ref: c9e5a109a64c608738cab9c8837bdad2b3edeb39
dir: /src/pt2_audio.c/
// the audio filters and BLEP synthesis were coded by aciddose // for finding memory leaks in debug mode with Visual Studio #if defined _DEBUG && defined _MSC_VER #include <crtdbg.h> #endif #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <stdbool.h> #include <SDL2/SDL.h> #ifdef _WIN32 #include <io.h> #else #include <unistd.h> #endif #include <math.h> // sqrt(),tan() #include <fcntl.h> #include <sys/types.h> #include <sys/stat.h> #include <limits.h> #include "pt2_audio.h" #include "pt2_header.h" #include "pt2_helpers.h" #include "pt2_blep.h" #include "pt2_config.h" #include "pt2_tables.h" #include "pt2_textout.h" #include "pt2_visuals.h" #include "pt2_scopes.h" #include "pt2_mod2wav.h" #include "pt2_pat2smp.h" #include "pt2_sync.h" #include "pt2_structs.h" #include "pt2_rcfilter.h" #include "pt2_ledfilter.h" #include "pt2_downsamplers2x.h" #define INITIAL_DITHER_SEED 0x12345000 static volatile bool ledFilterEnabled; static volatile uint8_t filterModel; static int8_t defStereoSep; static bool amigaPanFlag; static int32_t oldPeriod = -1, randSeed = INITIAL_DITHER_SEED; static uint32_t audLatencyPerfValInt, audLatencyPerfValFrac; static uint64_t tickTime64, tickTime64Frac; static double *dMixBufferL, *dMixBufferR, *dMixBufferLUnaligned, *dMixBufferRUnaligned, dOldVoiceDelta, dOldVoiceDeltaMul; static double dPrngStateL, dPrngStateR, dLState[2], dRState[2]; static blep_t blep[AMIGA_VOICES], blepVol[AMIGA_VOICES]; static rcFilter_t filterLoA500, filterHiA500, filterHiA1200; static ledFilter_t filterLED; static SDL_AudioDeviceID dev; // for audio/video syncing static uint32_t tickTimeLen, tickTimeLenFrac; // globalized audio_t audio; paulaVoice_t paula[AMIGA_VOICES]; bool intMusic(void); // defined in pt_modplayer.c void setLEDFilter(bool state, bool doLockAudio) { const bool audioWasntLocked = !audio.locked; if (doLockAudio && audioWasntLocked) lockAudio(); clearLEDFilterState(&filterLED); editor.useLEDFilter = state; ledFilterEnabled = editor.useLEDFilter; if (doLockAudio && audioWasntLocked) unlockAudio(); } void toggleLEDFilter(void) { const bool audioWasntLocked = !audio.locked; if (audioWasntLocked) lockAudio(); clearLEDFilterState(&filterLED); editor.useLEDFilter ^= 1; ledFilterEnabled = editor.useLEDFilter; if (audioWasntLocked) unlockAudio(); } static void calcAudioLatencyVars(int32_t audioBufferSize, int32_t audioFreq) { double dInt, dFrac; if (audioFreq == 0) return; const double dAudioLatencySecs = audioBufferSize / (double)audioFreq; dFrac = modf(dAudioLatencySecs * editor.dPerfFreq, &dInt); // integer part audLatencyPerfValInt = (int32_t)dInt; // fractional part (scaled to 0..2^32-1) dFrac *= UINT32_MAX+1.0; audLatencyPerfValFrac = (uint32_t)dFrac; } void setSyncTickTimeLen(uint32_t timeLen, uint32_t timeLenFrac) { tickTimeLen = timeLen; tickTimeLenFrac = timeLenFrac; } void lockAudio(void) { if (dev != 0) SDL_LockAudioDevice(dev); audio.locked = true; audio.resetSyncTickTimeFlag = true; resetChSyncQueue(); } void unlockAudio(void) { if (dev != 0) SDL_UnlockAudioDevice(dev); audio.resetSyncTickTimeFlag = true; resetChSyncQueue(); audio.locked = false; } void mixerUpdateLoops(void) // updates Paula loop (+ scopes) { for (int32_t i = 0; i < AMIGA_VOICES; i++) { const moduleChannel_t *ch = &song->channels[i]; if (ch->n_samplenum == editor.currSample) { const moduleSample_t *s = &song->samples[editor.currSample]; paulaSetData(i, ch->n_start + s->loopStart); paulaSetLength(i, s->loopLength >> 1); } } } void mixerKillVoice(int32_t ch) { const bool audioWasntLocked = !audio.locked; if (audioWasntLocked) lockAudio(); // copy old pans const double dOldPanL = paula[ch].dPanL; const double dOldPanR = paula[ch].dPanR; memset(&paula[ch], 0, sizeof (paulaVoice_t)); memset(&blep[ch], 0, sizeof (blep_t)); memset(&blepVol[ch], 0, sizeof (blep_t)); stopScope(ch); // it should be safe to clear the scope now memset(&scope[ch], 0, sizeof (scope_t)); // restore old pans paula[ch].dPanL = dOldPanL; paula[ch].dPanR = dOldPanR; if (audioWasntLocked) unlockAudio(); } void turnOffVoices(void) { const bool audioWasntLocked = !audio.locked; if (audioWasntLocked) lockAudio(); for (int32_t i = 0; i < AMIGA_VOICES; i++) mixerKillVoice(i); clearRCFilterState(&filterLoA500); clearRCFilterState(&filterHiA500); clearRCFilterState(&filterHiA1200); clearLEDFilterState(&filterLED); resetAudioDithering(); editor.tuningFlag = false; if (audioWasntLocked) unlockAudio(); } void resetCachedMixerPeriod(void) { oldPeriod = -1; } // the following routines are only called from the mixer thread. void paulaSetPeriod(int32_t ch, uint16_t period) { double dPeriodToDeltaDiv; paulaVoice_t *v = &paula[ch]; int32_t realPeriod = period; if (realPeriod == 0) realPeriod = 1+65535; // confirmed behavior on real Amiga else if (realPeriod < 113) realPeriod = 113; // close to what happens on real Amiga (and needed for BLEP synthesis) if (editor.songPlaying) { v->syncPeriod = realPeriod; v->syncFlags |= SET_SCOPE_PERIOD; } else { scopeSetPeriod(ch, realPeriod); } // if the new period was the same as the previous period, use cached deltas if (realPeriod != oldPeriod) { oldPeriod = realPeriod; // this period is not cached, calculate mixer deltas // during PAT2SMP or doing MOD2WAV, use different audio output rates if (editor.isSMPRendering) dPeriodToDeltaDiv = editor.pat2SmpHQ ? (PAULA_PAL_CLK / PAT2SMP_HI_FREQ) : (PAULA_PAL_CLK / PAT2SMP_LO_FREQ); else if (editor.isWAVRendering) dPeriodToDeltaDiv = PAULA_PAL_CLK / (double)MOD2WAV_FREQ; else dPeriodToDeltaDiv = audio.dPeriodToDeltaDiv; // cache these dOldVoiceDelta = dPeriodToDeltaDiv / realPeriod; dOldVoiceDeltaMul = 1.0 / dOldVoiceDelta; // for BLEP synthesis } v->dDelta = dOldVoiceDelta; // for BLEP synthesis v->dDeltaMul = dOldVoiceDeltaMul; if (v->dLastDelta == 0.0) v->dLastDelta = v->dDelta; if (v->dLastDeltaMul == 0.0) v->dLastDeltaMul = v->dDeltaMul; } void paulaSetVolume(int32_t ch, uint16_t vol) { paulaVoice_t *v = &paula[ch]; int32_t realVol = vol; // confirmed behavior on real Amiga realVol &= 127; if (realVol > 64) realVol = 64; v->dVolume = realVol * (1.0 / 64.0); if (editor.songPlaying) { v->syncVolume = (uint8_t)realVol; v->syncFlags |= SET_SCOPE_VOLUME; } else { scope[ch].volume = (uint8_t)realVol; } } void paulaSetLength(int32_t ch, uint16_t len) { int32_t realLength = len; if (realLength == 0) { realLength = 1+65535; /* Confirmed behavior on real Amiga. We have room for this ** even at the last sample slot, so it will never overflow! ** ** PS: I don't really know if it's possible for ProTracker to ** set a Paula length of 0, but I fully support this Paula ** behavior just in case. */ } realLength <<= 