ref: 58fee652c452dde03ab5b1a4528e713e0b97a459
dir: /opl/opl3.c/
// // Copyright (C) 2013-2016 Alexey Khokholov (Nuke.YKT) // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // // Nuked OPL3 emulator. // Thanks: // MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh): // Feedback and Rhythm part calculation information. // forums.submarine.org.uk(carbon14, opl3): // Tremolo and phase generator calculation information. // OPLx decapsulated(Matthew Gambrell, Olli Niemitalo): // OPL2 ROMs. // // version: 1.7.4 // #include <stdio.h> #include <stdlib.h> #include <string.h> #include "opl3.h" #define RSM_FRAC 10 // Channel types enum { ch_2op = 0, ch_4op = 1, ch_4op2 = 2, ch_drum = 3 }; // Envelope key types enum { egk_norm = 0x01, egk_drum = 0x02 }; // // logsin table // static const Bit16u logsinrom[256] = { 0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471, 0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365, 0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd, 0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261, 0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f, 0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd, 0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195, 0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166, 0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c, 0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118, 0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8, 0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db, 0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1, 0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9, 0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094, 0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081, 0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070, 0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060, 0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052, 0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045, 0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039, 0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f, 0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026, 0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e, 0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017, 0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011, 0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c, 0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007, 0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004, 0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002, 0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000 }; // // exp table // static const Bit16u exprom[256] = { 0x000, 0x003, 0x006, 0x008, 0x00b, 0x00e, 0x011, 0x014, 0x016, 0x019, 0x01c, 0x01f, 0x022, 0x025, 0x028, 0x02a, 0x02d, 0x030, 0x033, 0x036, 0x039, 0x03c, 0x03f, 0x042, 0x045, 0x048, 0x04b, 0x04e, 0x051, 0x054, 0x057, 0x05a, 0x05d, 0x060, 0x063, 0x066, 0x069, 0x06c, 0x06f, 0x072, 0x075, 0x078, 0x07b, 0x07e, 0x082, 0x085, 0x088, 0x08b, 0x08e, 0x091, 0x094, 0x098, 0x09b, 0x09e, 0x0a1, 0x0a4, 0x0a8, 0x0ab, 0x0ae, 0x0b1, 0x0b5, 0x0b8, 0x0bb, 0x0be, 0x0c2, 0x0c5, 0x0c8, 0x0cc, 0x0cf, 0x0d2, 0x0d6, 0x0d9, 0x0dc, 0x0e0, 0x0e3, 0x0e7, 0x0ea, 0x0ed, 0x0f1, 0x0f4, 0x0f8, 0x0fb, 0x0ff, 0x102, 0x106, 0x109, 0x10c, 0x110, 0x114, 0x117, 0x11b, 0x11e, 0x122, 0x125, 0x129, 0x12c, 0x130, 0x134, 0x137, 0x13b, 0x13e, 0x142, 0x146, 0x149, 0x14d, 0x151, 0x154, 0x158, 0x15c, 0x160, 0x163, 0x167, 0x16b, 0x16f, 0x172, 0x176, 0x17a, 0x17e, 0x181, 0x185, 0x189, 0x18d, 0x191, 0x195, 0x199, 0x19c, 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc, 0x1c0, 0x1c4, 0x1c8, 0x1cc, 0x1d0, 0x1d4, 0x1d8, 0x1dc, 0x1e0, 0x1e4, 0x1e8, 0x1ec, 0x1f0, 0x1f5, 0x1f9, 0x1fd, 0x201, 0x205, 0x209, 0x20e, 0x212, 0x216, 0x21a, 0x21e, 0x223, 