ref: 0d5b33a9e821ab0c3230bd25596b6567f2b28cd6
dir: /sys/src/9/port/segment.c/
#include "u.h" #include "../port/lib.h" #include "mem.h" #include "dat.h" #include "fns.h" #include "../port/error.h" int imagereclaim(int); /* * Attachable segment types */ static Physseg physseg[10] = { { SG_SHARED, "shared", 0, SEGMAXSIZE, 0, 0 }, { SG_BSS, "memory", 0, SEGMAXSIZE, 0, 0 }, { 0, 0, 0, 0, 0, 0 }, }; static Lock physseglock; #define IHASHSIZE 64 #define ihash(s) imagealloc.hash[s%IHASHSIZE] static struct Imagealloc { Lock; Image *list; Image *free; Image *hash[IHASHSIZE]; QLock ireclaim; /* mutex on reclaiming free images */ }imagealloc; Segment* (*_globalsegattach)(Proc*, char*); void initseg(void) { Image *i, *ie; imagealloc.list = xalloc(conf.nimage*sizeof(Image)); if(imagealloc.list == nil) panic("initseg: no memory for Image"); ie = &imagealloc.list[conf.nimage-1]; for(i = imagealloc.list; i < ie; i++) i->next = i+1; i->next = nil; imagealloc.free = imagealloc.list; } Segment * newseg(int type, uintptr base, ulong size) { Segment *s; int mapsize; if(size > (SEGMAPSIZE*PTEPERTAB)) error(Enovmem); s = malloc(sizeof(Segment)); if(s == nil) error(Enomem); s->ref = 1; s->type = type; s->base = base; s->top = base+(size*BY2PG); s->size = size; s->sema.prev = &s->sema; s->sema.next = &s->sema; mapsize = ROUND(size, PTEPERTAB)/PTEPERTAB; if(mapsize > nelem(s->ssegmap)){ s->map = malloc(mapsize*sizeof(Pte*)); if(s->map == nil){ free(s); error(Enomem); } s->mapsize = mapsize; } else{ s->map = s->ssegmap; s->mapsize = nelem(s->ssegmap); } return s; } void putseg(Segment *s) { Pte **pp, **emap; Image *i; if(s == nil) return; i = s->image; if(i != nil) { lock(i); if(decref(s) != 0){ unlock(i); return; } if(i->s == s) i->s = nil; unlock(i); putimage(i); } else if(decref(s) != 0) return; emap = &s->map[s->mapsize]; for(pp = s->map; pp < emap; pp++) if(*pp != nil) freepte(s, *pp); if(s->map != s->ssegmap) free(s->map); if(s->profile != nil) free(s->profile); free(s); } void relocateseg(Segment *s, uintptr offset) { Page **pg, *x; Pte *pte, **p, **endpte; endpte = &s->map[s->mapsize]; for(p = s->map; p < endpte; p++) { if((pte = *p) == nil) continue; for(pg = pte->first; pg <= pte->last; pg++) { if((x = *pg) != nil) x->va += offset; } } } Segment* dupseg(Segment **seg, int segno, int share) { int i, size; Pte *pte; Segment *n, *s; SET(n); s = seg[segno]; qlock(s); if(waserror()){ qunlock(s); nexterror(); } switch(s->type&SG_TYPE) { case SG_TEXT: /* New segment shares pte set */ case SG_SHARED: case SG_PHYSICAL: goto sameseg; case SG_STACK: n = newseg(s->type, s->base, s->size); break; case SG_BSS: /* Just copy on write */ if(share) goto sameseg; n = newseg(s->type, s->base, s->size); break; case SG_DATA: /* Copy on write plus demand load info */ if(segno == TSEG){ n = data2txt(s); poperror(); qunlock(s); return n; } if(share) goto sameseg; n = newseg(s->type, s->base, s->size); incref(s->image); n->image = s->image; n->fstart = s->fstart; n->flen = s->flen; break; } size = s->mapsize; for(i = 0; i < size; i++) if((pte = s->map[i]) != nil) n->map[i] = ptecpy(pte); n->flushme = s->flushme; if(s->ref > 1) procflushseg(s); poperror(); qunlock(s); return n; sameseg: incref(s); poperror(); qunlock(s); return s; } void segpage(Segment *s, Page *p) { Pte **pte; uintptr off; Page **pg; if(p->va < s->base || p->va >= s->top) panic("segpage"); off = p->va - s->base; pte = &s->map[off/PTEMAPMEM]; if(*pte == nil) *pte = ptealloc(); pg = &(*pte)->pages[(off&(PTEMAPMEM-1))/BY2PG]; *pg = p; if(pg < (*pte)->first) (*pte)->first = pg; if(pg > (*pte)->last) (*pte)->last = pg; } Image* attachimage(int type, Chan *c, uintptr base, ulong len) { Image *i, **l; lock(&imagealloc); /* * Search the image cache for remains of the text from a previous * or currently running incarnation */ for(i = ihash(c->qid.path); i; i = i->hash) { if(c->qid.path == i->qid.path) { lock(i); if(eqchantdqid(c, i->type, i->dev, i->qid, 0) && c->qid.type == i->qid.type) goto found; unlock(i); } } /* dump pages of inactive images to free image structures */ while((i = imagealloc.free) == nil) { unlock(&imagealloc); if(imagereclaim(1000) == 0 && imagealloc.free == nil){ freebroken(); /* can use the memory */ resrcwait("no image after reclaim"); } lock(&imagealloc); } imagealloc.free = i->next; lock(i); i->type = c->type; i->dev = c->dev; i->qid = c->qid; l = &ihash(c->qid.path); i->hash = *l; *l = i; found: unlock(&imagealloc); if(i->c == nil){ i->c = c; c->flag &= ~CCACHE; incref(c); } if(i->s == nil) { incref(i); if(waserror()) { unlock(i); putimage(i); nexterror(); } i->s = newseg(type, base, len); i->s->image = i; poperror(); } else incref(i->s); return i; } extern int pagereclaim(Image*, int); /* page.c */ int imagereclaim(int min) { static Image *i, *ie; int j, n; eqlock(&imagealloc.ireclaim); if(i == nil){ i = imagealloc.list; ie = &imagealloc.list[conf.nimage]; } n = 0; for(j = 0; j < conf.nimage; j++, i++){ if(i >= ie) i = imagealloc.list; if(i->ref == 0) continue; /* * if there are no free image structures, only * reclaim pages from inactive images. */ if(imagealloc.free != nil || i->ref == i->pgref){ n += pagereclaim(i, min - n); if(n >= min) break; } } qunlock(&imagealloc.ireclaim); return n; } void putimage(Image *i) { Image *f, **l; Chan *c; int r; if(i->notext){ decref(i); return; } c = nil; lock(i); r = decref(i); if(r == i->pgref){ /* * all remaining references to this image are from the * page cache, so close the chan. */ c = i->c; i->c = nil; } if(r == 0){ l = &ihash(i->qid.path); mkqid(&i->qid, ~0, ~0, QTFILE); unlock(i); lock(&imagealloc); for(f = *l; f != nil; f = f->hash) { if(f == i) { *l = i->hash; break; } l = &f->hash; } i->next = imagealloc.free; imagealloc.free = i; unlock(&imagealloc); } else unlock(i); if(c != nil) ccloseq(c); /* does not block */ } long ibrk(uintptr addr, int seg) { Segment *s, *ns; uintptr newtop; ulong newsize; int i, mapsize; Pte **map; s = up->seg[seg]; if(s == nil) error(Ebadarg); if(addr == 0) return s->base; qlock(s); /* We may start with the bss overlapping the data */ if(addr < s->base) { if(seg != BSEG || up->seg[DSEG] == nil || addr < up->seg[DSEG]->base) { qunlock(s); error(Enovmem); } addr = s->base; } newtop = PGROUND(addr); newsize = (newtop-s->base)/BY2PG; if(newtop < s->top) { /* * do not shrink a segment shared with other procs, as the * to-be-freed address space may have been passed to the kernel * already by another proc and is past the validaddr stage. */ if(s->ref > 1){ qunlock(s); error(Einuse); } mfreeseg(s, newtop, (s->top-newtop)/BY2PG); s->top = newtop; s->size = newsize; qunlock(s); flushmmu(); return 0; } for(i = 0; i < NSEG; i++) { ns = up->seg[i]; if(ns == nil || ns == s) continue; if(newtop >= ns->base && newtop < ns->top) { qunlock(s); error(Esoverlap); } } if(newsize > (SEGMAPSIZE*PTEPERTAB)) { qunlock(s); error(Enovmem); } mapsize = ROUND(newsize, PTEPERTAB)/PTEPERTAB; if(mapsize > s->mapsize){ map = smalloc(mapsize*sizeof(Pte*)); memmove(map, s->map, s->mapsize*sizeof(Pte*)); if(s->map != s->ssegmap) free(s->map); s->map = map; s->mapsize = mapsize; } s->top = newtop; s->size = newsize; qunlock(s); return 0; } /* * called with s locked */ ulong mcountseg(Segment *s) { ulong pages; int i, j; Page *pg; pages = 0; for(i = 0; i < s->mapsize; i++){ if(s->map[i] == nil) continue; for(j = 0; j < PTEPERTAB; j++){ pg = s->map[i]->pages[j]; if(!pagedout(pg)) pages++; } } return pages; } /* * called with s locked */ void mfreeseg(Segment *s, uintptr start, int pages) { int i, j, size; uintptr soff; Page *pg; /* * We want to zero s->map[i]->page[j] and putpage(pg), * but we have to make sure other processors flush the * entry from their TLBs before the page is freed. */ if(s->ref > 1) procflushseg(s); soff = start-s->base; j = (soff&(PTEMAPMEM-1))/BY2PG; size = s->mapsize; for(i = soff/PTEMAPMEM; i < size; i++) { if(pages <= 0) return; if(s->map[i] == nil) { pages -= PTEPERTAB-j; j = 