1; // we work with bytes, not words paula[ch].newLength = realLength; if (editor.songPlaying) paula[ch].syncFlags |= SET_SCOPE_LENGTH; else scope[ch].newLength = realLength; } void paulaSetData(int32_t ch, const int8_t *src) { if (src == NULL) src = &song->sampleData[RESERVED_SAMPLE_OFFSET]; // 128K reserved sample paula[ch].newData = src; if (editor.songPlaying) paula[ch].syncFlags |= SET_SCOPE_DATA; else scope[ch].newData = src; } void paulaStopDMA(int32_t ch) { paula[ch].active = false; if (editor.songPlaying) paula[ch].syncFlags |= STOP_SCOPE; else scope[ch].active = false; } void paulaStartDMA(int32_t ch) { const int8_t *dat; int32_t length; paulaVoice_t *v; // trigger voice v = &paula[ch]; dat = v->newData; if (dat == NULL) dat = &song->sampleData[RESERVED_SAMPLE_OFFSET]; // 128K reserved sample length = v->newLength; // in bytes, not words if (length < 2) length = 2; // for safety v->dPhase = 0.0; v->pos = 0; v->data = dat; v->length = length; v->active = true; if (editor.songPlaying) { v->syncTriggerData = dat; v->syncTriggerLength = length; v->syncFlags |= TRIGGER_SCOPE; } else { scope[ch].newData = dat; scope[ch].newLength = length; scopeTrigger(ch); } } void toggleFilterModel(void) { const bool audioWasntLocked = !audio.locked; if (audioWasntLocked) lockAudio(); clearRCFilterState(&filterLoA500); clearRCFilterState(&filterHiA500); clearRCFilterState(&filterHiA1200); clearLEDFilterState(&filterLED); filterModel ^= 1; if (filterModel == FILTERMODEL_A500) displayMsg("AUDIO: AMIGA 500"); else displayMsg("AUDIO: AMIGA 1200"); if (audioWasntLocked) unlockAudio(); } void mixChannels(int32_t numSamples) { double dSmp, dVol; blep_t *bSmp, *bVol; paulaVoice_t *v; memset(dMixBufferL, 0, numSamples * sizeof (double)); memset(dMixBufferR, 0, numSamples * sizeof (double)); v = paula; bSmp = blep; bVol = blepVol; for (int32_t i = 0; i < AMIGA_VOICES; i++, v++, bSmp++, bVol++) { if (!v->active || v->data == NULL) continue; for (int32_t j = 0; j < numSamples; j++) { assert(v->data != NULL); dSmp = v->data[v->pos] * (1.0 / 128.0); dVol = v->dVolume; if (dSmp != bSmp->dLastValue) { if (v->dLastDelta > v->dLastPhase) { // div->mul trick: v->dLastDeltaMul is 1.0 / v->dLastDelta blepAdd(bSmp, v->dLastPhase * v->dLastDeltaMul, bSmp->dLastValue - dSmp); } bSmp->dLastValue = dSmp; } if (dVol != bVol->dLastValue) { blepVolAdd(bVol, bVol->dLastValue - dVol); bVol->dLastValue = dVol; } if (bSmp->samplesLeft > 0) dSmp = blepRun(bSmp, dSmp); if (bVol->samplesLeft > 0) dVol = blepRun(bVol, dVol); dSmp *= dVol; dMixBufferL[j] += dSmp * v->dPanL; dMixBufferR[j] += dSmp * v->dPanR; v->dPhase += v->dDelta; if (v->dPhase >= 1.0) // deltas can't be >= 1.0, so this is safe { v->dPhase -= 1.0; v->dLastPhase = v->dPhase; v->dLastDelta = v->dDelta; v->dLastDeltaMul = v->dDeltaMul; if (++v->pos >= v->length) { v->pos = 0; // re-fetch new Paula register values now v->length = v->newLength; v->data = v->newData; } } } } } void resetAudioDithering(void) { randSeed = INITIAL_DITHER_SEED; dPrngStateL = 0.0; dPrngStateR = 0.0; } void resetAudioDownsamplingStates(void) { dLState[0] = dLState[1] = 0.0; dRState[0] = dRState[1] = 0.0; } static inline int32_t random32(void) { // LCG random 32-bit generator (quite good and fast) randSeed *= 134775813; randSeed++; return randSeed; } static void processMixedSamples(int32_t i, int16_t *out) { int32_t smp32; double dPrng, dOut[2], dMixL[2], dMixR[2]; // we run the filters at 2x the audio output rate for more precision for (int32_t j = 0; j < 2; j++) { // zero-padding (yes, this makes sense) dOut[0] = (j == 0) ? dMixBufferL[i] : 0.0; dOut[1] = (j == 0) ? dMixBufferR[i] : 0.0; if (filterModel == FILTERMODEL_A500) { // A500 low-pass RC filter RCLowPassFilterStereo(&filterLoA500, dOut, dOut); // "LED" Sallen-Key filter if (ledFilterEnabled) LEDFilter(&filterLED, dOut, dOut); // A500 high-pass RC filter RCHighPassFilterStereo(&filterHiA500, dOut, dOut); } else { // A1200 low-pass filter is ignored (we don't want it) // "LED" Sallen-Key filter if (ledFilterEnabled) LEDFilter(&filterLED, dOut, dOut); // A1200 high-pass RC filter RCHighPassFilterStereo(&filterHiA1200, dOut, dOut); } dMixL[j] = dOut[0]; dMixR[j] = dOut[1]; } #define NORMALIZE_DOWNSAMPLE 2.0 // 2x "all-pass halfband" downsampling dOut[0] = d2x(dMixL, dLState); dOut[1] = d2x(dMixR, dRState); // normalize and invert phase (A500/A1200 has a phase-inverted audio signal) dOut[0] *= NORMALIZE_DOWNSAMPLE * (-INT16_MAX / (double)AMIGA_VOICES); dOut[1] *= NORMALIZE_DOWNSAMPLE * (-INT16_MAX / (double)AMIGA_VOICES); // left channel - 1-bit triangular dithering (high-pass filtered) dPrng = random32() * (0.5 / INT32_MAX); // -0.5..0.5 dOut[0] = (dOut[0] + dPrng) - dPrngStateL; dPrngStateL = dPrng; smp32 = (int32_t)dOut[0]; CLAMP16(smp32); out[0] = (int16_t)smp32; // right channel - 1-bit triangular dithering (high-pass filtered) dPrng = random32() * (0.5 / INT32_MAX); // -0.5..0.5 dOut[1] = (dOut[1] + dPrng) - dPrngStateR; dPrngStateR = dPrng; smp32 = (int32_t)dOut[1]; CLAMP16(smp32); out[1] = (int16_t)smp32; } void outputAudio(int16_t *target, int32_t numSamples) { int16_t out[2]; int32_t i; if (editor.isSMPRendering) { // render to sample (PAT2SMP) int32_t samplesTodo = numSamples; if (editor.pat2SmpPos+samplesTodo > MAX_SAMPLE_LEN*2) samplesTodo = (MAX_SAMPLE_LEN*2)-editor.pat2SmpPos; mixChannels(samplesTodo); double *dOutStream = &editor.dPat2SmpBuf[editor.pat2SmpPos]; for (i = 0; i < samplesTodo; i++) dOutStream[i] = dMixBufferL[i] + dMixBufferR[i]; // normalized to -128..127 later editor.pat2SmpPos += samplesTodo; if (editor.pat2SmpPos >= MAX_SAMPLE_LEN*2) { editor.smpRenderingDone = true; updateWindowTitle(MOD_IS_MODIFIED); } } else { // render to stream mixChannels(numSamples); int16_t *outStream = target; for (i = 0; i < numSamples; i++) { processMixedSamples(i, out); *outStream++ = out[0]; *outStream++ = out[1]; } } } static void fillVisualsSyncBuffer(void) { chSyncData_t chSyncData; if (audio.resetSyncTickTimeFlag) { audio.resetSyncTickTimeFlag = false; tickTime64 = SDL_GetPerformanceCounter() + audLatencyPerfValInt; tickTime64Frac = audLatencyPerfValFrac; } moduleChannel_t *c = song->channels; paulaVoice_t *v = paula; syncedChannel_t *s = chSyncData.channels; for (int32_t i = 0; i < AMIGA_VOICES; i++, c++, s++, v++) { s->flags = v->syncFlags | c->syncFlags; c->syncFlags = v->syncFlags = 0; // clear sync flags s->volume = v->syncVolume; s->period = v->syncPeriod; s->triggerData = v->syncTriggerData; s->triggerLength = v->syncTriggerLength; s->newData = v->newData; s->newLength = v->newLength; s->vuVolume = c->syncVuVolume; s->analyzerVolume = c->syncAnalyzerVolume; s->analyzerPeriod = c->syncAnalyzerPeriod; } chSyncData.timestamp = tickTime64; chQueuePush(chSyncData); tickTime64 += tickTimeLen; tickTime64Frac += tickTimeLenFrac; if (tickTime64Frac > 0xFFFFFFFF) { tickTime64Frac &= 0xFFFFFFFF; tickTime64++; } } static void SDLCALL audioCallback(void *userdata, Uint8 *stream, int len) { if (audio.forceMixerOff) // during MOD2WAV { memset(stream, 0, len); return; } int16_t *streamOut = (int16_t *)stream; int32_t samplesLeft = len >> 2; while (samplesLeft > 0) { if (audio.dTickSampleCounter <= 0.0) { // new replayer tick if (editor.songPlaying) { intMusic(); fillVisualsSyncBuffer(); } audio.dTickSampleCounter += audio.dSamplesPerTick; } const int32_t remainingTick = (int32_t)ceil(audio.dTickSampleCounter); int32_t samplesToMix = samplesLeft; if (samplesToMix > remainingTick) samplesToMix = remainingTick; outputAudio(streamOut, samplesToMix); streamOut += samplesToMix<<1; samplesLeft -= samplesToMix; audio.dTickSampleCounter -= samplesToMix; } (void)userdata; } static void calculateFilterCoeffs(void) { /* Amiga 500/1200 filter emulation ** ** aciddose: ** First comes a static low-pass 6dB formed by the supply current ** from the Paula's mixture of channels A+B / C+D into the opamp with ** 0.1uF capacitor and 360 ohm resistor feedback in inverting mode biased by ** dac vRef (used to center the output). ** ** R = 360 ohm ** C = 0.1uF ** Low Hz = 4420.97~ = 1 / (2pi * 360 * 0.0000001) ** ** Under spice simulation the circuit yields -3dB = 4400Hz. ** In the Amiga 1200, the low-pass cutoff is ~34kHz, so the ** static low-pass filter is disabled in the mixer in A1200 mode. ** ** Next comes a bog-standard Sallen-Key filter ("LED") with: ** R1 = 10K ohm ** R2 = 10K ohm ** C1 = 6800pF ** C2 = 3900pF ** Q ~= 1/sqrt(2) ** ** This filter is optionally bypassed by an MPF-102 JFET chip when ** the LED filter is turned off. ** ** Under spice simulation the circuit yields -3dB = 2800Hz. ** 90 degrees phase = 3000Hz (so, should oscillate at 3kHz!) ** ** The buffered output of the Sallen-Key passes into an RC high-pass with: ** R = 1.39K ohm (1K ohm + 390 ohm) ** C = 22uF (also C = 330nF, for improved high-frequency) ** ** High Hz = 5.2~ = 1 / (2pi * 1390 * 0.000022) ** Under spice simulation the circuit yields -3dB = 5.2Hz. ** ** 8bitbubsy: ** Keep in mind that many of the Amiga schematics that are floating around on ** the internet have wrong RC values! They were most likely very early schematics ** that didn't change before production (or changes that never reached production). ** This has been confirmed by measuring the components on several Amiga motherboards. ** ** Correct values for A500 (A500_R6.pdf): ** - RC 6dB/oct low-pass: R=360 ohm, C=0.1uF (f=4420.970Hz) ** - Sallen-key low-pass ("LED"): R1/R2=10k ohm, C1=6800pF, C2=3900pF (f=3090.532Hz) ** - RC 6dB/oct high-pass: R=1390 ohm (1000+390), C=22.33uF (22+0.33) (f=5.127Hz) ** ** Correct values for A1200 (A1200_R2.pdf): ** - RC 6dB/oct low-pass: R=680 ohm, C=6800pF (f=34419.321Hz) ** - Sallen-key low-pass ("LED"): Same as A500 (f=3090.532Hz) ** - RC 6dB/oct high-pass: R=1390 ohm (1000+390), C=22uF (f=5.204Hz) */ // we run the filters at twice the frequency for improved precision (zero-padding) const uint32_t audioFreq = audio.outputRate * 2; double R, C, R1, R2, C1, C2, fc, fb; const double pi = 4.0 * atan(1.0); // M_PI can not be trusted /* ** 8bitbubsy: ** Hackish low-pass cutoff