).
- {
- // The constants needed here are:
- // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
- // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
- // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
- // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
- const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
- const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
- // Then add and right-shift to get back to 16-bit range
- // but this combines the final right-shift as well to save operations
- // This unusual rounding operations is to maintain bit-accurate
- // compatibility with the c version of this function which has two
- // rounding steps in a row.
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
- // w0 = [o0 o4 o8 oC]
- // w1 = [o2 o6 oA oE]
- // w2 = [o1 o5 o9 oD]
- // w3 = [o3 o7 oB oF]
- // remember the o's are numbered according to the correct output location
- const __m128i x0 = _mm_packs_epi32(w0, w1);
- const __m128i x1 = _mm_packs_epi32(w2, w3);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x2(&x0, &x1);
- if (overflow) {
- vp9_highbd_fdct4x4_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- {
- // x0 = [o0 o4 o8 oC o2 o6 oA oE]
- // x1 = [o1 o5 o9 oD o3 o7 oB oF]
- const __m128i y0 = _mm_unpacklo_epi16(x0, x1);
- const __m128i y1 = _mm_unpackhi_epi16(x0, x1);
- // y0 = [o0 o1 o4 o5 o8 o9 oC oD]
- // y1 = [o2 o3 o6 o7 oA oB oE oF]
- in0 = _mm_unpacklo_epi32(y0, y1);
- // in0 = [o0 o1 o2 o3 o4 o5 o6 o7]
- in1 = _mm_unpackhi_epi32(y0, y1);
- // in1 = [o8 o9 oA oB oC oD oE oF]
- }
- }
- }
- // Post-condition (v + 1) >> 2 is now incorporated into previous
- // add and right-shift commands. Only 2 store instructions needed
- // because we are using the fact that 1/3 are stored just after 0/2.
- storeu_output(&in0, output + 0 * 4);
- storeu_output(&in1, output + 2 * 4);
-}
-
-
-void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) {
- int pass;
- // Constants
- // When we use them, in one case, they are all the same. In all others
- // it's a pair of them that we need to repeat four times. This is done
- // by constructing the 32 bit constant corresponding to that pair.
- const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
- const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
- const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
- const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
- const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
- const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
- const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
- const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
- const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
-#if DCT_HIGH_BIT_DEPTH
- int overflow;
-#endif
- // Load input
- __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
- __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
- __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
- __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
- __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
- __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
- __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
- __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
- // Pre-condition input (shift by two)
- in0 = _mm_slli_epi16(in0, 2);
- in1 = _mm_slli_epi16(in1, 2);
- in2 = _mm_slli_epi16(in2, 2);
- in3 = _mm_slli_epi16(in3, 2);
- in4 = _mm_slli_epi16(in4, 2);
- in5 = _mm_slli_epi16(in5, 2);
- in6 = _mm_slli_epi16(in6, 2);
- in7 = _mm_slli_epi16(in7, 2);
-
- // We do two passes, first the columns, then the rows. The results of the
- // first pass are transposed so that the same column code can be reused. The
- // results of the second pass are also transposed so that the rows (processed
- // as columns) are put back in row positions.
- for (pass = 0; pass < 2; pass++) {
- // To store results of each pass before the transpose.
- __m128i res0, res1, res2, res3, res4, res5, res6, res7;
- // Add/subtract
- const __m128i q0 = ADD_EPI16(in0, in7);
- const __m128i q1 = ADD_EPI16(in1, in6);
- const __m128i q2 = ADD_EPI16(in2, in5);
- const __m128i q3 = ADD_EPI16(in3, in4);
- const __m128i q4 = SUB_EPI16(in3, in4);
- const __m128i q5 = SUB_EPI16(in2, in5);
- const __m128i q6 = SUB_EPI16(in1, in6);
- const __m128i q7 = SUB_EPI16(in0, in7);
-#if DCT_HIGH_BIT_DEPTH
- if (pass == 1) {
- overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3,
- &q4, &q5, &q6, &q7);
- if (overflow) {
- vp9_highbd_fdct8x8_c(input, output, stride);
- return;
- }
- }
-#endif // DCT_HIGH_BIT_DEPTH
- // Work on first four results
- {
- // Add/subtract
- const __m128i r0 = ADD_EPI16(q0, q3);
- const __m128i r1 = ADD_EPI16(q1, q2);
- const __m128i r2 = SUB_EPI16(q1, q2);
- const __m128i r3 = SUB_EPI16(q0, q3);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
- if (overflow) {
- vp9_highbd_fdct8x8_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- // Interleave to do the multiply by constants which gets us into 32bits
- {
- const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
- const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
- const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
- const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
- const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
- const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
- const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
- const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
- const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
- const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
- const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
- const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
- const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
- const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
- // Combine
- res0 = _mm_packs_epi32(w0, w1);
- res4 = _mm_packs_epi32(w2, w3);
- res2 = _mm_packs_epi32(w4, w5);
- res6 = _mm_packs_epi32(w6, w7);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6);
- if (overflow) {
- vp9_highbd_fdct8x8_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- }
- // Work on next four results
- {
- // Interleave to do the multiply by constants which gets us into 32bits
- const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
- const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
- const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
- const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
- const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
- const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
- // dct_const_round_shift
- const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
- const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
- const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
- const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
- const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
- const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
- const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
- const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
- // Combine
- const __m128i r0 = _mm_packs_epi32(s0, s1);
- const __m128i r1 = _mm_packs_epi32(s2, s3);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x2(&r0, &r1);
- if (overflow) {
- vp9_highbd_fdct8x8_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- {
- // Add/subtract
- const __m128i x0 = ADD_EPI16(q4, r0);
- const __m128i x1 = SUB_EPI16(q4, r0);
- const __m128i x2 = SUB_EPI16(q7, r1);
- const __m128i x3 = ADD_EPI16(q7, r1);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
- if (overflow) {
- vp9_highbd_fdct8x8_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- // Interleave to do the multiply by constants which gets us into 32bits
- {
- const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
- const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
- const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
- const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
- const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
- const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
- const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
- const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
- // dct_const_round_shift
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
- const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
- const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
- const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
- const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
- const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
- const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
- const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
- const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
- // Combine
- res1 = _mm_packs_epi32(w0, w1);
- res7 = _mm_packs_epi32(w2, w3);
- res5 = _mm_packs_epi32(w4, w5);
- res3 = _mm_packs_epi32(w6, w7);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3);
- if (overflow) {
- vp9_highbd_fdct8x8_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- }
- }
- // Transpose the 8x8.
- {
- // 00 01 02 03 04 05 06 07
- // 10 11 12 13 14 15 16 17
- // 20 21 22 23 24 25 26 27
- // 30 31 32 33 34 35 36 37
- // 40 41 42 43 44 45 46 47
- // 50 51 52 53 54 55 56 57
- // 60 61 62 63 64 65 66 67
- // 70 71 72 73 74 75 76 77
- const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
- const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
- const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
- const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
- const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
- const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
- const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
- const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
- // 00 10 01 11 02 12 03 13
- // 20 30 21 31 22 32 23 33
- // 04 14 05 15 06 16 07 17
- // 24 34 25 35 26 36 27 37
- // 40 50 41 51 42 52 43 53
- // 60 70 61 71 62 72 63 73
- // 54 54 55 55 56 56 57 57
- // 64 74 65 75 66 76 67 77
- const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
- const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
- const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
- const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
- const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
- const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
- const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
- const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
- // 00 10 20 30 01 11 21 31
- // 40 50 60 70 41 51 61 71
- // 02 12 22 32 03 13 23 33
- // 42 52 62 72 43 53 63 73
- // 04 14 24 34 05 15 21 36
- // 44 54 64 74 45 55 61 76
- // 06 16 26 36 07 17 27 37
- // 46 56 66 76 47 57 67 77
- in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
- in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
- in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
- in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
- in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
- in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
- in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
- in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
- // 00 10 20 30 40 50 60 70
- // 01 11 21 31 41 51 61 71
- // 02 12 22 32 42 52 62 72
- // 03 13 23 33 43 53 63 73
- // 04 14 24 34 44 54 64 74
- // 05 15 25 35 45 55 65 75
- // 06 16 26 36 46 56 66 76
- // 07 17 27 37 47 57 67 77
- }
- }
- // Post-condition output and store it
- {
- // Post-condition (division by two)
- // division of two 16 bits signed numbers using shifts
- // n / 2 = (n - (n >> 15)) >> 1
- const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
- const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
- const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
- const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
- const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
- const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
- const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
- const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
- in0 = _mm_sub_epi16(in0, sign_in0);
- in1 = _mm_sub_epi16(in1, sign_in1);
- in2 = _mm_sub_epi16(in2, sign_in2);
- in3 = _mm_sub_epi16(in3, sign_in3);
- in4 = _mm_sub_epi16(in4, sign_in4);
- in5 = _mm_sub_epi16(in5, sign_in5);
- in6 = _mm_sub_epi16(in6, sign_in6);
- in7 = _mm_sub_epi16(in7, sign_in7);
- in0 = _mm_srai_epi16(in0, 1);
- in1 = _mm_srai_epi16(in1, 1);
- in2 = _mm_srai_epi16(in2, 1);
- in3 = _mm_srai_epi16(in3, 1);
- in4 = _mm_srai_epi16(in4, 1);
- in5 = _mm_srai_epi16(in5, 1);
- in6 = _mm_srai_epi16(in6, 1);
- in7 = _mm_srai_epi16(in7, 1);
- // store results
- store_output(&in0, (output + 0 * 8));
- store_output(&in1, (output + 1 * 8));
- store_output(&in2, (output + 2 * 8));
- store_output(&in3, (output + 3 * 8));
- store_output(&in4, (output + 4 * 8));
- store_output(&in5, (output + 5 * 8));
- store_output(&in6, (output + 6 * 8));
- store_output(&in7, (output + 7 * 8));
- }
-}
-
-void FDCT16x16_2D(const int16_t *input, tran_low_t *output, int stride) {
- // The 2D transform is done with two passes which are actually pretty
- // similar. In the first one, we transform the columns and transpose
- // the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we transpose the columns (that
- // is the transposed rows) and transpose the results (so that it goes back
- // in normal/row positions).
- int pass;
- // We need an intermediate buffer between passes.
- DECLARE_ALIGNED(16, int16_t, intermediate[256]);
- const int16_t *in = input;
- int16_t *out0 = intermediate;
- tran_low_t *out1 = output;
- // Constants
- // When we use them, in one case, they are all the same. In all others
- // it's a pair of them that we need to repeat four times. This is done
- // by constructing the 32 bit constant corresponding to that pair.
- const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
- const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
- const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
- const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
- const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
- const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
- const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
- const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
- const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
- const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
- const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
- const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
- const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
- const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
- const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
- const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
- const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
- const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
- const __m128i kOne = _mm_set1_epi16(1);
- // Do the two transform/transpose passes
- for (pass = 0; pass < 2; ++pass) {
- // We process eight columns (transposed rows in second pass) at a time.
- int column_start;
-#if DCT_HIGH_BIT_DEPTH
- int overflow;
-#endif
- for (column_start = 0; column_start < 16; column_start += 8) {
- __m128i in00, in01, in02, in03, in04, in05, in06, in07;
- __m128i in08, in09, in10, in11, in12, in13, in14, in15;
- __m128i input0, input1, input2, input3, input4, input5, input6, input7;
- __m128i step1_0, step1_1, step1_2, step1_3;
- __m128i step1_4, step1_5, step1_6, step1_7;
- __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6;
- __m128i step3_0, step3_1, step3_2, step3_3;
- __m128i step3_4, step3_5, step3_6, step3_7;
- __m128i res00, res01, res02, res03, res04, res05, res06, res07;
- __m128i res08, res09, res10, res11, res12, res13, res14, res15;
- // Load and pre-condition input.
