ref: 5ed2904cc41256520ea3fdaf4ddde940da971680
dir: /src/pt2_math.c/
/* Quite accurate approximation routines for sin/cos/sqrt/tan. ** These should not be used in realtime, as they are too slow. */ #include <stdint.h> #include <stdbool.h> #include <math.h> #include "pt2_math.h" static const double pi = PT2_PI; static const double twopi = PT2_TWO_PI; static const double four_over_pi = 4.0 / PT2_PI; static const double threehalfpi = (3.0 * PT2_PI) / 2.0; static const double halfpi = PT2_PI / 2.0; static double tan_14s(double x) { const double c1 = -34287.4662577359568109624; const double c2 = 2566.7175462315050423295; const double c3 = - 26.5366371951731325438; const double c4 = -43656.1579281292375769579; const double c5 = 12244.4839556747426927793; const double c6 = - 336.611376245464339493; double x2 = x * x; return x*(c1 + x2*(c2 + x2*c3))/(c4 + x2*(c5 + x2*(c6 + x2))); } double pt2_tan(double x) { x = fmod(x, twopi); const int32_t octant = (int32_t)(x * four_over_pi); switch (octant) { default: case 0: return tan_14s(x * four_over_pi); case 1: return 1.0/tan_14s((halfpi-x) * four_over_pi); case 2: return -1.0/tan_14s((x-halfpi) * four_over_pi); case 3: return -tan_14s((pi-x) * four_over_pi); case 4: return tan_14s((x-pi) * four_over_pi); case 5: return 1.0/tan_14s((threehalfpi-x) * four_over_pi); case 6: return -1.0/tan_14s((x-threehalfpi) * four_over_pi); case 7: return -tan_14s((twopi-x) * four_over_pi); } } double pt2_sqrt(double x) { double number = x; double s = number / 2.5; double old = 0.0; while (s != old) { old = s; s = (number / old + old) / 2.0; } return s; } static double cosTaylorSeries(double x) { #define ITERATIONS 32 /* good enough... */ x = fmod(x, twopi); if (x < 0.0) x = -x; double tmp = 1.0; double sum = 1.0; for (double i = 2.0; i <= ITERATIONS*2.0; i += 2.0) { tmp *= -(x*x) / (i * (i-1.0)); sum += tmp; } return sum; } double pt2_cos(double x) { return cosTaylorSeries(x); } double pt2_sin(double x) { return cosTaylorSeries(halfpi-x); }