0x227, 0x22b, 0x230, 0x234, 0x238, 0x23c, 0x241, 0x245, 0x249, 0x24e, 0x252, 0x257, 0x25b, 0x25f, 0x264, 0x268, 0x26d, 0x271, 0x276, 0x27a, 0x27f, 0x283, 0x288, 0x28c, 0x291, 0x295, 0x29a, 0x29e, 0x2a3, 0x2a8, 0x2ac, 0x2b1, 0x2b5, 0x2ba, 0x2bf, 0x2c4, 0x2c8, 0x2cd, 0x2d2, 0x2d6, 0x2db, 0x2e0, 0x2e5, 0x2e9, 0x2ee, 0x2f3, 0x2f8, 0x2fd, 0x302, 0x306, 0x30b, 0x310, 0x315, 0x31a, 0x31f, 0x324, 0x329, 0x32e, 0x333, 0x338, 0x33d, 0x342, 0x347, 0x34c, 0x351, 0x356, 0x35b, 0x360, 0x365, 0x36a, 0x370, 0x375, 0x37a, 0x37f, 0x384, 0x38a, 0x38f, 0x394, 0x399, 0x39f, 0x3a4, 0x3a9, 0x3ae, 0x3b4, 0x3b9, 0x3bf, 0x3c4, 0x3c9, 0x3cf, 0x3d4, 0x3da, 0x3df, 0x3e4, 0x3ea, 0x3ef, 0x3f5, 0x3fa }; // // freq mult table multiplied by 2 // // 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 12, 12, 15, 15 // static const Bit8u mt[16] = { 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30 }; // // ksl table // static const Bit8u kslrom[16] = { 0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64 }; static const Bit8u kslshift[4] = { 8, 1, 2, 0 }; // // envelope generator constants // static const Bit8u eg_incstep[3][4][8] = { { { 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 0, 1, 0, 1, 0, 1, 0, 1 }, { 0, 1, 0, 1, 1, 1, 0, 1 }, { 0, 1, 1, 1, 0, 1, 1, 1 }, { 0, 1, 1, 1, 1, 1, 1, 1 } }, { { 1, 1, 1, 1, 1, 1, 1, 1 }, { 2, 2, 1, 1, 1, 1, 1, 1 }, { 2, 2, 1, 1, 2, 2, 1, 1 }, { 2, 2, 2, 2, 2, 2, 1, 1 } } }; static const Bit8u eg_incdesc[16] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2 }; static const Bit8s eg_incsh[16] = { 0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, -1, -2 }; // // address decoding // static const Bit8s ad_slot[0x20] = { 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1, 12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static const Bit8u ch_slot[18] = { 0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32 }; // // Envelope generator // typedef Bit16s(*envelope_sinfunc)(Bit16u phase, Bit16u envelope); typedef void(*envelope_genfunc)(opl3_slot *slott); static Bit16s OPL3_EnvelopeCalcExp(Bit32u level) { if (level > 0x1fff) { level = 0x1fff; } return ((exprom[(level & 0xff) ^ 0xff] | 0x400) << 1) >> (level >> 8); } static Bit16s OPL3_EnvelopeCalcSin0(Bit16u phase, Bit16u envelope) { Bit16u out = 0; Bit16u neg = 0; phase &= 0x3ff; if (phase & 0x200) { neg = ~0; } if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg; } static Bit16s OPL3_EnvelopeCalcSin1(Bit16u phase, Bit16u envelope) { Bit16u out = 0; phase &= 0x3ff; if (phase & 0x200) { out = 0x1000; } else if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } static Bit16s OPL3_EnvelopeCalcSin2(Bit16u phase, Bit16u envelope) { Bit16u out = 0; phase &= 0x3ff; if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } static Bit16s OPL3_EnvelopeCalcSin3(Bit16u phase, Bit16u envelope) { Bit16u out = 0; phase &= 0x3ff; if (phase & 0x100) { out = 0x1000; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } static Bit16s OPL3_EnvelopeCalcSin4(Bit16u phase, Bit16u envelope) { Bit16u out = 0; Bit16u neg = 0; phase &= 0x3ff; if ((phase & 0x300) == 0x100) { neg = ~0; } if (phase & 0x200) { out = 0x1000; } else if (phase & 0x80) { out = logsinrom[((phase ^ 0xff) << 1) & 0xff]; } else { out = logsinrom[(phase << 1) & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg; } static Bit16s OPL3_EnvelopeCalcSin5(Bit16u phase, Bit16u envelope) { Bit16u out = 0; phase &= 0x3ff; if (phase & 0x200) { out = 0x1000; } else if (phase & 0x80) { out = logsinrom[((phase ^ 0xff) << 1) & 0xff]; } else { out = logsinrom[(phase << 1) & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } static Bit16s OPL3_EnvelopeCalcSin6(Bit16u phase, Bit16u envelope) { Bit16u neg = 0; phase &= 0x3ff; if (phase & 0x200) { neg = ~0; } return OPL3_EnvelopeCalcExp(envelope << 3) ^ neg; } static Bit16s OPL3_EnvelopeCalcSin7(Bit16u phase, Bit16u envelope) { Bit16u out = 0; Bit16u neg = 0; phase &= 0x3ff; if (phase & 0x200) { neg = ~0; phase = (phase & 0x1ff) ^ 0x1ff; } out = phase << 3; return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg; } static const envelope_sinfunc envelope_sin[8] = { OPL3_EnvelopeCalcSin0, OPL3_EnvelopeCalcSin1, OPL3_EnvelopeCalcSin2, OPL3_EnvelopeCalcSin3, OPL3_EnvelopeCalcSin4, OPL3_EnvelopeCalcSin5, OPL3_EnvelopeCalcSin6, OPL3_EnvelopeCalcSin7 }; static void OPL3_EnvelopeGenOff(opl3_slot *slot); static void OPL3_EnvelopeGenAttack(opl3_slot *slot); static void OPL3_EnvelopeGenDecay(opl3_slot *slot); static void OPL3_EnvelopeGenSustain(opl3_slot *slot); static void OPL3_EnvelopeGenRelease(opl3_slot *slot); envelope_genfunc envelope_gen[5] = { OPL3_EnvelopeGenOff, OPL3_EnvelopeGenAttack, OPL3_EnvelopeGenDecay, OPL3_EnvelopeGenSustain, OPL3_EnvelopeGenRelease }; enum envelope_gen_num { envelope_gen_num_off = 0, envelope_gen_num_attack = 1, envelope_gen_num_decay = 2, envelope_gen_num_sustain = 3, envelope_gen_num_release = 4 }; static Bit8u OPL3_EnvelopeCalcRate(opl3_slot *slot, Bit8u reg_rate) { Bit8u rate; if (reg_rate == 0x00) { return 0x00; } rate = (reg_rate << 2) + (slot->reg_ksr ? slot->channel->ksv : (slot->channel->ksv >> 2)); if (rate > 0x3c) { rate = 0x3c; } return rate; } static void OPL3_EnvelopeUpdateKSL(opl3_slot *slot) { Bit16s ksl = (kslrom[slot->channel->f_num >> 6] << 2) - ((0x08 - slot->channel->block) << 5); if (ksl < 0) { ksl = 0; } slot->eg_ksl = (Bit8u)ksl; } static void OPL3_EnvelopeUpdateRate(opl3_slot *slot) { switch (slot->eg_gen) { case envelope_gen_num_off: case envelope_gen_num_attack: slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_ar); break; case envelope_gen_num_decay: slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_dr); break; case envelope_gen_num_sustain: case envelope_gen_num_release: slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_rr); break; } } static void OPL3_EnvelopeGenOff(opl3_slot *slot) { slot->eg_rout = 0x1ff; } static void OPL3_EnvelopeGenAttack(opl3_slot *slot) { if (slot->eg_rout == 0x00) { slot->eg_gen = envelope_gen_num_decay; OPL3_EnvelopeUpdateRate(slot); return; } slot->eg_rout += ((~slot->eg_rout) * slot->eg_inc) >> 3; if (slot->eg_rout < 0x00) { slot->eg_rout = 0x00; } } static void OPL3_EnvelopeGenDecay(opl3_slot *slot) { if (slot->eg_rout >= slot->reg_sl << 4) { slot->eg_gen = envelope_gen_num_sustain; OPL3_EnvelopeUpdateRate(slot); return; } slot->eg_rout += slot->eg_inc; } static void OPL3_EnvelopeGenSustain(opl3_slot *slot) { if (!slot->reg_type) { OPL3_EnvelopeGenRelease(slot); } } static void OPL3_EnvelopeGenRelease(opl3_slot *slot) { if (slot->eg_rout >= 0x1ff) { slot->eg_gen = envelope_gen_num_off; slot->eg_rout = 0x1ff; OPL3_EnvelopeUpdateRate(slot); return; } slot->eg_rout += slot->eg_inc; } static void OPL3_EnvelopeCalc(opl3_slot *slot) { Bit8u rate_h, rate_l; Bit8u inc = 0; rate_h = slot->eg_rate >> 2; rate_l = slot->eg_rate & 3; if (eg_incsh[rate_h] > 0) { if ((slot->chip->timer & ((1 << eg_incsh[rate_h]) - 1)) == 0) { inc = eg_incstep[eg_incdesc[rate_h]][rate_l] [((slot->chip->timer)>> eg_incsh[rate_h]) & 0x07]; } } else { inc = eg_incstep[eg_incdesc[rate_h]][rate_l] [slot->chip->timer & 0x07] << (-eg_incsh[rate_h]); } slot->eg_inc = inc; slot->eg_out = slot->eg_rout + (slot->reg_tl << 2) + (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem; envelope_gen[slot->eg_gen](slot); } static void OPL3_EnvelopeKeyOn(opl3_slot *slot, Bit8u type) { if (!slot->key) { slot->eg_gen = envelope_gen_num_attack; OPL3_EnvelopeUpdateRate(slot); if ((slot->eg_rate >> 2) == 0x0f) { slot->eg_gen = envelope_gen_num_decay; OPL3_EnvelopeUpdateRate(slot); slot->eg_rout = 0x00; } slot->pg_phase = 0x00; } slot->key |= type; } static void OPL3_EnvelopeKeyOff(opl3_slot *slot, Bit8u type) { if (slot->key) { slot->key &= (~type); if (!slot->key) { slot->eg_gen = envelope_gen_num_release; OPL3_EnvelopeUpdateRate(slot); } } } // // Phase Generator // static void OPL3_PhaseGenerate(opl3_slot *slot) { Bit16u f_num; Bit32u basefreq; f_num = slot->channel->f_num; if (slot->reg_vib) { Bit8s range; Bit8u vibpos; range = (f_num >> 7) & 7; vibpos = slot->chip->vibpos; if (!