- if (0 == pass) {
- in00 = _mm_load_si128((const __m128i *)(in + 0 * stride));
- in01 = _mm_load_si128((const __m128i *)(in + 1 * stride));
- in02 = _mm_load_si128((const __m128i *)(in + 2 * stride));
- in03 = _mm_load_si128((const __m128i *)(in + 3 * stride));
- in04 = _mm_load_si128((const __m128i *)(in + 4 * stride));
- in05 = _mm_load_si128((const __m128i *)(in + 5 * stride));
- in06 = _mm_load_si128((const __m128i *)(in + 6 * stride));
- in07 = _mm_load_si128((const __m128i *)(in + 7 * stride));
- in08 = _mm_load_si128((const __m128i *)(in + 8 * stride));
- in09 = _mm_load_si128((const __m128i *)(in + 9 * stride));
- in10 = _mm_load_si128((const __m128i *)(in + 10 * stride));
- in11 = _mm_load_si128((const __m128i *)(in + 11 * stride));
- in12 = _mm_load_si128((const __m128i *)(in + 12 * stride));
- in13 = _mm_load_si128((const __m128i *)(in + 13 * stride));
- in14 = _mm_load_si128((const __m128i *)(in + 14 * stride));
- in15 = _mm_load_si128((const __m128i *)(in + 15 * stride));
- // x = x << 2
- in00 = _mm_slli_epi16(in00, 2);
- in01 = _mm_slli_epi16(in01, 2);
- in02 = _mm_slli_epi16(in02, 2);
- in03 = _mm_slli_epi16(in03, 2);
- in04 = _mm_slli_epi16(in04, 2);
- in05 = _mm_slli_epi16(in05, 2);
- in06 = _mm_slli_epi16(in06, 2);
- in07 = _mm_slli_epi16(in07, 2);
- in08 = _mm_slli_epi16(in08, 2);
- in09 = _mm_slli_epi16(in09, 2);
- in10 = _mm_slli_epi16(in10, 2);
- in11 = _mm_slli_epi16(in11, 2);
- in12 = _mm_slli_epi16(in12, 2);
- in13 = _mm_slli_epi16(in13, 2);
- in14 = _mm_slli_epi16(in14, 2);
- in15 = _mm_slli_epi16(in15, 2);
- } else {
- in00 = _mm_load_si128((const __m128i *)(in + 0 * 16));
- in01 = _mm_load_si128((const __m128i *)(in + 1 * 16));
- in02 = _mm_load_si128((const __m128i *)(in + 2 * 16));
- in03 = _mm_load_si128((const __m128i *)(in + 3 * 16));
- in04 = _mm_load_si128((const __m128i *)(in + 4 * 16));
- in05 = _mm_load_si128((const __m128i *)(in + 5 * 16));
- in06 = _mm_load_si128((const __m128i *)(in + 6 * 16));
- in07 = _mm_load_si128((const __m128i *)(in + 7 * 16));
- in08 = _mm_load_si128((const __m128i *)(in + 8 * 16));
- in09 = _mm_load_si128((const __m128i *)(in + 9 * 16));
- in10 = _mm_load_si128((const __m128i *)(in + 10 * 16));
- in11 = _mm_load_si128((const __m128i *)(in + 11 * 16));
- in12 = _mm_load_si128((const __m128i *)(in + 12 * 16));
- in13 = _mm_load_si128((const __m128i *)(in + 13 * 16));
- in14 = _mm_load_si128((const __m128i *)(in + 14 * 16));
- in15 = _mm_load_si128((const __m128i *)(in + 15 * 16));
- // x = (x + 1) >> 2
- in00 = _mm_add_epi16(in00, kOne);
- in01 = _mm_add_epi16(in01, kOne);
- in02 = _mm_add_epi16(in02, kOne);
- in03 = _mm_add_epi16(in03, kOne);
- in04 = _mm_add_epi16(in04, kOne);
- in05 = _mm_add_epi16(in05, kOne);
- in06 = _mm_add_epi16(in06, kOne);
- in07 = _mm_add_epi16(in07, kOne);
- in08 = _mm_add_epi16(in08, kOne);
- in09 = _mm_add_epi16(in09, kOne);
- in10 = _mm_add_epi16(in10, kOne);
- in11 = _mm_add_epi16(in11, kOne);
- in12 = _mm_add_epi16(in12, kOne);
- in13 = _mm_add_epi16(in13, kOne);
- in14 = _mm_add_epi16(in14, kOne);
- in15 = _mm_add_epi16(in15, kOne);
- in00 = _mm_srai_epi16(in00, 2);
- in01 = _mm_srai_epi16(in01, 2);
- in02 = _mm_srai_epi16(in02, 2);
- in03 = _mm_srai_epi16(in03, 2);
- in04 = _mm_srai_epi16(in04, 2);
- in05 = _mm_srai_epi16(in05, 2);
- in06 = _mm_srai_epi16(in06, 2);
- in07 = _mm_srai_epi16(in07, 2);
- in08 = _mm_srai_epi16(in08, 2);
- in09 = _mm_srai_epi16(in09, 2);
- in10 = _mm_srai_epi16(in10, 2);
- in11 = _mm_srai_epi16(in11, 2);
- in12 = _mm_srai_epi16(in12, 2);
- in13 = _mm_srai_epi16(in13, 2);
- in14 = _mm_srai_epi16(in14, 2);
- in15 = _mm_srai_epi16(in15, 2);
- }
- in += 8;
- // Calculate input for the first 8 results.
- {
- input0 = ADD_EPI16(in00, in15);
- input1 = ADD_EPI16(in01, in14);
- input2 = ADD_EPI16(in02, in13);
- input3 = ADD_EPI16(in03, in12);
- input4 = ADD_EPI16(in04, in11);
- input5 = ADD_EPI16(in05, in10);
- input6 = ADD_EPI16(in06, in09);
- input7 = ADD_EPI16(in07, in08);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x8(&input0, &input1, &input2, &input3,
- &input4, &input5, &input6, &input7);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- // Calculate input for the next 8 results.
- {
- step1_0 = SUB_EPI16(in07, in08);
- step1_1 = SUB_EPI16(in06, in09);
- step1_2 = SUB_EPI16(in05, in10);
- step1_3 = SUB_EPI16(in04, in11);
- step1_4 = SUB_EPI16(in03, in12);
- step1_5 = SUB_EPI16(in02, in13);
- step1_6 = SUB_EPI16(in01, in14);
- step1_7 = SUB_EPI16(in00, in15);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x8(&step1_0, &step1_1,
- &step1_2, &step1_3,
- &step1_4, &step1_5,
- &step1_6, &step1_7);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- // Work on the first eight values; fdct8(input, even_results);
- {
- // Add/subtract
- const __m128i q0 = ADD_EPI16(input0, input7);
- const __m128i q1 = ADD_EPI16(input1, input6);
- const __m128i q2 = ADD_EPI16(input2, input5);
- const __m128i q3 = ADD_EPI16(input3, input4);
- const __m128i q4 = SUB_EPI16(input3, input4);
- const __m128i q5 = SUB_EPI16(input2, input5);
- const __m128i q6 = SUB_EPI16(input1, input6);
- const __m128i q7 = SUB_EPI16(input0, input7);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3,
- &q4, &q5, &q6, &q7);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- // Work on first four results
- {
- // Add/subtract
- const __m128i r0 = ADD_EPI16(q0, q3);
- const __m128i r1 = ADD_EPI16(q1, q2);
- const __m128i r2 = SUB_EPI16(q1, q2);
- const __m128i r3 = SUB_EPI16(q0, q3);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- // Interleave to do the multiply by constants which gets us
- // into 32 bits.
- {
- const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
- const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
- const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
- const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
- res00 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res08 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res04 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res12 = mult_round_shift(&t2, &t3, &k__cospi_m08_p24,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&res00, &res08, &res04, &res12);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- }
- // Work on next four results
- {
- // Interleave to do the multiply by constants which gets us
- // into 32 bits.
- const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
- const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
- const __m128i r0 = mult_round_shift(&d0, &d1, &k__cospi_p16_m16,
- &k__DCT_CONST_ROUNDING,
- DCT_CONST_BITS);
- const __m128i r1 = mult_round_shift(&d0, &d1, &k__cospi_p16_p16,
- &k__DCT_CONST_ROUNDING,
- DCT_CONST_BITS);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x2(&r0, &r1);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- {
- // Add/subtract
- const __m128i x0 = ADD_EPI16(q4, r0);
- const __m128i x1 = SUB_EPI16(q4, r0);
- const __m128i x2 = SUB_EPI16(q7, r1);
- const __m128i x3 = ADD_EPI16(q7, r1);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- // Interleave to do the multiply by constants which gets us
- // into 32 bits.
- {
- const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
- const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
- const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
- const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
- res02 = mult_round_shift(&t0, &t1, &k__cospi_p28_p04,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res14 = mult_round_shift(&t0, &t1, &k__cospi_m04_p28,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res10 = mult_round_shift(&t2, &t3, &k__cospi_p12_p20,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res06 = mult_round_shift(&t2, &t3, &k__cospi_m20_p12,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&res02, &res14,
- &res10, &res06);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- }
- }
- }
- // Work on the next eight values; step1 -> odd_results
- {
- // step 2
- {
- const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
- const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
- const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
- const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
- step2_2 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- step2_3 = mult_round_shift(&t2, &t3, &k__cospi_p16_m16,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- step2_5 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- step2_4 = mult_round_shift(&t2, &t3, &k__cospi_p16_p16,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&step2_2, &step2_3, &step2_5,
- &step2_4);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- // step 3
- {
- step3_0 = ADD_EPI16(step1_0, step2_3);
- step3_1 = ADD_EPI16(step1_1, step2_2);
- step3_2 = SUB_EPI16(step1_1, step2_2);
- step3_3 = SUB_EPI16(step1_0, step2_3);
- step3_4 = SUB_EPI16(step1_7, step2_4);
- step3_5 = SUB_EPI16(step1_6, step2_5);
- step3_6 = ADD_EPI16(step1_6, step2_5);
- step3_7 = ADD_EPI16(step1_7, step2_4);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x8(&step3_0, &step3_1,
- &step3_2, &step3_3,
- &step3_4, &step3_5,
- &step3_6, &step3_7);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- // step 4
- {
- const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
- const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
- const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
- const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
- step2_1 = mult_round_shift(&t0, &t1, &k__cospi_m08_p24,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- step2_2 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- step2_6 = mult_round_shift(&t0, &t1, &k__cospi_p24_p08,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- step2_5 = mult_round_shift(&t2, &t3, &k__cospi_p08_m24,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&step2_1, &step2_2, &step2_6,
- &step2_5);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- // step 5
- {
- step1_0 = ADD_EPI16(step3_0, step2_1);
- step1_1 = SUB_EPI16(step3_0, step2_1);
- step1_2 = ADD_EPI16(step3_3, step2_2);
- step1_3 = SUB_EPI16(step3_3, step2_2);
- step1_4 = SUB_EPI16(step3_4, step2_5);
- step1_5 = ADD_EPI16(step3_4, step2_5);
- step1_6 = SUB_EPI16(step3_7, step2_6);
- step1_7 = ADD_EPI16(step3_7, step2_6);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x8(&step1_0, &step1_1,
- &step1_2, &step1_3,
- &step1_4, &step1_5,
- &step1_6, &step1_7);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- // step 6
- {
- const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
- const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
- const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
- const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
- res01 = mult_round_shift(&t0, &t1, &k__cospi_p30_p02,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res09 = mult_round_shift(&t2, &t3, &k__cospi_p14_p18,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res15 = mult_round_shift(&t0, &t1, &k__cospi_m02_p30,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res07 = mult_round_shift(&t2, &t3, &k__cospi_m18_p14,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&res01, &res09, &res15, &res07);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- {
- const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
- const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
- const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
- const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
- res05 = mult_round_shift(&t0, &t1, &k__cospi_p22_p10,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res13 = mult_round_shift(&t2, &t3, &k__cospi_p06_p26,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res11 = mult_round_shift(&t0, &t1, &k__cospi_m10_p22,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
- res03 = mult_round_shift(&t2, &t3, &k__cospi_m26_p06,
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
-#if DCT_HIGH_BIT_DEPTH
- overflow = check_epi16_overflow_x4(&res05, &res13, &res11, &res03);
- if (overflow) {
- vp9_highbd_fdct16x16_c(input, output, stride);
- return;
- }
-#endif // DCT_HIGH_BIT_DEPTH
- }
- }
- // Transpose the results, do it as two 8x8 transposes.