0; continue; } while(j < PTEPERTAB) { pg = s->map[i]->pages[j]; if(pg != nil){ s->map[i]->pages[j] = nil; putpage(pg); } if(--pages == 0) return; j++; } j = 0; } } Segment* isoverlap(Proc *p, uintptr va, uintptr len) { int i; Segment *ns; uintptr newtop; newtop = va+len; for(i = 0; i < NSEG; i++) { ns = p->seg[i]; if(ns == nil) continue; if((newtop > ns->base && newtop <= ns->top) || (va >= ns->base && va < ns->top)) return ns; } return nil; } int addphysseg(Physseg* new) { Physseg *ps; /* * Check not already entered and there is room * for a new entry and the terminating null entry. */ lock(&physseglock); for(ps = physseg; ps->name; ps++){ if(strcmp(ps->name, new->name) == 0){ unlock(&physseglock); return -1; } } if(ps-physseg >= nelem(physseg)-2){ unlock(&physseglock); return -1; } *ps = *new; unlock(&physseglock); return 0; } int isphysseg(char *name) { Physseg *ps; int rv = 0; lock(&physseglock); for(ps = physseg; ps->name; ps++){ if(strcmp(ps->name, name) == 0){ rv = 1; break; } } unlock(&physseglock); return rv; } uintptr segattach(Proc *p, ulong attr, char *name, uintptr va, uintptr len) { int sno; Segment *s, *os; Physseg *ps; if(va != 0 && va >= USTKTOP) error(Ebadarg); validaddr((uintptr)name, 1, 0); vmemchr(name, 0, ~0); for(sno = 0; sno < NSEG; sno++) if(p->seg[sno] == nil && sno != ESEG) break; if(sno == NSEG) error(Enovmem); /* * first look for a global segment with the * same name */ if(_globalsegattach != nil){ s = (*_globalsegattach)(p, name); if(s != nil){ p->seg[sno] = s; return s->base; } } /* round up va+len */ len += va & (BY2PG-1); len = PGROUND(len); if(len == 0) error(Ebadarg); /* * Find a hole in the address space. * Starting at the lowest possible stack address - len, * check for an overlapping segment, and repeat at the * base of that segment - len until either a hole is found * or the address space is exhausted. Ensure that we don't * map the zero page. */ if(va == 0) { for (os = p->seg[SSEG]; os != nil; os = isoverlap(p, va, len)) { va = os->base; if(len >= va) error(Enovmem); va -= len; } } va &= ~(BY2PG-1); if(va == 0 || (va+len) > USTKTOP || (va+len) < va) error(Ebadarg); if(isoverlap(p, va, len) != nil) error(Esoverlap); for(ps = physseg; ps->name; ps++) if(strcmp(name, ps->name) == 0) goto found; error(Ebadarg); found: if(len > ps->size) error(Enovmem); attr &= ~SG_TYPE; /* Turn off what is not allowed */ attr |= ps->attr; /* Copy in defaults */ s = newseg(attr, va, len/BY2PG); s->pseg = ps; p->seg[sno] = s; return va; } void pteflush(Pte *pte, int s, int e) { Page *pg; int i; for(i = s; i < e; i++) { pg = pte->pages[i]; if(!pagedout(pg)) memset(pg->cachectl, PG_TXTFLUSH, sizeof(pg->cachectl)); } } uintptr syssegflush(va_list list) { Segment *s; ulong len, chunk, l; Pte *pte; uintptr ps, pe, addr; addr = va_arg(list, uintptr); len = va_arg(list, ulong); while(len > 0) { s = seg(up, addr, 1); if(s == 0) error(Ebadarg); s->flushme = 1; more: l = len; if(addr+l > s->top) l = s->top - addr; ps = addr-s->base; pte = s->map[ps/PTEMAPMEM]; ps &= PTEMAPMEM-1; pe = PTEMAPMEM; if(pe-ps > l){ pe = ps + l; pe = PGROUND(pe); } if(pe == ps) { qunlock(s); error(Ebadarg); } if(pte) pteflush(pte, ps/BY2PG, pe/BY2PG); chunk = pe-ps; len -= chunk; addr += chunk; if(len > 0 && addr < s->top) goto more; qunlock(s); } flushmmu(); return 0; } void segclock(uintptr pc) { Segment *s; s = up->seg[TSEG]; if(s == nil || s->profile == nil) return; s->profile[0] += TK2MS(1); if(pc >= s->base && pc < s->top) { pc -= s->base; s->profile[pc>>LRESPROF] += TK2MS(1); } } Segment* txt2data(Segment *s) { Segment *ps; ps = newseg(SG_DATA, s->base, s->size); ps->image = s->image; incref(ps->image); ps->fstart = s->fstart; ps->flen = s->flen; ps->flushme = 1; qunlock(s); putseg(s); qlock(ps); return ps; } Segment* data2txt(Segment *s) { Segment *ps; ps = newseg(SG_TEXT, s->base, s->size); ps->image = s->image; incref(ps->image); ps->fstart = s->fstart; ps->flen = s->flen; ps->flushme = 1; return ps; }