(vibpos & 3)) { range = 0; } else if (vibpos & 1) { range >>= 1; } range >>= slot->chip->vibshift; if (vibpos & 4) { range = -range; } f_num += range; } basefreq = (f_num << slot->channel->block) >> 1; slot->pg_phase += (basefreq * mt[slot->reg_mult]) >> 1; } // // Noise Generator // static void OPL3_NoiseGenerate(opl3_chip *chip) { if (chip->noise & 0x01) { chip->noise ^= 0x800302; } chip->noise >>= 1; } // // Slot // static void OPL3_SlotWrite20(opl3_slot *slot, Bit8u data) { if ((data >> 7) & 0x01) { slot->trem = &slot->chip->tremolo; } else { slot->trem = (Bit8u*)&slot->chip->zeromod; } slot->reg_vib = (data >> 6) & 0x01; slot->reg_type = (data >> 5) & 0x01; slot->reg_ksr = (data >> 4) & 0x01; slot->reg_mult = data & 0x0f; OPL3_EnvelopeUpdateRate(slot); } static void OPL3_SlotWrite40(opl3_slot *slot, Bit8u data) { slot->reg_ksl = (data >> 6) & 0x03; slot->reg_tl = data & 0x3f; OPL3_EnvelopeUpdateKSL(slot); } static void OPL3_SlotWrite60(opl3_slot *slot, Bit8u data) { slot->reg_ar = (data >> 4) & 0x0f; slot->reg_dr = data & 0x0f; OPL3_EnvelopeUpdateRate(slot); } static void OPL3_SlotWrite80(opl3_slot *slot, Bit8u data) { slot->reg_sl = (data >> 4) & 0x0f; if (slot->reg_sl == 0x0f) { slot->reg_sl = 0x1f; } slot->reg_rr = data & 0x0f; OPL3_EnvelopeUpdateRate(slot); } static void OPL3_SlotWriteE0(opl3_slot *slot, Bit8u data) { slot->reg_wf = data & 0x07; if (slot->chip->newm == 0x00) { slot->reg_wf &= 0x03; } } static void OPL3_SlotGeneratePhase(opl3_slot *slot, Bit16u phase) { slot->out = envelope_sin[slot->reg_wf](phase, slot->eg_out); } static void OPL3_SlotGenerate(opl3_slot *slot) { OPL3_SlotGeneratePhase(slot, (Bit16u)(slot->pg_phase >> 9) + *slot->mod); } static void OPL3_SlotGenerateZM(opl3_slot *slot) { OPL3_SlotGeneratePhase(slot, (Bit16u)(slot->pg_phase >> 9)); } static void OPL3_SlotCalcFB(opl3_slot *slot) { if (slot->channel->fb != 0x00) { slot->fbmod = (slot->prout + slot->out) >> (0x09 - slot->channel->fb); } else { slot->fbmod = 0; } slot->prout = slot->out; } // // Channel // static void OPL3_ChannelSetupAlg(opl3_channel *channel); static void OPL3_ChannelUpdateRhythm(opl3_chip *chip, Bit8u data) { opl3_channel *channel6; opl3_channel *channel7; opl3_channel *channel8; Bit8u chnum; chip->rhy = data & 0x3f; if (chip->rhy & 0x20) { channel6 = &chip->channel[6]; channel7 = &chip->channel[7]; channel8 = &chip->channel[8]; channel6->out[0] = &channel6->slots[1]->out; channel6->out[1] = &channel6->slots[1]->out; channel6->out[2] = &chip->zeromod; channel6->out[3] = &chip->zeromod; channel7->out[0] = &channel7->slots[0]->out; channel7->out[1] = &channel7->slots[0]->out; channel7->out[2] = &channel7->slots[1]->out; channel7->out[3] = &channel7->slots[1]->out; channel8->out[0] = &channel8->slots[0]->out; channel8->out[1] = &channel8->slots[0]->out; channel8->out[2] = &channel8->slots[1]->out; channel8->out[3] = &channel8->slots[1]->out; for (chnum = 6; chnum < 9; chnum++) { chip->channel[chnum].chtype = ch_drum; } OPL3_ChannelSetupAlg(channel6); //hh if (chip->rhy & 0x01) { OPL3_EnvelopeKeyOn(channel7->slots[0], egk_drum); } else { OPL3_EnvelopeKeyOff(channel7->slots[0], egk_drum); } //tc if (chip->rhy & 0x02) { OPL3_EnvelopeKeyOn(channel8->slots[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel8->slots[1], egk_drum); } //tom if (chip->rhy & 