- transpose_and_output8x8(&res00, &res01, &res02, &res03,
- &res04, &res05, &res06, &res07,
- pass, out0, out1);
- transpose_and_output8x8(&res08, &res09, &res10, &res11,
- &res12, &res13, &res14, &res15,
- pass, out0 + 8, out1 + 8);
- if (pass == 0) {
- out0 += 8*16;
- } else {
- out1 += 8*16;
- }
- }
- // Setup in/out for next pass.
- in = intermediate;
- }
-}
-
-#undef ADD_EPI16
-#undef SUB_EPI16
--- a/vp9/encoder/x86/vp9_dct_ssse3_x86_64.asm
+++ b/vp9/encoder/x86/vp9_dct_ssse3_x86_64.asm
@@ -13,49 +13,9 @@
; of the macro definitions are originally derived from the ffmpeg project.
; The current version applies to x86 64-bit only.
-SECTION_RODATA
-
-pw_11585x2: times 8 dw 23170
-pd_8192: times 4 dd 8192
-
-%macro TRANSFORM_COEFFS 2
-pw_%1_%2: dw %1, %2, %1, %2, %1, %2, %1, %2
-pw_%2_m%1: dw %2, -%1, %2, -%1, %2, -%1, %2, -%1
-%endmacro
-
-TRANSFORM_COEFFS 11585, 11585
-TRANSFORM_COEFFS 15137, 6270
-TRANSFORM_COEFFS 16069, 3196
-TRANSFORM_COEFFS 9102, 13623
-
SECTION .text
%if ARCH_X86_64
-%macro SUM_SUB 3
- psubw m%3, m%1, m%2
- paddw m%1, m%2
- SWAP %2, %3
-%endmacro
-
-; butterfly operation
-%macro MUL_ADD_2X 6 ; dst1, dst2, src, round, coefs1, coefs2
- pmaddwd m%1, m%3, %5
- pmaddwd m%2, m%3, %6
- paddd m%1, %4
- paddd m%2, %4
- psrad m%1, 14
- psrad m%2, 14
-%endmacro
-
-%macro BUTTERFLY_4X 7 ; dst1, dst2, coef1, coef2, round, tmp1, tmp2
- punpckhwd m%6, m%2, m%1
- MUL_ADD_2X %7, %6, %6, %5, [pw_%4_%3], [pw_%3_m%4]
- punpcklwd m%2, m%1
- MUL_ADD_2X %1, %2, %2, %5, [pw_%4_%3], [pw_%3_m%4]
- packssdw m%1, m%7
- packssdw m%2, m%6
-%endmacro
-
; matrix transpose
%macro INTERLEAVE_2X 4
punpckh%1 m%4, m%2, m%3
@@ -82,103 +42,6 @@
SWAP %2, %5
SWAP %4, %7
%endmacro
-
-; 1D forward 8x8 DCT transform
-%macro FDCT8_1D 1
- SUM_SUB 0, 7, 9
- SUM_SUB 1, 6, 9
- SUM_SUB 2, 5, 9
- SUM_SUB 3, 4, 9
-
- SUM_SUB 0, 3, 9
- SUM_SUB 1, 2, 9
- SUM_SUB 6, 5, 9
-%if %1 == 0
- SUM_SUB 0, 1, 9
-%endif
-
- BUTTERFLY_4X 2, 3, 6270, 15137, m8, 9, 10
-
- pmulhrsw m6, m12
- pmulhrsw m5, m12
-%if %1 == 0
- pmulhrsw m0, m12
- pmulhrsw m1, m12
-%else
- BUTTERFLY_4X 1, 0, 11585, 11585, m8, 9, 10
- SWAP 0, 1
-%endif
-
- SUM_SUB 4, 5, 9
- SUM_SUB 7, 6, 9
- BUTTERFLY_4X 4, 7, 3196, 16069, m8, 9, 10
- BUTTERFLY_4X 5, 6, 13623, 9102, m8, 9, 10
- SWAP 1, 4
- SWAP 3, 6
-%endmacro
-
-%macro DIVIDE_ROUND_2X 4 ; dst1, dst2, tmp1, tmp2
- psraw m%3, m%1, 15
- psraw m%4, m%2, 15
- psubw m%1, m%3
- psubw m%2, m%4
- psraw m%1, 1
- psraw m%2, 1
-%endmacro
-
-INIT_XMM ssse3
-cglobal fdct8x8, 3, 5, 13, input, output, stride
-
- mova m8, [pd_8192]
- mova m12, [pw_11585x2]
- pxor m11, m11
-
- lea r3, [2 * strideq]
- lea r4, [4 * strideq]
- mova m0, [inputq]
- mova m1, [inputq + r3]
- lea inputq, [inputq + r4]
- mova m2, [inputq]
- mova m3, [inputq + r3]
- lea inputq, [inputq + r4]
- mova m4, [inputq]
- mova m5, [inputq + r3]
- lea inputq, [inputq + r4]
- mova m6, [inputq]
- mova m7, [inputq + r3]
-
- ; left shift by 2 to increase forward transformation precision
- psllw m0, 2
- psllw m1, 2
- psllw m2, 2
- psllw m3, 2
- psllw m4, 2
- psllw m5, 2
- psllw m6, 2
- psllw m7, 2
-
- ; column transform
- FDCT8_1D 0
- TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9
-
- FDCT8_1D 1
- TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9
-
- DIVIDE_ROUND_2X 0, 1, 9, 10
- DIVIDE_ROUND_2X 2, 3, 9, 10
- DIVIDE_ROUND_2X 4, 5, 9, 10
- DIVIDE_ROUND_2X 6, 7, 9, 10
-
- mova [outputq + 0], m0
- mova [outputq + 16], m1
- mova [outputq + 32], m2
- mova [outputq + 48], m3
- mova [outputq + 64], m4
- mova [outputq + 80], m5
- mova [outputq + 96], m6
- mova [outputq + 112], m7
-
- RET
%macro HMD8_1D 0
psubw m8, m0, m1
--- a/vp9/vp9cx.mk
+++ b/vp9/vp9cx.mk
@@ -120,7 +120,6 @@
VP9_CX_SRCS-$(HAVE_SSSE3) += encoder/x86/vp9_dct_ssse3.c
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct_sse2.h
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct32x32_sse2_impl.h
-VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct_sse2_impl.h
ifeq ($(CONFIG_VP9_TEMPORAL_DENOISING),yes)
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_denoiser_sse2.c
--- /dev/null
+++ b/vpx_dsp/arm/fwd_txfm_neon.c
@@ -1,0 +1,202 @@
+/*
+ * Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <arm_neon.h>
+#include "./vpx_config.h"
+#include "vp9/common/vp9_idct.h"
+
+void vp9_fdct8x8_neon(const int16_t *input, int16_t *final_output, int stride) {
+ int i;
+ // stage 1
+ int16x8_t input_0 = vshlq_n_s16(vld1q_s16(&input[0 * stride]), 2);
+ int16x8_t input_1 = vshlq_n_s16(vld1q_s16(&input[1 * stride]), 2);
+ int16x8_t input_2 = vshlq_n_s16(vld1q_s16(&input[2 * stride]), 2);
+ int16x8_t input_3 = vshlq_n_s16(vld1q_s16(&input[3 * stride]), 2);
+ int16x8_t input_4 = vshlq_n_s16(vld1q_s16(&input[4 * stride]), 2);
+ int16x8_t input_5 = vshlq_n_s16(vld1q_s16(&input[5 * stride]), 2);
+ int16x8_t input_6 = vshlq_n_s16(vld1q_s16(&input[6 * stride]), 2);
+ int16x8_t input_7 = vshlq_n_s16(vld1q_s16(&input[7 * stride]), 2);
+ for (i = 0; i < 2; ++i) {
+ int16x8_t out_0, out_1, out_2, out_3, out_4, out_5, out_6, out_7;
+ const int16x8_t v_s0 = vaddq_s16(input_0, input_7);
+ const int16x8_t v_s1 = vaddq_s16(input_1, input_6);
+ const int16x8_t v_s2 = vaddq_s16(input_2, input_5);
+ const int16x8_t v_s3 = vaddq_s16(input_3, input_4);
+ const int16x8_t v_s4 = vsubq_s16(input_3, input_4);
+ const int16x8_t v_s5 = vsubq_s16(input_2, input_5);
+ const int16x8_t v_s6 = vsubq_s16(input_1, input_6);
+ const int16x8_t v_s7 = vsubq_s16(input_0, input_7);
+ // fdct4(step, step);
+ int16x8_t v_x0 = vaddq_s16(v_s0, v_s3);
+ int16x8_t v_x1 = vaddq_s16(v_s1, v_s2);
+ int16x8_t v_x2 = vsubq_s16(v_s1, v_s2);
+ int16x8_t v_x3 = vsubq_s16(v_s0, v_s3);
+ // fdct4(step, step);
+ int32x4_t v_t0_lo = vaddl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1));
+ int32x4_t v_t0_hi = vaddl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1));
+ int32x4_t v_t1_lo = vsubl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1));
+ int32x4_t v_t1_hi = vsubl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1));
+ int32x4_t v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), (int16_t)cospi_24_64);
+ int32x4_t v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), (int16_t)cospi_24_64);
+ int32x4_t v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_24_64);
+ int32x4_t v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_24_64);
+ v_t2_lo = vmlal_n_s16(v_t2_lo, vget_low_s16(v_x3), (int16_t)cospi_8_64);
+ v_t2_hi = vmlal_n_s16(v_t2_hi, vget_high_s16(v_x3), (int16_t)cospi_8_64);
+ v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x2), (int16_t)cospi_8_64);
+ v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x2), (int16_t)cospi_8_64);
+ v_t0_lo = vmulq_n_s32(v_t0_lo, cospi_16_64);
+ v_t0_hi = vmulq_n_s32(v_t0_hi, cospi_16_64);
+ v_t1_lo = vmulq_n_s32(v_t1_lo, cospi_16_64);
+ v_t1_hi = vmulq_n_s32(v_t1_hi, cospi_16_64);
+ {
+ const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS);
+ const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS);
+ const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS);
+ const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS);
+ const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS);
+ const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS);
+ const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS);
+ const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS);
+ out_0 = vcombine_s16(a, c); // 00 01 02 03 40 41 42 43
+ out_2 = vcombine_s16(e, g); // 20 21 22 23 60 61 62 63
+ out_4 = vcombine_s16(b, d); // 04 05 06 07 44 45 46 47
+ out_6 = vcombine_s16(f, h); // 24 25 26 27 64 65 66 67
+ }
+ // Stage 2
+ v_x0 = vsubq_s16(v_s6, v_s5);
+ v_x1 = vaddq_s16(v_s6, v_s5);
+ v_t0_lo = vmull_n_s16(vget_low_s16(v_x0), (int16_t)cospi_16_64);
+ v_t0_hi = vmull_n_s16(vget_high_s16(v_x0), (int16_t)cospi_16_64);
+ v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), (int16_t)cospi_16_64);
+ v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), (int16_t)cospi_16_64);
+ {
+ const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS);
+ const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS);
+ const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS);
+ const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS);
+ const int16x8_t ab = vcombine_s16(a, b);
+ const int16x8_t cd = vcombine_s16(c, d);
+ // Stage 3
+ v_x0 = vaddq_s16(v_s4, ab);
+ v_x1 = vsubq_s16(v_s4, ab);
+ v_x2 = vsubq_s16(v_s7, cd);
+ v_x3 = vaddq_s16(v_s7, cd);
+ }
+ // Stage 4
+ v_t0_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_4_64);
+ v_t0_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_4_64);
+ v_t0_lo = vmlal_n_s16(v_t0_lo, vget_low_s16(v_x0), (int16_t)cospi_28_64);
+ v_t0_hi = vmlal_n_s16(v_t0_hi, vget_high_s16(v_x0), (int16_t)cospi_28_64);
+ v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), (int16_t)cospi_12_64);
+ v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), (int16_t)cospi_12_64);
+ v_t1_lo = vmlal_n_s16(v_t1_lo, vget_low_s16(v_x2), (int16_t)cospi_20_64);
+ v_t1_hi = vmlal_n_s16(v_t1_hi, vget_high_s16(v_x2), (int16_t)cospi_20_64);
+ v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), (int16_t)cospi_12_64);
+ v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), (int16_t)cospi_12_64);