compensation to better match Amiga 500 when ** we use "lower" audio output rates. This has been loosely hand-picked ** after looking at many frequency analyses on a sine-sweep test module ** rendered on 7 different Amiga 500 machines (and taking the average). ** Don't try to make sense of this magic constant, and it should only be ** used within this very specific application! ** ** The reason we want this bias is because our digital RC filter is not ** that precise at lower audio output rates. It would otherwise lead to a ** slight unwanted cut of treble near the cutoff we aim for. It was easily ** audible, and especially visible on a plotted frequency spectrum. ** ** 1100Hz is the magic value I found that seems to be good. Higher than that ** would allow too much treble to pass. ** ** Scaling it like this is 'acceptable' (confirmed with further frequency analyses ** at output rates of 48, 96 and 192). */ double dLPCutoffBias = 1100.0 * (44100.0 / audio.outputRate); // A500 1-pole (6db/oct) static RC low-pass filter: R = 360.0; // R321 (360 ohm resistor) C = 1e-7; // C321 (0.1uF capacitor) fc = (1.0 / (2.0 * pi * R * C)) + dLPCutoffBias; calcRCFilterCoeffs(audioFreq, fc, &filterLoA500); /* ** 8bitbubsy: ** We don't handle Amiga 1200's ~34kHz low-pass filter as it's not really ** needed. The reason it was still present in the A1200 (despite its high ** non-audible cutoff) was to filter away high-frequency noise from Paula's ** PWM (volume modulation). We don't do PWM for volume in the PT2 clone. */ // Sallen-Key filter ("LED" filter, same RC values on A500 and A1200): R1 = 10000.0; // R322 (10K ohm resistor) R2 = 10000.0; // R323 (10K ohm resistor) C1 = 6.8e-9; // C322 (6800pF capacitor) C2 = 3.9e-9; // C323 (3900pF capacitor) fc = 1.0 / (2.0 * pi * sqrt(R1 * R2 * C1 * C2)); fb = 0.125; // Fb = 0.125 : Q ~= 1/sqrt(2) calcLEDFilterCoeffs(audioFreq, fc, fb, &filterLED); // A500 1-pole (6dB/oct) static RC high-pass filter: R = 1390.0; // R324 (1K ohm resistor) + R325 (390 ohm resistor) C = 2.233e-5; // C334 (22uF capacitor) + C335 (0.33�F capacitor) fc = 1.0 / (2.0 * pi * R * C); calcRCFilterCoeffs(audioFreq, fc, &filterHiA500); // A1200 1-pole (6dB/oct) static RC high-pass filter: R = 1390.0; // R324 (1K ohm resistor) + R325 (390 ohm resistor) C = 2.2e-5; // C334 (22uF capacitor) fc = 1.0 / (2.0 * pi * R * C); calcRCFilterCoeffs(audioFreq, fc, &filterHiA1200); } void recalcFilterCoeffs(int32_t outputRate) // for MOD2WAV { const bool audioWasntLocked = !audio.locked; if (audioWasntLocked) lockAudio(); const int32_t oldOutputRate = audio.outputRate; audio.outputRate = outputRate; clearRCFilterState(&filterLoA500); clearRCFilterState(&filterHiA500); clearRCFilterState(&filterHiA1200); clearLEDFilterState(&filterLED); calculateFilterCoeffs(); audio.outputRate = oldOutputRate; if (audioWasntLocked) unlockAudio(); } static void setVoicePan(int32_t ch, double pan) // pan = 0.0 .. 