0x04) { OPL3_EnvelopeKeyOn(channel8->slots[0], egk_drum); } else { OPL3_EnvelopeKeyOff(channel8->slots[0], egk_drum); } //sd if (chip->rhy & 0x08) { OPL3_EnvelopeKeyOn(channel7->slots[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel7->slots[1], egk_drum); } //bd if (chip->rhy & 0x10) { OPL3_EnvelopeKeyOn(channel6->slots[0], egk_drum); OPL3_EnvelopeKeyOn(channel6->slots[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel6->slots[0], egk_drum); OPL3_EnvelopeKeyOff(channel6->slots[1], egk_drum); } } else { for (chnum = 6; chnum < 9; chnum++) { chip->channel[chnum].chtype = ch_2op; OPL3_ChannelSetupAlg(&chip->channel[chnum]); OPL3_EnvelopeKeyOff(chip->channel[chnum].slots[0], egk_drum); OPL3_EnvelopeKeyOff(chip->channel[chnum].slots[1], egk_drum); } } } static void OPL3_ChannelWriteA0(opl3_channel *channel, Bit8u data) { if (channel->chip->newm && channel->chtype == ch_4op2) { return; } channel->f_num = (channel->f_num & 0x300) | data; channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01); OPL3_EnvelopeUpdateKSL(channel->slots[0]); OPL3_EnvelopeUpdateKSL(channel->slots[1]); OPL3_EnvelopeUpdateRate(channel->slots[0]); OPL3_EnvelopeUpdateRate(channel->slots[1]); if (channel->chip->newm && channel->chtype == ch_4op) { channel->pair->f_num = channel->f_num; channel->pair->ksv = channel->ksv; OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]); OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]); OPL3_EnvelopeUpdateRate(channel->pair->slots[0]); OPL3_EnvelopeUpdateRate(channel->pair->slots[1]); } } static void OPL3_ChannelWriteB0(opl3_channel *channel, Bit8u data) { if (channel->chip->newm && channel->chtype == ch_4op2) { return; } channel->f_num = (channel->f_num & 0xff) | ((data & 0x03) << 8); channel->block = (data >> 2) & 0x07; channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01); OPL3_EnvelopeUpdateKSL(channel->slots[0]); OPL3_EnvelopeUpdateKSL(channel->slots[1]); OPL3_EnvelopeUpdateRate(channel->slots[0]); OPL3_EnvelopeUpdateRate(channel->slots[1]); if (channel->chip->newm && channel->chtype == ch_4op) { channel->pair->f_num = channel->f_num; channel->pair->block = channel->block; channel->pair->ksv = channel->ksv; OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]); OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]); OPL3_EnvelopeUpdateRate(channel->pair->slots[0]); OPL3_EnvelopeUpdateRate(channel->pair->slots[1]); } } static void OPL3_ChannelSetupAlg(opl3_channel *channel) { if (channel->chtype == ch_drum) { switch (channel->alg & 0x01) { case 0x00: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->slots[0]->out; break; case 0x01: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->chip->zeromod; break; } return; } if (channel->alg & 0x08) { return; } if (channel->alg & 0x04) { channel->pair->out[0] = &channel->chip->zeromod; channel->pair->out[1] = &channel->chip->zeromod; channel->pair->out[2] = &channel->chip->zeromod; channel->pair->out[3] = &channel->chip->zeromod; switch (channel->alg & 0x03) { case 0x00: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->pair->slots[0]->out; channel->slots[0]->mod = &channel->pair->slots[1]->out; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->slots[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->pair->slots[0]->out; channel->slots[0]->mod = &channel->chip->zeromod; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->pair->slots[1]->out; channel->out[1] = &channel->slots[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x02: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->chip->zeromod; channel->slots[0]->mod = &channel->pair->slots[1]->out; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->pair->slots[0]->out; channel->out[1] = &channel->slots[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x03: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->chip->zeromod; channel->slots[0]->mod = &channel->pair->slots[1]->out; channel->slots[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->pair->slots[0]->out; channel->out[1] = &channel->slots[0]->out; channel->out[2] = &channel->slots[1]->out; channel->out[3] = &channel->chip->zeromod; break; } } else { switch (channel->alg & 0x01) { case 0x00: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->slots[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->slots[0]->out; channel->out[1] = &channel->slots[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; } } } static void OPL3_ChannelWriteC0(opl3_channel *channel, Bit8u data) { channel->fb = (data & 0x0e) >> 1; channel->con = data & 0x01; channel->alg = channel->con; if (channel->chip->newm) { if (channel->chtype == ch_4op) { channel->pair->alg = 0x04 | (channel->con << 1) | (channel->pair->con); channel->alg = 0x08; OPL3_ChannelSetupAlg(channel->pair); } else if (channel->chtype == ch_4op2) { channel->alg = 0x04 | (channel->pair->con << 1) | (channel->con); channel->pair->alg = 0x08; OPL3_ChannelSetupAlg(channel); } else { OPL3_ChannelSetupAlg(channel); } } else { OPL3_ChannelSetupAlg(channel); } if (channel->chip->newm) { channel->cha = ((data >> 4) & 0x01) ? ~0 : 0; channel->chb = ((data >> 5) & 0x01) ? ~0 : 0; } else { channel->cha = channel->chb = ~0; } } static void OPL3_ChannelKeyOn(opl3_channel *channel) { if (channel->chip->newm) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm); OPL3_EnvelopeKeyOn(channel->pair->slots[0], egk_norm); OPL3_EnvelopeKeyOn(channel->pair->slots[1], egk_norm); } else if (channel->chtype == ch_2op || channel->chtype == ch_drum) { OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm); } } else { OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm); } } static void OPL3_ChannelKeyOff(opl3_channel *channel) { if (channel->chip->newm) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm); OPL3_EnvelopeKeyOff(channel->pair->slots[0], egk_norm); OPL3_EnvelopeKeyOff(channel->pair->slots[1], egk_norm); } else if (channel->chtype == ch_2op || channel->chtype == ch_drum) { OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm); } } else { OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm); } } static void OPL3_ChannelSet4Op(opl3_chip *chip, Bit8u data) { Bit8u bit; Bit8u chnum; for (bit = 0; bit < 6; bit++) { chnum = bit; if (bit >= 3) { chnum += 9 - 3; } if ((data >> bit) & 0x01) { chip->channel[chnum].chtype = ch_4op; chip->channel[chnum + 3].chtype = ch_4op2; } else { chip->channel[chnum].chtype = ch_2op; chip->channel[chnum + 3].chtype = ch_2op; } } } static Bit16s OPL3_ClipSample(Bit32s sample) { if (sample > 32767) { sample = 32767; } else if (sample < -32768) { sample = -32768; } return (Bit16s)sample; } static void OPL3_GenerateRhythm1(opl3_chip *chip) { opl3_channel *channel6; opl3_channel *channel7; opl3_channel *channel8; Bit16u phase14; Bit16u phase17; Bit16u phase; Bit16u phasebit; channel6 = &chip->channel[6]; channel7 = &chip->channel[7]; channel8 = &chip->channel[8]; OPL3_SlotGenerate(channel6->slots[0]); phase14 = (channel7->slots[0]->pg_phase >> 9) & 0x3ff; phase17 = (channel8->slots[1]->pg_phase >> 9) & 0x3ff; phase = 0x00; //hh tc phase bit phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04) | (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00; //hh phase = (phasebit << 9) | (0x34 << ((phasebit ^ (chip->noise & 0x01)) << 1)); OPL3_SlotGeneratePhase(channel7->slots[0], phase); //tt OPL3_SlotGenerateZM(channel8->slots[0]); } static void OPL3_GenerateRhythm2(opl3_chip *chip) { opl3_channel *channel6; opl3_channel *channel7; opl3_channel *channel8; Bit16u phase14; Bit16u phase17; Bit16u phase; Bit16u phasebit; channel6 = &chip->channel[6]; channel7 = &chip->channel[7]; channel8 = &chip->channel[8]; OPL3_SlotGenerate(channel6->slots[1]); phase14 = (channel7->slots[0]->pg_phase >> 9) & 0x3ff; phase17 = (channel8->slots[1]->pg_phase >> 9) & 0x3ff; phase = 0x00; //hh tc phase bit phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04) | (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00; //sd phase = (0x100 << ((phase14 >> 8) & 0x01)) ^ ((chip->noise & 0x01) << 8); OPL3_SlotGeneratePhase(channel7->slots[1], phase); //tc phase = 0x100 | (phasebit << 9); OPL3_SlotGeneratePhase(channel8->slots[1], phase); } void OPL3_Generate(opl3_chip *chip, Bit16s *buf) { Bit8u ii; Bit8u jj; Bit16s accm; buf[1] = OPL3_ClipSample(chip->mixbuff[1]); for (ii = 0; ii < 12; ii++) { OPL3_SlotCalcFB(&chip->slot[ii]); OPL3_PhaseGenerate(&chip->slot[ii]); OPL3_EnvelopeCalc(&chip->slot[ii]); OPL3_SlotGenerate(&chip->slot[ii]); } for (ii = 12; ii < 15; ii++) { OPL3_SlotCalcFB(&chip->slot[ii]); OPL3_PhaseGenerate(&chip->slot[ii]); OPL3_EnvelopeCalc(&chip->slot[ii]); } if (chip->rhy & 0x20) { OPL3_GenerateRhythm1(chip); } else { OPL3_SlotGenerate(&chip->slot[12]); OPL3_SlotGenerate(&chip->slot[13]); OPL3_SlotGenerate(&chip->slot[14]); } chip->mixbuff[0] = 0; for (ii = 0; ii < 18; ii++) { accm = 0; for (jj = 0; jj < 4; jj++) { accm += *chip->channel[ii].out[jj]; } chip->mixbuff[0] += (Bit16s)(accm & chip->channel[ii].cha); } for (ii = 15; ii < 18; ii++) { OPL3_SlotCalcFB(&chip->slot[ii]); OPL3_PhaseGenerate(&chip->slot[ii]); OPL3_EnvelopeCalc(&chip->slot[ii]); } if (chip->rhy & 0x20) { OPL3_GenerateRhythm2(chip); } else { OPL3_SlotGenerate(&chip->slot[15]); OPL3_SlotGenerate(&chip->slot[16]); OPL3_SlotGenerate(&chip->slot[17]); } buf[0] = OPL3_ClipSample(chip->mixbuff[0]); for (ii = 18; ii < 33; ii++) { OPL3_SlotCalcFB(&chip->slot[ii]); OPL3_PhaseGenerate(&chip->slot[ii]); OPL3_EnvelopeCalc(&chip->slot[ii]); OPL3_SlotGenerate(&chip->slot[ii]); } chip->mixbuff[1] = 0; for (ii = 0; ii < 18; ii++) { accm = 0; for (jj = 0; jj < 4; jj++) { accm += *chip->channel[ii].out[jj]; } chip->mixbuff[1] += (Bit16s)(accm & chip->channel[ii].chb); } for (ii = 33; ii < 36; ii++) { OPL3_SlotCalcFB(&chip->slot[ii]); OPL3_PhaseGenerate(&chip->slot[ii]); OPL3_EnvelopeCalc(&chip->slot[ii]); OPL3_SlotGenerate(&chip->slot[ii]); } OPL3_NoiseGenerate(chip); if ((chip->timer & 0x3f) == 0x3f) { chip->tremolopos = (chip->tremolopos + 1) % 210; } if (chip->tremolopos < 105) { chip->tremolo = chip->tremolopos >> chip->tremoloshift; } else { chip->tremolo = (210 - chip->tremolopos) >> chip->tremoloshift; } if ((chip->timer & 0x3ff) == 0x3ff) { chip->vibpos = (chip->vibpos + 1) & 7; } chip->timer++; while (chip->writebuf[chip->writebuf_cur].time <= chip->writebuf_samplecnt) { if (!(chip->writebuf[chip->writebuf_cur].reg & 0x200)) { break; } chip->writebuf[chip->writebuf_cur].reg &= 0x1ff; OPL3_WriteReg(chip, chip->writebuf[chip->writebuf_cur].reg, chip->writebuf[chip->writebuf_cur].data); chip->writebuf_cur = (chip->writebuf_cur + 1) % OPL_WRITEBUF_SIZE; } chip->writebuf_samplecnt++; } void OPL3_GenerateResampled(opl3_chip *chip, Bit16s *buf) { while (chip->samplecnt >= chip->rateratio) { chip->oldsamples[0] = chip->samples[0]; chip->oldsamples[1] = chip->samples[1]; OPL3_Generate(chip, chip->samples); chip->samplecnt -= chip->rateratio; } buf[0] = (Bit16s)((chip->oldsamples[0] * (chip->rateratio - chip->samplecnt) + chip->samples[0] * chip->samplecnt) / chip->rateratio); buf[1] = (Bit16s)((chip->oldsamples[1] * (chip->rateratio - chip->samplecnt) + chip->samples[1] * chip->samplecnt) / chip->rateratio); chip->samplecnt += 1 << RSM_FRAC; } void OPL3_Reset(opl3_chip *chip, Bit32u samplerate) { Bit8u slotnum; Bit8u channum; memset(chip, 0, sizeof(opl3_chip)); for (slotnum = 0; slotnum < 36; slotnum++) { chip->slot[slotnum].chip = chip; chip->slot[slotnum].mod = &chip->zeromod; chip->slot[slotnum].eg_rout = 0x1ff; chip->slot[slotnum].eg_out = 0x1ff; chip->slot[slotnum].eg_gen = envelope_gen_num_off; chip->slot[slotnum].trem = (Bit8u*)&chip->zeromod; } for (channum = 0; channum < 18; channum++) { chip->channel[channum].slots[0] = &chip->slot[ch_slot[channum]]; chip->channel[channum].slots[1] = &chip->slot[ch_slot[channum] + 3]; chip->slot[ch_slot[channum]].channel = &chip->channel[channum]; chip->slot[ch_slot[channum] + 3].channel = &chip->channel[channum]; if ((channum % 9) < 3) { chip->channel[channum].pair = &chip->channel[channum + 3]; } else if ((channum % 9) < 6) { chip->channel[channum].pair = &chip->channel[channum - 3]; } chip->channel[channum].chip = chip; chip->channel[channum].out[0] = &chip->zeromod; chip->channel[channum].out[1] = &chip->zeromod; chip->channel[channum].out[2] = &chip->zeromod; chip->channel[channum].out[3] = &chip->zeromod; chip->channel[channum].chtype = ch_2op; chip->channel[channum].cha = ~0; chip->channel[channum].chb = ~0; OPL3_ChannelSetupAlg(&chip->channel[channum]); } chip->noise = 0x306600; chip->rateratio = (samplerate << RSM_FRAC) / 49716; chip->tremoloshift = 4; chip->vibshift = 1; } void OPL3_WriteReg(opl3_chip *chip, Bit16u reg, Bit8u v) { Bit8u high = (reg >> 8) & 0x01; Bit8u regm = reg & 0xff; switch (regm & 0xf0) { case 0x00: if (high) { switch (regm & 0x0f) { case 0x04: OPL3_ChannelSet4Op(chip, v); break; case 0x05: chip->newm = v & 0x01; break; } } else { switch (regm & 0x0f) { case 0x08: chip->nts = (v >> 6) & 0x01; break; } } break; case 0x20: case 0x30: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite20(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0x40: case 0x50: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite40(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0x60: case 0x70: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite60(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0x80: case 0x90: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite80(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0xe0: case 0xf0: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWriteE0(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0xa0: if ((regm & 0x0f) < 9) { OPL3_ChannelWriteA0(&chip->channel[9 * high + (regm & 0x0f)], v); } break; case 0xb0: if (regm == 0xbd && !high) { chip->tremoloshift = (((v >> 7) ^ 1) << 1) + 2; chip->vibshift = ((v >> 6) & 0x01) ^ 1; OPL3_ChannelUpdateRhythm(chip, v); } else if ((regm & 0x0f) < 9) { OPL3_ChannelWriteB0(&chip->channel[9 * high + (regm & 0x0f)], v); if (v & 0x20) { OPL3_ChannelKeyOn(&chip->channel[9 * high + (regm & 0x0f)]); } else { OPL3_ChannelKeyOff(&chip->channel[9 * high + (regm & 0x0f)]); } } break; case 0xc0: if ((regm & 0x0f) < 9) { OPL3_ChannelWriteC0(&chip->channel[9 * high + (regm & 0x0f)], v); } break; } } void OPL3_WriteRegBuffered(opl3_chip *chip, Bit16u reg, Bit8u v) { Bit64u time1, time2; if (chip->writebuf[chip->writebuf_last].reg & 0x200) { OPL3_WriteReg(chip, chip->writebuf[chip->writebuf_last].reg & 0x1ff, chip->writebuf[chip->writebuf_last].data); chip->writebuf_cur = (chip->writebuf_last + 1) % OPL_WRITEBUF_SIZE; chip->writebuf_samplecnt = chip->writebuf[chip->writebuf_last].time; } chip->writebuf[chip->writebuf_last].reg = reg | 0x200; chip->writebuf[chip->writebuf_last].data = v; time1 = chip->writebuf_lasttime + OPL_WRITEBUF_DELAY; time2 = chip->writebuf_samplecnt; if (time1 < time2) { time1 = time2; } chip->writebuf[chip->writebuf_last].time = time1; chip->writebuf_lasttime = time1; chip->writebuf_last = (chip->writebuf_last + 1) % OPL_WRITEBUF_SIZE; } void OPL3_GenerateStream(opl3_chip *chip, Bit16s *sndptr, Bit32u numsamples) { Bit32u i; for(i = 0; i < numsamples; i++) { OPL3_GenerateResampled(chip, sndptr); sndptr += 2; } }