+ v_t2_lo = vmlsl_n_s16(v_t2_lo, vget_low_s16(v_x1), (int16_t)cospi_20_64);
+ v_t2_hi = vmlsl_n_s16(v_t2_hi, vget_high_s16(v_x1), (int16_t)cospi_20_64);
+ v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_28_64);
+ v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_28_64);
+ v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x0), (int16_t)cospi_4_64);
+ v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x0), (int16_t)cospi_4_64);
+ {
+ const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS);
+ const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS);
+ const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS);
+ const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS);
+ const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS);
+ const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS);
+ const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS);
+ const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS);
+ out_1 = vcombine_s16(a, c); // 10 11 12 13 50 51 52 53
+ out_3 = vcombine_s16(e, g); // 30 31 32 33 70 71 72 73
+ out_5 = vcombine_s16(b, d); // 14 15 16 17 54 55 56 57
+ out_7 = vcombine_s16(f, h); // 34 35 36 37 74 75 76 77
+ }
+ // transpose 8x8
+ {
+ // 00 01 02 03 40 41 42 43
+ // 10 11 12 13 50 51 52 53
+ // 20 21 22 23 60 61 62 63
+ // 30 31 32 33 70 71 72 73
+ // 04 05 06 07 44 45 46 47
+ // 14 15 16 17 54 55 56 57
+ // 24 25 26 27 64 65 66 67
+ // 34 35 36 37 74 75 76 77
+ const int32x4x2_t r02_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_0),
+ vreinterpretq_s32_s16(out_2));
+ const int32x4x2_t r13_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_1),
+ vreinterpretq_s32_s16(out_3));
+ const int32x4x2_t r46_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_4),
+ vreinterpretq_s32_s16(out_6));
+ const int32x4x2_t r57_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_5),
+ vreinterpretq_s32_s16(out_7));
+ const int16x8x2_t r01_s16 =
+ vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[0]),
+ vreinterpretq_s16_s32(r13_s32.val[0]));
+ const int16x8x2_t r23_s16 =
+ vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[1]),
+ vreinterpretq_s16_s32(r13_s32.val[1]));
+ const int16x8x2_t r45_s16 =
+ vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[0]),
+ vreinterpretq_s16_s32(r57_s32.val[0]));
+ const int16x8x2_t r67_s16 =
+ vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[1]),
+ vreinterpretq_s16_s32(r57_s32.val[1]));
+ input_0 = r01_s16.val[0];
+ input_1 = r01_s16.val[1];
+ input_2 = r23_s16.val[0];
+ input_3 = r23_s16.val[1];
+ input_4 = r45_s16.val[0];
+ input_5 = r45_s16.val[1];
+ input_6 = r67_s16.val[0];
+ input_7 = r67_s16.val[1];
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ }
+ } // for
+ {
+ // from vp9_dct_sse2.c
+ // Post-condition (division by two)
+ // division of two 16 bits signed numbers using shifts
+ // n / 2 = (n - (n >> 15)) >> 1
+ const int16x8_t sign_in0 = vshrq_n_s16(input_0, 15);
+ const int16x8_t sign_in1 = vshrq_n_s16(input_1, 15);
+ const int16x8_t sign_in2 = vshrq_n_s16(input_2, 15);
+ const int16x8_t sign_in3 = vshrq_n_s16(input_3, 15);
+ const int16x8_t sign_in4 = vshrq_n_s16(input_4, 15);
+ const int16x8_t sign_in5 = vshrq_n_s16(input_5, 15);
+ const int16x8_t sign_in6 = vshrq_n_s16(input_6, 15);
+ const int16x8_t sign_in7 = vshrq_n_s16(input_7, 15);
+ input_0 = vhsubq_s16(input_0, sign_in0);
+ input_1 = vhsubq_s16(input_1, sign_in1);
+ input_2 = vhsubq_s16(input_2, sign_in2);
+ input_3 = vhsubq_s16(input_3, sign_in3);
+ input_4 = vhsubq_s16(input_4, sign_in4);
+ input_5 = vhsubq_s16(input_5, sign_in5);
+ input_6 = vhsubq_s16(input_6, sign_in6);
+ input_7 = vhsubq_s16(input_7, sign_in7);
+ // store results
+ vst1q_s16(&final_output[0 * 8], input_0);
+ vst1q_s16(&final_output[1 * 8], input_1);
+ vst1q_s16(&final_output[2 * 8], input_2);
+ vst1q_s16(&final_output[3 * 8], input_3);
+ vst1q_s16(&final_output[4 * 8], input_4);
+ vst1q_s16(&final_output[5 * 8], input_5);
+ vst1q_s16(&final_output[6 * 8], input_6);
+ vst1q_s16(&final_output[7 * 8], input_7);
+ }
+}
--- /dev/null
+++ b/vpx_dsp/fwd_txfm.c
@@ -1,0 +1,361 @@
+/*
+ * Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vpx_dsp/fwd_txfm.h"
+
+void vp9_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
+ // The 2D transform is done with two passes which are actually pretty
+ // similar. In the first one, we transform the columns and transpose
+ // the results. In the second one, we transform the rows. To achieve that,
+ // as the first pass results are transposed, we transpose the columns (that
+ // is the transposed rows) and transpose the results (so that it goes back
+ // in normal/row positions).
+ int pass;
+ // We need an intermediate buffer between passes.
+ tran_low_t intermediate[4 * 4];
+ const int16_t *in_pass0 = input;
+ const tran_low_t *in = NULL;
+ tran_low_t *out = intermediate;
+ // Do the two transform/transpose passes
+ for (pass = 0; pass < 2; ++pass) {
+ tran_high_t input[4]; // canbe16
+ tran_high_t step[4]; // canbe16
+ tran_high_t temp1, temp2; // needs32
+ int i;
+ for (i = 0; i < 4; ++i) {
+ // Load inputs.
+ if (0 == pass) {
+ input[0] = in_pass0[0 * stride] * 16;
+ input[1] = in_pass0[1 * stride] * 16;
+ input[2] = in_pass0[2 * stride] * 16;
+ input[3] = in_pass0[3 * stride] * 16;
+ if (i == 0 && input[0]) {
+ input[0] += 1;
+ }
+ } else {
+ input[0] = in[0 * 4];
+ input[1] = in[1 * 4];
+ input[2] = in[2 * 4];
+ input[3] = in[3 * 4];
+ }
+ // Transform.
+ step[0] = input[0] + input[3];
+ step[1] = input[1] + input[2];
+ step[2] = input[1] - input[2];
+ step[3] = input[0] - input[3];
+ temp1 = (step[0] + step[1]) * cospi_16_64;
+ temp2 = (step[0] - step[1]) * cospi_16_64;
+ out[0] = (tran_low_t)fdct_round_shift(temp1);
+ out[2] = (tran_low_t)fdct_round_shift(temp2);
+ temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
+ temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
+ out[1] = (tran_low_t)fdct_round_shift(temp1);
+ out[3] = (tran_low_t)fdct_round_shift(temp2);
+ // Do next column (which is a transposed row in second/horizontal pass)
+ in_pass0++;
+ in++;
+ out += 4;
+ }
+ // Setup in/out for next pass.
+ in = intermediate;
+ out = output;
+ }
+
+ {
+ int i, j;
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
+ }
+ }
+}
+
+void vp9_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
+ int i, j;
+ tran_low_t intermediate[64];
+ int pass;
+ tran_low_t *output = intermediate;
+ const tran_low_t *in = NULL;
+
+ // Transform columns
+ for (pass = 0; pass < 2; ++pass) {
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
+ tran_high_t t0, t1, t2, t3; // needs32
+ tran_high_t x0, x1, x2, x3; // canbe16
+
+ int i;
+ for (i = 0; i < 8; i++) {
+ // stage 1
+ if (pass == 0) {
+ s0 = (input[0 * stride] + input[7 * stride]) * 4;
+ s1 = (input[1 * stride] + input[6 * stride]) * 4;
+ s2 = (input[2 * stride] + input[5 * stride]) * 4;
+ s3 = (input[3 * stride] + input[4 * stride]) * 4;
+ s4 = (input[3 * stride] - input[4 * stride]) * 4;
+ s5 = (input[2 * stride] - input[5 * stride]) * 4;
+ s6 = (input[1 * stride] - input[6 * stride]) * 4;
+ s7 = (input[0 * stride] - input[7 * stride]) * 4;
+ ++input;
+ } else {
+ s0 = in[0 * 8] + in[7 * 8];
+ s1 = in[1 * 8] + in[6 * 8];
+ s2 = in[2 * 8] + in[5 * 8];
+ s3 = in[3 * 8] + in[4 * 8];
+ s4 = in[3 * 8] - in[4 * 8];
+ s5 = in[2 * 8] - in[5 * 8];
+ s6 = in[1 * 8] - in[6 * 8];
+ s7 = in[0 * 8] - in[7 * 8];
+ ++in;
+ }
+
+ // fdct4(step, step);
+ x0 = s0 + s3;
+ x1 = s1 + s2;
+ x2 = s1 - s2;
+ x3 = s0 - s3;
+ t0 = (x0 + x1) * cospi_16_64;
+ t1 = (x0 - x1) * cospi_16_64;
+ t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
+ t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
+ output[0] = (tran_low_t)fdct_round_shift(t0);
+ output[2] = (tran_low_t)fdct_round_shift(t2);
+ output[4] = (tran_low_t)fdct_round_shift(t1);
+ output[6] = (tran_low_t)fdct_round_shift(t3);
+
+ // Stage 2
+ t0 = (s6 - s5) * cospi_16_64;
+ t1 = (s6 + s5) * cospi_16_64;
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
+
+ // Stage 3
+ x0 = s4 + t2;
+ x1 = s4 - t2;
+ x2 = s7 - t3;
+ x3 = s7 + t3;
+
+ // Stage 4
+ t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
+ t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
+ t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+ t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
+ output[1] = (tran_low_t)fdct_round_shift(t0);
+ output[3] = (tran_low_t)fdct_round_shift(t2);
+ output[5] = (tran_low_t)fdct_round_shift(t1);
+ output[7] = (tran_low_t)fdct_round_shift(t3);
+ output += 8;
+ }
+ in = intermediate;
+ output = final_output;
+ }
+
+ // Rows
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ final_output[j + i * 8] /= 2;
+ }
+}
+
+void vp9_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
+ // The 2D transform is done with two passes which are actually pretty
+ // similar. In the first one, we transform the columns and transpose
+ // the results. In the second one, we transform the rows. To achieve that,
+ // as the first pass results are transposed, we transpose the columns (that
+ // is the transposed rows) and transpose the results (so that it goes back
+ // in normal/row positions).
