ref: 0ba08200707e5d761cbe39d6b08174f8eb868125
dir: /sys/src/libgeometry/transform.c/
/* * The following routines transform points and planes from one space * to another. Points and planes are represented by their * homogeneous coordinates, stored in variables of type Point3. */ #include <u.h> #include <libc.h> #include <draw.h> #include <geometry.h> /* * Transform point p. */ Point3 xformpoint(Point3 p, Space *to, Space *from){ Point3 q, r; register double *m; if(from){ m=&from->t[0][0]; q.x=*m++*p.x; q.x+=*m++*p.y; q.x+=*m++*p.z; q.x+=*m++*p.w; q.y=*m++*p.x; q.y+=*m++*p.y; q.y+=*m++*p.z; q.y+=*m++*p.w; q.z=*m++*p.x; q.z+=*m++*p.y; q.z+=*m++*p.z; q.z+=*m++*p.w; q.w=*m++*p.x; q.w+=*m++*p.y; q.w+=*m++*p.z; q.w+=*m *p.w; } else q=p; if(to){ m=&to->tinv[0][0]; r.x=*m++*q.x; r.x+=*m++*q.y; r.x+=*m++*q.z; r.x+=*m++*q.w; r.y=*m++*q.x; r.y+=*m++*q.y; r.y+=*m++*q.z; r.y+=*m++*q.w; r.z=*m++*q.x; r.z+=*m++*q.y; r.z+=*m++*q.z; r.z+=*m++*q.w; r.w=*m++*q.x; r.w+=*m++*q.y; r.w+=*m++*q.z; r.w+=*m *q.w; } else r=q; return r; } /* * Transform point p with perspective division. */ Point3 xformpointd(Point3 p, Space *to, Space *from){ p=xformpoint(p, to, from); if(p.w!=0){ p.x/=p.w; p.y/=p.w; p.z/=p.w; p.w=1; } return p; } /* * Transform plane p -- same as xformpoint, except multiply on the * other side by the inverse matrix. */ Point3 xformplane(Point3 p, Space *to, Space *from){ Point3 q, r; register double *m; if(from){ m=&from->tinv[0][0]; q.x =*m++*p.x; q.y =*m++*p.x; q.z =*m++*p.x; q.w =*m++*p.x; q.x+=*m++*p.y; q.y+=*m++*p.y; q.z+=*m++*p.y; q.w+=*m++*p.y; q.x+=*m++*p.z; q.y+=*m++*p.z; q.z+=*m++*p.z; q.w+=*m++*p.z; q.x+=*m++*p.w; q.y+=*m++*p.w; q.z+=*m++*p.w; q.w+=*m *p.w; } else q=p; if(to){ m=&to->t[0][0]; r.x =*m++*q.x; r.y =*m++*q.x; r.z =*m++*q.x; r.w =*m++*q.x; r.x+=*m++*q.y; r.y+=*m++*q.y; r.z+=*m++*q.y; r.w+=*m++*q.y; r.x+=*m++*q.z; r.y+=*m++*q.z; r.z+=*m++*q.z; r.w+=*m++*q.z; r.x+=*m++*q.w; r.y+=*m++*q.w; r.z+=*m++*q.w; r.w+=*m *q.w; } else r=q; return r; }