1.0 { // constant power panning const double pi = 4.0 * atan(1.0); // M_PI can not be trusted paula[ch].dPanL = cos(pan * pi * 0.5) * sqrt(2.0); paula[ch].dPanR = sin(pan * pi * 0.5) * sqrt(2.0); } void mixerCalcVoicePans(uint8_t stereoSeparation) // 0..100 (percentage) { assert(stereoSeparation <= 100); const double panMid = 0.5; const double panR = panMid + (stereoSeparation / (100.0 * 2.0)); const double panL = 1.0 - panR; setVoicePan(0, panL); setVoicePan(1, panR); setVoicePan(2, panR); setVoicePan(3, panL); } static double ciaBpm2Hz(int32_t bpm) { if (bpm == 0) return 0.0; const uint32_t ciaPeriod = 1773447 / bpm; // yes, PT truncates here return (double)CIA_PAL_CLK / ciaPeriod; } static void generateBpmTables(bool vblankTimingFlag) { for (int32_t bpm = 32; bpm <= 255; bpm++) { double dHz; if (vblankTimingFlag) dHz = AMIGA_PAL_VBLANK_HZ; else dHz = ciaBpm2Hz(bpm); audio.bpmTable[bpm-32] = audio.outputRate / dHz; audio.bpmTable28kHz[bpm-32] = PAT2SMP_HI_FREQ / dHz; // PAT2SMP hi quality audio.bpmTable22kHz[bpm-32] = PAT2SMP_LO_FREQ / dHz; // PAT2SMP low quality audio.bpmTableMod2Wav[bpm-32] = MOD2WAV_FREQ / dHz; // MOD2WAV } } static void generateTickLengthTable(bool vblankTimingFlag) { for (int32_t bpm = 32; bpm <= 255; bpm++) { double dHz; if (vblankTimingFlag) dHz = AMIGA_PAL_VBLANK_HZ; else dHz = ciaBpm2Hz(bpm); // BPM -> Hz -> tick length for performance counter (syncing visuals to audio) double dTimeInt; double dTimeFrac = modf(editor.dPerfFreq / dHz, &dTimeInt); const int32_t timeInt = (int32_t)dTimeInt; dTimeFrac = floor((UINT32_MAX+1.0) * dTimeFrac); // fractional part (scaled to 0..2^32-1) audio.tickLengthTable[bpm-32] = ((uint64_t)timeInt << 32) | (uint32_t)dTimeFrac; } } void updateReplayerTimingMode(void) { const bool audioWasntLocked = !audio.locked; if (audioWasntLocked) lockAudio(); const bool vblankTimingMode = (editor.timingMode == TEMPO_MODE_VBLANK); generateBpmTables(vblankTimingMode); generateTickLengthTable(vblankTimingMode); if (audioWasntLocked) unlockAudio(); } bool setupAudio(void) { SDL_AudioSpec want, have; want.freq = config.soundFrequency; want.samples = (uint16_t)config.soundBufferSize; want.format = AUDIO_S16; want.channels = 2; want.callback = audioCallback; want.userdata = NULL; dev = SDL_OpenAudioDevice(NULL, 0, &want, &have, 0); if (dev == 0) { showErrorMsgBox("Unable to open audio device: %s", SDL_GetError()); return false; } if (have.freq < 32000) // lower than this is not safe for the BLEP synthesis in the mixer { showErrorMsgBox("Unable to open audio: An audio rate below 32kHz can't be used!"); return false; } if (have.format != want.format) { showErrorMsgBox("Unable to open audio: The sample format (signed 16-bit) couldn't be used!"); return false; } audio.outputRate = have.freq; audio.audioBufferSize = have.samples; audio.dPeriodToDeltaDiv = (double)PAULA_PAL_CLK / audio.outputRate; updateReplayerTimingMode(); const int32_t lowestBPM = 32; const int32_t pat2SmpMaxSamples = (int32_t)ceil(audio.bpmTable22kHz[lowestBPM-32]); const int32_t mod2WavMaxSamples = (int32_t)ceil(audio.bpmTableMod2Wav[lowestBPM-32]); const int32_t renderMaxSamples = (int32_t)ceil(audio.bpmTable[lowestBPM-32]); const int32_t maxSamplesToMix = MAX(pat2SmpMaxSamples, MAX(mod2WavMaxSamples, renderMaxSamples)); dMixBufferLUnaligned = (double *)MALLOC_PAD(maxSamplesToMix * sizeof (double) * 8, 256); dMixBufferRUnaligned = (double *)MALLOC_PAD(maxSamplesToMix * sizeof (double) * 8, 256); if (dMixBufferLUnaligned == NULL || dMixBufferRUnaligned == NULL) { showErrorMsgBox("Out of memory!"); return false; } dMixBufferL = (double *)ALIGN_PTR(dMixBufferLUnaligned, 256); dMixBufferR = (double *)ALIGN_PTR(dMixBufferRUnaligned, 256); mixerCalcVoicePans(config.stereoSeparation); defStereoSep = config.stereoSeparation; filterModel = config.filterModel; ledFilterEnabled = false; calculateFilterCoeffs(); audio.dSamplesPerTick = audio.bpmTable[125-32]; // BPM 125 audio.dTickSampleCounter = 0.0; calcAudioLatencyVars(audio.audioBufferSize, audio.outputRate); resetAudioDownsamplingStates(); audio.resetSyncTickTimeFlag = true; SDL_PauseAudioDevice(dev, false); return true; } void audioClose(void) { if (dev > 0) { SDL_PauseAudioDevice(dev, true); SDL_CloseAudioDevice(dev); dev = 0; } if (dMixBufferLUnaligned != NULL) { free(dMixBufferLUnaligned); dMixBufferLUnaligned = NULL; } if (dMixBufferRUnaligned != NULL) { free(dMixBufferRUnaligned); dMixBufferRUnaligned = NULL; } } void toggleAmigaPanMode(void) { const bool audioWasntLocked = !audio.locked; if (audioWasntLocked) lockAudio(); amigaPanFlag ^= 1; if (!amigaPanFlag) { mixerCalcVoicePans(defStereoSep); displayMsg("AMIGA PANNING OFF"); } else { mixerCalcVoicePans(100); displayMsg("AMIGA PANNING ON"); } if (audioWasntLocked) unlockAudio(); } uint16_t get16BitPeak(int16_t *sampleData, uint32_t sampleLength) { uint16_t samplePeak = 0; for (uint32_t i = 0; i < sampleLength; i++) { uint16_t sample = ABS(sampleData[i]); if (samplePeak < sample) samplePeak = sample; } return samplePeak; } uint32_t get32BitPeak(int32_t *sampleData, uint32_t sampleLength) { uint32_t samplePeak = 0; for (uint32_t i = 0; i < sampleLength; i++) { uint32_t sample = ABS(sampleData[i]); if (samplePeak < sample) samplePeak = sample; } return samplePeak; } float getFloatPeak(float *fSampleData, uint32_t sampleLength) { float fSamplePeak = 0.0f; for (uint32_t i = 0; i < sampleLength; i++) { const float fSample = fabsf(fSampleData[i]); if (fSamplePeak < fSample) fSamplePeak = fSample; } return fSamplePeak; } double getDoublePeak(double *dSampleData, uint32_t sampleLength) { double dSamplePeak = 0.0; for (uint32_t i = 0; i < sampleLength; i++) { const double dSample = fabs(dSampleData[i]); if (dSamplePeak < dSample) dSamplePeak = dSample; } return dSamplePeak; } void normalize16BitTo8Bit(int16_t *sampleData, uint32_t sampleLength) { const uint16_t samplePeak = get16BitPeak(sampleData, sampleLength); if (samplePeak == 0 || samplePeak >= INT16_MAX) return; const double dGain = (double)INT16_MAX / samplePeak; for (uint32_t i = 0; i < sampleLength; i++) { const int32_t sample = (const int32_t)(sampleData[i] * dGain); sampleData[i] = (int16_t)sample; } } void normalize32BitTo8Bit(int32_t *sampleData, uint32_t sampleLength) { const uint32_t samplePeak = get32BitPeak(sampleData, sampleLength); if (samplePeak == 0 || samplePeak >= INT32_MAX) return; const double dGain = (double)INT32_MAX / samplePeak; for (uint32_t i = 0; i < sampleLength; i++) { const int32_t sample = (const int32_t)(sampleData[i] * dGain); sampleData[i] = (int32_t)sample; } } void normalizeFloatTo8Bit(float *fSampleData, uint32_t sampleLength) { const float fSamplePeak = getFloatPeak(fSampleData, sampleLength); if (fSamplePeak <= 0.0f) return; const float fGain = INT8_MAX / fSamplePeak; for (uint32_t i = 0; i < sampleLength; i++) fSampleData[i] *= fGain; } void normalizeDoubleTo8Bit(double *dSampleData, uint32_t sampleLength) { const double dSamplePeak = getDoublePeak(dSampleData, sampleLength); if (dSamplePeak <= 0.0) return; const double dGain = INT8_MAX / dSamplePeak; for (uint32_t i = 0; i < sampleLength; i++) dSampleData[i] *= dGain; }