+ int pass;
+ // We need an intermediate buffer between passes.
+ tran_low_t intermediate[256];
+ const int16_t *in_pass0 = input;
+ const tran_low_t *in = NULL;
+ tran_low_t *out = intermediate;
+ // Do the two transform/transpose passes
+ for (pass = 0; pass < 2; ++pass) {
+ tran_high_t step1[8]; // canbe16
+ tran_high_t step2[8]; // canbe16
+ tran_high_t step3[8]; // canbe16
+ tran_high_t input[8]; // canbe16
+ tran_high_t temp1, temp2; // needs32
+ int i;
+ for (i = 0; i < 16; i++) {
+ if (0 == pass) {
+ // Calculate input for the first 8 results.
+ input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4;
+ input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4;
+ input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4;
+ input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4;
+ input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4;
+ input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4;
+ input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4;
+ input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4;
+ // Calculate input for the next 8 results.
+ step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4;
+ step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4;
+ step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4;
+ step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4;
+ step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4;
+ step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4;
+ step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4;
+ step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4;
+ } else {
+ // Calculate input for the first 8 results.
+ input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
+ input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
+ input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
+ input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
+ input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
+ input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
+ input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
+ input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
+ // Calculate input for the next 8 results.
+ step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
+ step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
+ step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
+ step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
+ step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
+ step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
+ step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
+ step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
+ }
+ // Work on the first eight values; fdct8(input, even_results);
+ {
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
+ tran_high_t t0, t1, t2, t3; // needs32
+ tran_high_t x0, x1, x2, x3; // canbe16
+
+ // stage 1
+ s0 = input[0] + input[7];
+ s1 = input[1] + input[6];
+ s2 = input[2] + input[5];
+ s3 = input[3] + input[4];
+ s4 = input[3] - input[4];
+ s5 = input[2] - input[5];
+ s6 = input[1] - input[6];
+ s7 = input[0] - input[7];
+
+ // fdct4(step, step);
+ x0 = s0 + s3;
+ x1 = s1 + s2;
+ x2 = s1 - s2;
+ x3 = s0 - s3;
+ t0 = (x0 + x1) * cospi_16_64;
+ t1 = (x0 - x1) * cospi_16_64;
+ t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
+ t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
+ out[0] = (tran_low_t)fdct_round_shift(t0);
+ out[4] = (tran_low_t)fdct_round_shift(t2);
+ out[8] = (tran_low_t)fdct_round_shift(t1);
+ out[12] = (tran_low_t)fdct_round_shift(t3);
+
+ // Stage 2
+ t0 = (s6 - s5) * cospi_16_64;
+ t1 = (s6 + s5) * cospi_16_64;
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
+
+ // Stage 3
+ x0 = s4 + t2;
+ x1 = s4 - t2;
+ x2 = s7 - t3;
+ x3 = s7 + t3;
+
+ // Stage 4
+ t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
+ t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
+ t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+ t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
+ out[2] = (tran_low_t)fdct_round_shift(t0);
+ out[6] = (tran_low_t)fdct_round_shift(t2);
+ out[10] = (tran_low_t)fdct_round_shift(t1);
+ out[14] = (tran_low_t)fdct_round_shift(t3);
+ }
+ // Work on the next eight values; step1 -> odd_results
+ {
+ // step 2
+ temp1 = (step1[5] - step1[2]) * cospi_16_64;
+ temp2 = (step1[4] - step1[3]) * cospi_16_64;
+ step2[2] = fdct_round_shift(temp1);
+ step2[3] = fdct_round_shift(temp2);
+ temp1 = (step1[4] + step1[3]) * cospi_16_64;
+ temp2 = (step1[5] + step1[2]) * cospi_16_64;
+ step2[4] = fdct_round_shift(temp1);
+ step2[5] = fdct_round_shift(temp2);
+ // step 3
+ step3[0] = step1[0] + step2[3];
+ step3[1] = step1[1] + step2[2];
+ step3[2] = step1[1] - step2[2];
+ step3[3] = step1[0] - step2[3];
+ step3[4] = step1[7] - step2[4];
+ step3[5] = step1[6] - step2[5];
+ step3[6] = step1[6] + step2[5];
+ step3[7] = step1[7] + step2[4];
+ // step 4
+ temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
+ temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
+ step2[1] = fdct_round_shift(temp1);
+ step2[2] = fdct_round_shift(temp2);
+ temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
+ temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
+ step2[5] = fdct_round_shift(temp1);
+ step2[6] = fdct_round_shift(temp2);
+ // step 5
+ step1[0] = step3[0] + step2[1];
+ step1[1] = step3[0] - step2[1];
+ step1[2] = step3[3] + step2[2];
+ step1[3] = step3[3] - step2[2];
+ step1[4] = step3[4] - step2[5];
+ step1[5] = step3[4] + step2[5];
+ step1[6] = step3[7] - step2[6];
+ step1[7] = step3[7] + step2[6];
+ // step 6
+ temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
+ temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
+ out[1] = (tran_low_t)fdct_round_shift(temp1);
+ out[9] = (tran_low_t)fdct_round_shift(temp2);
+ temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
+ temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
+ out[5] = (tran_low_t)fdct_round_shift(temp1);
+ out[13] = (tran_low_t)fdct_round_shift(temp2);
+ temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
+ temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
+ out[3] = (tran_low_t)fdct_round_shift(temp1);
+ out[11] = (tran_low_t)fdct_round_shift(temp2);
+ temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
+ temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
+ out[7] = (tran_low_t)fdct_round_shift(temp1);
+ out[15] = (tran_low_t)fdct_round_shift(temp2);
+ }
+ // Do next column (which is a transposed row in second/horizontal pass)
+ in++;
+ in_pass0++;
+ out += 16;
+ }
+ // Setup in/out for next pass.
+ in = intermediate;
+ out = output;
+ }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
+ int stride) {
+ vp9_fdct4x4_c(input, output, stride);
+}
+
+void vp9_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
+ int stride) {
+ vp9_fdct8x8_c(input, final_output, stride);
+}
+
+void vp9_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
+ int stride) {
+ vp9_fdct16x16_c(input, output, stride);
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
--- /dev/null
+++ b/vpx_dsp/fwd_txfm.h
@@ -1,0 +1,19 @@
+/*
+ * Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp9/common/vp9_idct.h"
+
+static INLINE tran_high_t fdct_round_shift(tran_high_t input) {
+ tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
+ // TODO(debargha, peter.derivaz): Find new bounds for this assert
+ // and make the bounds consts.
+ // assert(INT16_MIN <= rv && rv <= INT16_MAX);
+ return rv;
+}
--- a/vpx_dsp/vpx_dsp.mk
+++ b/vpx_dsp/vpx_dsp.mk
@@ -61,6 +61,19 @@
DSP_SRCS-$(HAVE_SSE2) += x86/highbd_loopfilter_sse2.c
endif # CONFIG_VP9_HIGHBITDEPTH
+# forward transform
+ifeq ($(CONFIG_VP9_ENCODER),yes)
+DSP_SRCS-yes += fwd_txfm.c
+DSP_SRCS-yes += fwd_txfm.h
+DSP_SRCS-$(HAVE_SSE2) += x86/fwd_txfm_sse2.c
+DSP_SRCS-$(HAVE_SSE2) += x86/fwd_txfm_impl_sse2.h
+ifeq ($(CONFIG_USE_X86INC),yes)
+DSP_SRCS-$(HAVE_SSSE3) += x86/fwd_txfm_ssse3.asm
+endif
+DSP_SRCS-$(HAVE_NEON) += arm/fwd_txfm_neon.c
+endif # CONFIG_VP9_ENCODER
+
+# quantization
ifeq ($(CONFIG_VP9_ENCODER),yes)
DSP_SRCS-yes += quantize.c
DSP_SRCS-yes += quantize.h
--- a/vpx_dsp/vpx_dsp_rtcd_defs.pl
+++ b/vpx_dsp/vpx_dsp_rtcd_defs.pl
@@ -123,6 +123,44 @@
#
# Encoder functions.
#
+
+#
+# Forward transform
+#
+if (vpx_config("CONFIG_VP9_ENCODER") eq "yes") {
+if (vpx_config("CONFIG_VP9_HIGHBITDEPTH") eq "yes") {
+ add_proto qw/void vp9_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
+ specialize qw/vp9_fdct4x4 sse2/;
+
+ add_proto qw/void vp9_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
+ specialize qw/vp9_fdct8x8 sse2/;
+
+ add_proto qw/void vp9_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
+ specialize qw/vp9_fdct16x16 sse2/;
+
+ add_proto qw/void vp9_highbd_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
+ specialize qw/vp9_highbd_fdct4x4 sse2/;
+
+ add_proto qw/void vp9_highbd_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
+ specialize qw/vp9_highbd_fdct8x8 sse2/;
+
+ add_proto qw/void vp9_highbd_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
+ specialize qw/vp9_highbd_fdct16x16 sse2/;
+} else {
+ add_proto qw/void vp9_fdct4x4/, "const int16_t *input, tran_low_t *output, int stride";
+ specialize qw/vp9_fdct4x4 sse2/;
+
+ add_proto qw/void vp9_fdct8x8/, "const int16_t *input, tran_low_t *output, int stride";
+ specialize qw/vp9_fdct8x8 sse2 neon/, "$ssse3_x86_64_x86inc";
+
+ add_proto qw/void vp9_fdct16x16/, "const int16_t *input, tran_low_t *output, int stride";
+ specialize qw/vp9_fdct16x16 sse2/;
+} # CONFIG_VP9_HIGHBITDEPTH
+} # CONFIG_VP9_ENCODER
+
+#
+# Quantization
+#
if (vpx_config("CONFIG_VP9_ENCODER") eq "yes") {
if (vpx_config("CONFIG_VP9_HIGHBITDEPTH") eq "yes") {
add_proto qw/void vp9_quantize_b/, "const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan";
--- /dev/null
+++ b/vpx_dsp/x86/fwd_txfm_impl_sse2.h
@@ -1,0 +1,1027 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h> // SSE2
+
+#include "./vpx_dsp_rtcd.h"
+#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vp9/encoder/vp9_dct.h"
+#include "vp9/encoder/x86/vp9_dct_sse2.h"
+#include "vpx_ports/mem.h"
+
+// TODO(jingning) The high bit-depth functions need rework for performance.
+// After we properly fix the high bit-depth function implementations, this
+// file's dependency should be substantially simplified.
+#if DCT_HIGH_BIT_DEPTH
+#define ADD_EPI16 _mm_adds_epi16
+#define SUB_EPI16 _mm_subs_epi16
+
+#else
+#define ADD_EPI16 _mm_add_epi16
+#define SUB_EPI16 _mm_sub_epi16
+#endif
+
+void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) {
+ // This 2D transform implements 4 vertical 1D transforms followed
+ // by 4 horizontal 1D transforms. The multiplies and adds are as given
+ // by Chen, Smith and Fralick ('77). The commands for moving the data
+ // around have been minimized by hand.
+ // For the purposes of the comments, the 16 inputs are referred to at i0
+ // through iF (in raster order), intermediate variables are a0, b0, c0
+ // through f, and correspond to the in-place computations mapped to input
+ // locations. The outputs, o0 through oF are labeled according to the
+ // output locations.
+
+ // Constants
+ // These are the coefficients used for the multiplies.
+ // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
+ // where cospi_N_64 = cos(N pi /64)
+ const __m128i k__cospi_A = octa_set_epi16(cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_B = octa_set_epi16(cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_C = octa_set_epi16(cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64,
+ cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_D = octa_set_epi16(cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64,
+ cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_E = octa_set_epi16(cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_F = octa_set_epi16(cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_G = octa_set_epi16(cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64,
+ -cospi_8_64, -cospi_24_64,
+ -cospi_8_64, -cospi_24_64);
+ const __m128i k__cospi_H = octa_set_epi16(cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64,
+ -cospi_24_64, cospi_8_64,
+ -cospi_24_64, cospi_8_64);
+
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ // This second rounding constant saves doing some extra adds at the end
+ const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING
+ +(DCT_CONST_ROUNDING << 1));
+ const int DCT_CONST_BITS2 = DCT_CONST_BITS + 2;
+ const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
+ const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
+ __m128i in0, in1;
+#if DCT_HIGH_BIT_DEPTH
+ __m128i cmp0, cmp1;
+ int test, overflow;
+#endif
+
+ // Load inputs.
+ in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
+ in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
+ in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
+ (input + 2 * stride)));
+ in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
+ (input + 3 * stride)));
+ // in0 = [i0 i1 i2 i3 iC iD iE iF]
+ // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+#if DCT_HIGH_BIT_DEPTH
+ // Check inputs small enough to use optimised code
+ cmp0 = _mm_xor_si128(_mm_cmpgt_epi16(in0, _mm_set1_epi16(0x3ff)),
+ _mm_cmplt_epi16(in0, _mm_set1_epi16(0xfc00)));
+ cmp1 = _mm_xor_si128(_mm_cmpgt_epi16(in1, _mm_set1_epi16(0x3ff)),
+ _mm_cmplt_epi16(in1, _mm_set1_epi16(0xfc00)));
+ test = _mm_movemask_epi8(_mm_or_si128(cmp0, cmp1));
+ if (test) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+
+ // multiply by 16 to give some extra precision
+ in0 = _mm_slli_epi16(in0, 4);
+ in1 = _mm_slli_epi16(in1, 4);
+ // if (i == 0 && input[0]) input[0] += 1;
+ // add 1 to the upper left pixel if it is non-zero, which helps reduce
+ // the round-trip error
+ {
+ // The mask will only contain whether the first value is zero, all
+ // other comparison will fail as something shifted by 4 (above << 4)
+ // can never be equal to one. To increment in the non-zero case, we
+ // add the mask and one for the first element:
+ // - if zero, mask = -1, v = v - 1 + 1 = v
+ // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
+ __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a);
+ in0 = _mm_add_epi16(in0, mask);
+ in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
+ }
+ // There are 4 total stages, alternating between an add/subtract stage
+ // followed by an multiply-and-add stage.
+ {
+ // Stage 1: Add/subtract
+
+ // in0 = [i0 i1 i2 i3 iC iD iE iF]
+ // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+ const __m128i r0 = _mm_unpacklo_epi16(in0, in1);
+ const __m128i r1 = _mm_unpackhi_epi16(in0, in1);
+ // r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
+ // r1 = [iC i8 iD i9 iE iA iF iB]
+ const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
+ const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
+ // r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
+ // r3 = [iC i8 iD i9 iF iB iE iA]
+
+ const __m128i t0 = _mm_add_epi16(r2, r3);
+ const __m128i t1 = _mm_sub_epi16(r2, r3);
+ // t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
+ // t1 = [aC a8 aD a9 aF aB aE aA]
+
+ // Stage 2: multiply by constants (which gets us into 32 bits).
+ // The constants needed here are:
+ // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
+ // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
+ // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
+ // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
+ // Then add and right-shift to get back to 16-bit range
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // w0 = [b0 b1 b7 b6]
+ // w1 = [b8 b9 bF bE]
+ // w2 = [b4 b5 b3 b2]
+ // w3 = [bC bD bB bA]
+ const __m128i x0 = _mm_packs_epi32(w0, w1);
+ const __m128i x1 = _mm_packs_epi32(w2, w3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&x0, &x1);
+ if (overflow) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // x0 = [b0 b1 b7 b6 b8 b9 bF bE]
+ // x1 = [b4 b5 b3 b2 bC bD bB bA]
+ in0 = _mm_shuffle_epi32(x0, 0xD8);
+ in1 = _mm_shuffle_epi32(x1, 0x8D);
+ // in0 = [b0 b1 b8 b9 b7 b6 bF bE]
+ // in1 = [b3 b2 bB bA b4 b5 bC bD]
+ }
+ {
+ // vertical DCTs finished. Now we do the horizontal DCTs.
+ // Stage 3: Add/subtract
+
+ const __m128i t0 = ADD_EPI16(in0, in1);
+ const __m128i t1 = SUB_EPI16(in0, in1);
+ // t0 = [c0 c1 c8 c9 c4 c5 cC cD]
+ // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE]
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&t0, &t1);
+ if (overflow) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+
+ // Stage 4: multiply by constants (which gets us into 32 bits).
+ {
+ // The constants needed here are:
+ // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
+ // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
+ // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
+ // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
+ const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
+ const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
+ // Then add and right-shift to get back to 16-bit range
+ // but this combines the final right-shift as well to save operations
+ // This unusual rounding operations is to maintain bit-accurate
+ // compatibility with the c version of this function which has two
+ // rounding steps in a row.
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
+ // w0 = [o0 o4 o8 oC]
+ // w1 = [o2 o6 oA oE]
+ // w2 = [o1 o5 o9 oD]
+ // w3 = [o3 o7 oB oF]
+ // remember the o's are numbered according to the correct output location
+ const __m128i x0 = _mm_packs_epi32(w0, w1);
+ const __m128i x1 = _mm_packs_epi32(w2, w3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&x0, &x1);
+ if (overflow) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ {
+ // x0 = [o0 o4 o8 oC o2 o6 oA oE]
+ // x1 = [o1 o5 o9 oD o3 o7 oB oF]
+ const __m128i y0 = _mm_unpacklo_epi16(x0, x1);
+ const __m128i y1 = _mm_unpackhi_epi16(x0, x1);
+ // y0 = [o0 o1 o4 o5 o8 o9 oC oD]
+ // y1 = [o2 o3 o6 o7 oA oB oE oF]
+ in0 = _mm_unpacklo_epi32(y0, y1);
+ // in0 = [o0 o1 o2 o3 o4 o5 o6 o7]
+ in1 = _mm_unpackhi_epi32(y0, y1);
+ // in1 = [o8 o9 oA oB oC oD oE oF]
+ }
+ }
+ }
+ // Post-condition (v + 1) >> 2 is now incorporated into previous
+ // add and right-shift commands. Only 2 store instructions needed
+ // because we are using the fact that 1/3 are stored just after 0/2.
+ storeu_output(&in0, output + 0 * 4);
+ storeu_output(&in1, output + 2 * 4);
+}
+
+
+void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) {
+ int pass;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+#if DCT_HIGH_BIT_DEPTH
+ int overflow;
+#endif
+ // Load input
+ __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
+ // Pre-condition input (shift by two)
+ in0 = _mm_slli_epi16(in0, 2);
+ in1 = _mm_slli_epi16(in1, 2);
+ in2 = _mm_slli_epi16(in2, 2);
+ in3 = _mm_slli_epi16(in3, 2);
+ in4 = _mm_slli_epi16(in4, 2);
+ in5 = _mm_slli_epi16(in5, 2);
+ in6 = _mm_slli_epi16(in6, 2);
+ in7 = _mm_slli_epi16(in7, 2);
+
+ // We do two passes, first the columns, then the rows. The results of the
+ // first pass are transposed so that the same column code can be reused. The
+ // results of the second pass are also transposed so that the rows (processed
+ // as columns) are put back in row positions.
+ for (pass = 0; pass < 2; pass++) {
+ // To store results of each pass before the transpose.
+ __m128i res0, res1, res2, res3, res4, res5, res6, res7;
+ // Add/subtract
+ const __m128i q0 = ADD_EPI16(in0, in7);
+ const __m128i q1 = ADD_EPI16(in1, in6);
+ const __m128i q2 = ADD_EPI16(in2, in5);
+ const __m128i q3 = ADD_EPI16(in3, in4);
+ const __m128i q4 = SUB_EPI16(in3, in4);
+ const __m128i q5 = SUB_EPI16(in2, in5);
+ const __m128i q6 = SUB_EPI16(in1, in6);
+ const __m128i q7 = SUB_EPI16(in0, in7);
+#if DCT_HIGH_BIT_DEPTH
+ if (pass == 1) {
+ overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3,
+ &q4, &q5, &q6, &q7);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = ADD_EPI16(q0, q3);
+ const __m128i r1 = ADD_EPI16(q1, q2);
+ const __m128i r2 = SUB_EPI16(q1, q2);
+ const __m128i r3 = SUB_EPI16(q0, q3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us into 32bits
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res0 = _mm_packs_epi32(w0, w1);
+ res4 = _mm_packs_epi32(w2, w3);
+ res2 = _mm_packs_epi32(w4, w5);
+ res6 = _mm_packs_epi32(w6, w7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+ const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+ const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
+ const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
+ const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
+ const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
+ const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
+ const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
+ const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
+ const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
+ const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
+ const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
+ const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
+ // Combine
+ const __m128i r0 = _mm_packs_epi32(s0, s1);
+ const __m128i r1 = _mm_packs_epi32(s2, s3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&r0, &r1);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ {
+ // Add/subtract
+ const __m128i x0 = ADD_EPI16(q4, r0);
+ const __m128i x1 = SUB_EPI16(q4, r0);
+ const __m128i x2 = SUB_EPI16(q7, r1);
+ const __m128i x3 = ADD_EPI16(q7, r1);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us into 32bits
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res1 = _mm_packs_epi32(w0, w1);
+ res7 = _mm_packs_epi32(w2, w3);
+ res5 = _mm_packs_epi32(w4, w5);
+ res3 = _mm_packs_epi32(w6, w7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ }
+ // Transpose the 8x8.
+ {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ }
+ }
+ // Post-condition output and store it
+ {
+ // Post-condition (division by two)
+ // division of two 16 bits signed numbers using shifts
+ // n / 2 = (n - (n >> 15)) >> 1
+ const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
+ const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
+ const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
+ const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
+ const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
+ const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
+ const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
+ const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
+ in0 = _mm_sub_epi16(in0, sign_in0);
+ in1 = _mm_sub_epi16(in1, sign_in1);
+ in2 = _mm_sub_epi16(in2, sign_in2);
+ in3 = _mm_sub_epi16(in3, sign_in3);
+ in4 = _mm_sub_epi16(in4, sign_in4);
+ in5 = _mm_sub_epi16(in5, sign_in5);
+ in6 = _mm_sub_epi16(in6, sign_in6);
+ in7 = _mm_sub_epi16(in7, sign_in7);
+ in0 = _mm_srai_epi16(in0, 1);
+ in1 = _mm_srai_epi16(in1, 1);
+ in2 = _mm_srai_epi16(in2, 1);
+ in3 = _mm_srai_epi16(in3, 1);
+ in4 = _mm_srai_epi16(in4, 1);
+ in5 = _mm_srai_epi16(in5, 1);
+ in6 = _mm_srai_epi16(in6, 1);
+ in7 = _mm_srai_epi16(in7, 1);
+ // store results
+ store_output(&in0, (output + 0 * 8));
+ store_output(&in1, (output + 1 * 8));
+ store_output(&in2, (output + 2 * 8));
+ store_output(&in3, (output + 3 * 8));
+ store_output(&in4, (output + 4 * 8));
+ store_output(&in5, (output + 5 * 8));
+ store_output(&in6, (output + 6 * 8));
+ store_output(&in7, (output + 7 * 8));
+ }
+}
+
+void FDCT16x16_2D(const int16_t *input, tran_low_t *output, int stride) {
+ // The 2D transform is done with two passes which are actually pretty
+ // similar. In the first one, we transform the columns and transpose
+ // the results. In the second one, we transform the rows. To achieve that,
+ // as the first pass results are transposed, we transpose the columns (that
+ // is the transposed rows) and transpose the results (so that it goes back
+ // in normal/row positions).
+ int pass;
+ // We need an intermediate buffer between passes.
+ DECLARE_ALIGNED(16, int16_t, intermediate[256]);
+ const int16_t *in = input;
+ int16_t *out0 = intermediate;
+ tran_low_t *out1 = output;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
+ const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
+ const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
+ const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
+ const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
+ const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
+ const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
+ const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ const __m128i kOne = _mm_set1_epi16(1);
+ // Do the two transform/transpose passes
+ for (pass = 0; pass < 2; ++pass) {
+ // We process eight columns (transposed rows in second pass) at a time.
+ int column_start;
+#if DCT_HIGH_BIT_DEPTH
+ int overflow;
+#endif
+ for (column_start = 0; column_start < 16; column_start += 8) {
+ __m128i in00, in01, in02, in03, in04, in05, in06, in07;
+ __m128i in08, in09, in10, in11, in12, in13, in14, in15;
+ __m128i input0, input1, input2, input3, input4, input5, input6, input7;
+ __m128i step1_0, step1_1, step1_2, step1_3;
+ __m128i step1_4, step1_5, step1_6, step1_7;
+ __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6;
+ __m128i step3_0, step3_1, step3_2, step3_3;
+ __m128i step3_4, step3_5, step3_6, step3_7;
+ __m128i res00, res01, res02, res03, res04, res05, res06, res07;
+ __m128i res08, res09, res10, res11, res12, res13, res14, res15;
+ // Load and pre-condition input.
+ if (0 == pass) {
+ in00 = _mm_load_si128((const __m128i *)(in + 0 * stride));
+ in01 = _mm_load_si128((const __m128i *)(in + 1 * stride));
+ in02 = _mm_load_si128((const __m128i *)(in + 2 * stride));
+ in03 = _mm_load_si128((const __m128i *)(in + 3 * stride));
+ in04 = _mm_load_si128((const __m128i *)(in + 4 * stride));
+ in05 = _mm_load_si128((const __m128i *)(in + 5 * stride));
+ in06 = _mm_load_si128((const __m128i *)(in + 6 * stride));
+ in07 = _mm_load_si128((const __m128i *)(in + 7 * stride));
+ in08 = _mm_load_si128((const __m128i *)(in + 8 * stride));
+ in09 = _mm_load_si128((const __m128i *)(in + 9 * stride));
+ in10 = _mm_load_si128((const __m128i *)(in + 10 * stride));
+ in11 = _mm_load_si128((const __m128i *)(in + 11 * stride));
+ in12 = _mm_load_si128((const __m128i *)(in + 12 * stride));
+ in13 = _mm_load_si128((const __m128i *)(in + 13 * stride));
+ in14 = _mm_load_si128((const __m128i *)(in + 14 * stride));
+ in15 = _mm_load_si128((const __m128i *)(in + 15 * stride));
+ // x = x << 2
+ in00 = _mm_slli_epi16(in00, 2);
+ in01 = _mm_slli_epi16(in01, 2);
+ in02 = _mm_slli_epi16(in02, 2);
+ in03 = _mm_slli_epi16(in03, 2);
+ in04 = _mm_slli_epi16(in04, 2);
+ in05 = _mm_slli_epi16(in05, 2);
+ in06 = _mm_slli_epi16(in06, 2);
+ in07 = _mm_slli_epi16(in07, 2);
+ in08 = _mm_slli_epi16(in08, 2);
+ in09 = _mm_slli_epi16(in09, 2);
+ in10 = _mm_slli_epi16(in10, 2);
+ in11 = _mm_slli_epi16(in11, 2);
+ in12 = _mm_slli_epi16(in12, 2);
+ in13 = _mm_slli_epi16(in13, 2);
+ in14 = _mm_slli_epi16(in14, 2);
+ in15 = _mm_slli_epi16(in15, 2);
+ } else {
+ in00 = _mm_load_si128((const __m128i *)(in + 0 * 16));
+ in01 = _mm_load_si128((const __m128i *)(in + 1 * 16));
+ in02 = _mm_load_si128((const __m128i *)(in + 2 * 16));
+ in03 = _mm_load_si128((const __m128i *)(in + 3 * 16));
+ in04 = _mm_load_si128((const __m128i *)(in + 4 * 16));
+ in05 = _mm_load_si128((const __m128i *)(in + 5 * 16));
+ in06 = _mm_load_si128((const __m128i *)(in + 6 * 16));
+ in07 = _mm_load_si128((const __m128i *)(in + 7 * 16));
+ in08 = _mm_load_si128((const __m128i *)(in + 8 * 16));
+ in09 = _mm_load_si128((const __m128i *)(in + 9 * 16));
+ in10 = _mm_load_si128((const __m128i *)(in + 10 * 16));
+ in11 = _mm_load_si128((const __m128i *)(in + 11 * 16));
+ in12 = _mm_load_si128((const __m128i *)(in + 12 * 16));
+ in13 = _mm_load_si128((const __m128i *)(in + 13 * 16));
+ in14 = _mm_load_si128((const __m128i *)(in + 14 * 16));
+ in15 = _mm_load_si128((const __m128i *)(in + 15 * 16));
+ // x = (x + 1) >> 2
+ in00 = _mm_add_epi16(in00, kOne);
+ in01 = _mm_add_epi16(in01, kOne);
+ in02 = _mm_add_epi16(in02, kOne);
+ in03 = _mm_add_epi16(in03, kOne);
+ in04 = _mm_add_epi16(in04, kOne);
+ in05 = _mm_add_epi16(in05, kOne);
+ in06 = _mm_add_epi16(in06, kOne);
+ in07 = _mm_add_epi16(in07, kOne);
+ in08 = _mm_add_epi16(in08, kOne);
+ in09 = _mm_add_epi16(in09, kOne);
+ in10 = _mm_add_epi16(in10, kOne);
+ in11 = _mm_add_epi16(in11, kOne);
+ in12 = _mm_add_epi16(in12, kOne);
+ in13 = _mm_add_epi16(in13, kOne);
+ in14 = _mm_add_epi16(in14, kOne);
+ in15 = _mm_add_epi16(in15, kOne);
+ in00 = _mm_srai_epi16(in00, 2);
+ in01 = _mm_srai_epi16(in01, 2);
+ in02 = _mm_srai_epi16(in02, 2);
+ in03 = _mm_srai_epi16(in03, 2);
+ in04 = _mm_srai_epi16(in04, 2);
+ in05 = _mm_srai_epi16(in05, 2);
+ in06 = _mm_srai_epi16(in06, 2);
+ in07 = _mm_srai_epi16(in07, 2);
+ in08 = _mm_srai_epi16(in08, 2);
+ in09 = _mm_srai_epi16(in09, 2);
+ in10 = _mm_srai_epi16(in10, 2);
+ in11 = _mm_srai_epi16(in11, 2);
+ in12 = _mm_srai_epi16(in12, 2);
+ in13 = _mm_srai_epi16(in13, 2);
+ in14 = _mm_srai_epi16(in14, 2);
+ in15 = _mm_srai_epi16(in15, 2);
+ }
+ in += 8;
+ // Calculate input for the first 8 results.
+ {
+ input0 = ADD_EPI16(in00, in15);
+ input1 = ADD_EPI16(in01, in14);
+ input2 = ADD_EPI16(in02, in13);
+ input3 = ADD_EPI16(in03, in12);
+ input4 = ADD_EPI16(in04, in11);
+ input5 = ADD_EPI16(in05, in10);
+ input6 = ADD_EPI16(in06, in09);
+ input7 = ADD_EPI16(in07, in08);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&input0, &input1, &input2, &input3,
+ &input4, &input5, &input6, &input7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Calculate input for the next 8 results.
+ {
+ step1_0 = SUB_EPI16(in07, in08);
+ step1_1 = SUB_EPI16(in06, in09);
+ step1_2 = SUB_EPI16(in05, in10);
+ step1_3 = SUB_EPI16(in04, in11);
+ step1_4 = SUB_EPI16(in03, in12);
+ step1_5 = SUB_EPI16(in02, in13);
+ step1_6 = SUB_EPI16(in01, in14);
+ step1_7 = SUB_EPI16(in00, in15);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step1_0, &step1_1,
+ &step1_2, &step1_3,
+ &step1_4, &step1_5,
+ &step1_6, &step1_7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Work on the first eight values; fdct8(input, even_results);
+ {
+ // Add/subtract
+ const __m128i q0 = ADD_EPI16(input0, input7);
+ const __m128i q1 = ADD_EPI16(input1, input6);
+ const __m128i q2 = ADD_EPI16(input2, input5);
+ const __m128i q3 = ADD_EPI16(input3, input4);
+ const __m128i q4 = SUB_EPI16(input3, input4);
+ const __m128i q5 = SUB_EPI16(input2, input5);
+ const __m128i q6 = SUB_EPI16(input1, input6);
+ const __m128i q7 = SUB_EPI16(input0, input7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3,
+ &q4, &q5, &q6, &q7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = ADD_EPI16(q0, q3);
+ const __m128i r1 = ADD_EPI16(q1, q2);
+ const __m128i r2 = SUB_EPI16(q1, q2);
+ const __m128i r3 = SUB_EPI16(q0, q3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+ res00 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res08 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res04 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res12 = mult_round_shift(&t2, &t3, &k__cospi_m08_p24,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res00, &res08, &res04, &res12);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+ const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+ const __m128i r0 = mult_round_shift(&d0, &d1, &k__cospi_p16_m16,
+ &k__DCT_CONST_ROUNDING,
+ DCT_CONST_BITS);
+ const __m128i r1 = mult_round_shift(&d0, &d1, &k__cospi_p16_p16,
+ &k__DCT_CONST_ROUNDING,
+ DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&r0, &r1);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ {
+ // Add/subtract
+ const __m128i x0 = ADD_EPI16(q4, r0);
+ const __m128i x1 = SUB_EPI16(q4, r0);
+ const __m128i x2 = SUB_EPI16(q7, r1);
+ const __m128i x3 = ADD_EPI16(q7, r1);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ res02 = mult_round_shift(&t0, &t1, &k__cospi_p28_p04,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res14 = mult_round_shift(&t0, &t1, &k__cospi_m04_p28,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res10 = mult_round_shift(&t2, &t3, &k__cospi_p12_p20,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res06 = mult_round_shift(&t2, &t3, &k__cospi_m20_p12,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res02, &res14,
+ &res10, &res06);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ }
+ }
+ // Work on the next eight values; step1 -> odd_results
+ {
+ // step 2
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
+ step2_2 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_3 = mult_round_shift(&t2, &t3, &k__cospi_p16_m16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_5 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_4 = mult_round_shift(&t2, &t3, &k__cospi_p16_p16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&step2_2, &step2_3, &step2_5,
+ &step2_4);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 3
+ {
+ step3_0 = ADD_EPI16(step1_0, step2_3);
+ step3_1 = ADD_EPI16(step1_1, step2_2);
+ step3_2 = SUB_EPI16(step1_1, step2_2);
+ step3_3 = SUB_EPI16(step1_0, step2_3);
+ step3_4 = SUB_EPI16(step1_7, step2_4);
+ step3_5 = SUB_EPI16(step1_6, step2_5);
+ step3_6 = ADD_EPI16(step1_6, step2_5);
+ step3_7 = ADD_EPI16(step1_7, step2_4);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step3_0, &step3_1,
+ &step3_2, &step3_3,
+ &step3_4, &step3_5,
+ &step3_6, &step3_7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 4
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
+ const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
+ const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
+ const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
+ step2_1 = mult_round_shift(&t0, &t1, &k__cospi_m08_p24,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_2 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_6 = mult_round_shift(&t0, &t1, &k__cospi_p24_p08,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_5 = mult_round_shift(&t2, &t3, &k__cospi_p08_m24,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&step2_1, &step2_2, &step2_6,
+ &step2_5);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 5
+ {
+ step1_0 = ADD_EPI16(step3_0, step2_1);
+ step1_1 = SUB_EPI16(step3_0, step2_1);
+ step1_2 = ADD_EPI16(step3_3, step2_2);
+ step1_3 = SUB_EPI16(step3_3, step2_2);
+ step1_4 = SUB_EPI16(step3_4, step2_5);
+ step1_5 = ADD_EPI16(step3_4, step2_5);
+ step1_6 = SUB_EPI16(step3_7, step2_6);
+ step1_7 = ADD_EPI16(step3_7, step2_6);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step1_0, &step1_1,
+ &step1_2, &step1_3,
+ &step1_4, &step1_5,
+ &step1_6, &step1_7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 6
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
+ res01 = mult_round_shift(&t0, &t1, &k__cospi_p30_p02,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res09 = mult_round_shift(&t2, &t3, &k__cospi_p14_p18,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res15 = mult_round_shift(&t0, &t1, &k__cospi_m02_p30,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res07 = mult_round_shift(&t2, &t3, &k__cospi_m18_p14,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res01, &res09, &res15, &res07);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
+ res05 = mult_round_shift(&t0, &t1, &k__cospi_p22_p10,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res13 = mult_round_shift(&t2, &t3, &k__cospi_p06_p26,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res11 = mult_round_shift(&t0, &t1, &k__cospi_m10_p22,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res03 = mult_round_shift(&t2, &t3, &k__cospi_m26_p06,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res05, &res13, &res11, &res03);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Transpose the results, do it as two 8x8 transposes.
+ transpose_and_output8x8(&res00, &res01, &res02, &res03,
+ &res04, &res05, &res06, &res07,
+ pass, out0, out1);
+ transpose_and_output8x8(&res08, &res09, &res10, &res11,
+ &res12, &res13, &res14, &res15,
+ pass, out0 + 8, out1 + 8);
+ if (pass == 0) {
+ out0 += 8*16;
+ } else {
+ out1 += 8*16;
+ }
+ }
+ // Setup in/out for next pass.
+ in = intermediate;
+ }
+}
+
+#undef ADD_EPI16
+#undef SUB_EPI16
--- /dev/null
+++ b/vpx_dsp/x86/fwd_txfm_sse2.c
@@ -1,0 +1,34 @@
+/*
+ * Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "./vpx_config.h"
+
+#define DCT_HIGH_BIT_DEPTH 0
+
+#define FDCT4x4_2D vp9_fdct4x4_sse2
+#define FDCT8x8_2D vp9_fdct8x8_sse2
+#define FDCT16x16_2D vp9_fdct16x16_sse2
+#include "vpx_dsp/x86/fwd_txfm_impl_sse2.h"
+#undef FDCT4x4_2D
+#undef FDCT8x8_2D
+#undef FDCT16x16_2D
+#undef DCT_HIGH_BIT_DEPTH
+
+#if CONFIG_VP9_HIGHBITDEPTH
+#define DCT_HIGH_BIT_DEPTH 1
+#define FDCT4x4_2D vp9_highbd_fdct4x4_sse2
+#define FDCT8x8_2D vp9_highbd_fdct8x8_sse2
+#define FDCT16x16_2D vp9_highbd_fdct16x16_sse2
+#include "vpx_dsp/x86/fwd_txfm_impl_sse2.h" // NOLINT
+#undef FDCT4x4_2D
+#undef FDCT8x8_2D
+#undef FDCT16x16_2D
+#undef DCT_HIGH_BIT_DEPTH
+#endif // CONFIG_VP9_HIGHBITDEPTH
--- /dev/null
+++ b/vpx_dsp/x86/fwd_txfm_ssse3.asm
@@ -1,0 +1,182 @@
+;
+; Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+%include "third_party/x86inc/x86inc.asm"
+
+; This file provides SSSE3 version of the forward transformation. Part
+; of the macro definitions are originally derived from the ffmpeg project.
+; The current version applies to x86 64-bit only.
+
+SECTION_RODATA
+
+pw_11585x2: times 8 dw 23170
+pd_8192: times 4 dd 8192
+
+%macro TRANSFORM_COEFFS 2
+pw_%1_%2: dw %1, %2, %1, %2, %1, %2, %1, %2
+pw_%2_m%1: dw %2, -%1, %2, -%1, %2, -%1, %2, -%1
+%endmacro
+
+TRANSFORM_COEFFS 11585, 11585
+TRANSFORM_COEFFS 15137, 6270
+TRANSFORM_COEFFS 16069, 3196
+TRANSFORM_COEFFS 9102, 13623
+
+SECTION .text
+
+%if ARCH_X86_64
+%macro SUM_SUB 3
+ psubw m%3, m%1, m%2
+ paddw m%1, m%2
+ SWAP %2, %3
+%endmacro
+
+; butterfly operation
+%macro MUL_ADD_2X 6 ; dst1, dst2, src, round, coefs1, coefs2
+ pmaddwd m%1, m%3, %5
+ pmaddwd m%2, m%3, %6
+ paddd m%1, %4
+ paddd m%2, %4
+ psrad m%1, 14
+ psrad m%2, 14
+%endmacro
+
+%macro BUTTERFLY_4X 7 ; dst1, dst2, coef1, coef2, round, tmp1, tmp2
+ punpckhwd m%6, m%2, m%1
+ MUL_ADD_2X %7, %6, %6, %5, [pw_%4_%3], [pw_%3_m%4]
+ punpcklwd m%2, m%1
+ MUL_ADD_2X %1, %2, %2, %5, [pw_%4_%3], [pw_%3_m%4]
+ packssdw m%1, m%7
+ packssdw m%2, m%6
+%endmacro
+
+; matrix transpose
+%macro INTERLEAVE_2X 4
+ punpckh%1 m%4, m%2, m%3
+ punpckl%1 m%2, m%3
+ SWAP %3, %4
+%endmacro
+
+%macro TRANSPOSE8X8 9
+ INTERLEAVE_2X wd, %1, %2, %9
+ INTERLEAVE_2X wd, %3, %4, %9
+ INTERLEAVE_2X wd, %5, %6, %9
+ INTERLEAVE_2X wd, %7, %8, %9
+
+ INTERLEAVE_2X dq, %1, %3, %9
+ INTERLEAVE_2X dq, %2, %4, %9
+ INTERLEAVE_2X dq, %5, %7, %9
+ INTERLEAVE_2X dq, %6, %8, %9
+
+ INTERLEAVE_2X qdq, %1, %5, %9
+ INTERLEAVE_2X qdq, %3, %7, %9
+ INTERLEAVE_2X qdq, %2, %6, %9
+ INTERLEAVE_2X qdq, %4, %8, %9
+
+ SWAP %2, %5
+ SWAP %4, %7
+%endmacro
+
+; 1D forward 8x8 DCT transform
+%macro FDCT8_1D 1
+ SUM_SUB 0, 7, 9
+ SUM_SUB 1, 6, 9
+ SUM_SUB 2, 5, 9
+ SUM_SUB 3, 4, 9
+
+ SUM_SUB 0, 3, 9
+ SUM_SUB 1, 2, 9
+ SUM_SUB 6, 5, 9
+%if %1 == 0
+ SUM_SUB 0, 1, 9
+%endif
+
+ BUTTERFLY_4X 2, 3, 6270, 15137, m8, 9, 10
+
+ pmulhrsw m6, m12
+ pmulhrsw m5, m12
+%if %1 == 0
+ pmulhrsw m0, m12
+ pmulhrsw m1, m12
+%else
+ BUTTERFLY_4X 1, 0, 11585, 11585, m8, 9, 10
+ SWAP 0, 1
+%endif
+
+ SUM_SUB 4, 5, 9
+ SUM_SUB 7, 6, 9
+ BUTTERFLY_4X 4, 7, 3196, 16069, m8, 9, 10
+ BUTTERFLY_4X 5, 6, 13623, 9102, m8, 9, 10
+ SWAP 1, 4
+ SWAP 3, 6
+%endmacro
+
+%macro DIVIDE_ROUND_2X 4 ; dst1, dst2, tmp1, tmp2
+ psraw m%3, m%1, 15
+ psraw m%4, m%2, 15
+ psubw m%1, m%3
+ psubw m%2, m%4
+ psraw m%1, 1
+ psraw m%2, 1
+%endmacro
+
+INIT_XMM ssse3
+cglobal fdct8x8, 3, 5, 13, input, output, stride
+
+ mova m8, [pd_8192]
+ mova m12, [pw_11585x2]
+ pxor m11, m11
+
+ lea r3, [2 * strideq]
+ lea r4, [4 * strideq]
+ mova m0, [inputq]
+ mova m1, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m2, [inputq]
+ mova m3, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m4, [inputq]
+ mova m5, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m6, [inputq]
+ mova m7, [inputq + r3]
+
+ ; left shift by 2 to increase forward transformation precision
+ psllw m0, 2
+ psllw m1, 2
+ psllw m2, 2
+ psllw m3, 2
+ psllw m4, 2
+ psllw m5, 2
+ psllw m6, 2
+ psllw m7, 2
+
+ ; column transform
+ FDCT8_1D 0
+ TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9
+
+ FDCT8_1D 1
+ TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9
+
+ DIVIDE_ROUND_2X 0, 1, 9, 10
+ DIVIDE_ROUND_2X 2, 3, 9, 10
+ DIVIDE_ROUND_2X 4, 5, 9, 10
+ DIVIDE_ROUND_2X 6, 7, 9, 10
+
+ mova [outputq + 0], m0
+ mova [outputq + 16], m1
+ mova [outputq + 32], m2
+ mova [outputq + 48], m3
+ mova [outputq + 64], m4
+ mova [outputq + 80], m5
+ mova [outputq + 96], m6
+ mova [outputq + 112], m7
+
+ RET
+%endif