ref: 688c1f15cdaa5fcad19d9fddb30e1c555bfc59e0
dir: /sys/src/cmd/audio/libFLAC/lpc.c/
/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000,2001,2002,2003,2004 Josh Coalson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <math.h> #include "FLAC/assert.h" #include "FLAC/format.h" #include "private/bitmath.h" #include "private/lpc.h" #if defined DEBUG || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE #include <stdio.h> #endif #ifndef M_LN2 /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */ #define M_LN2 0.69314718055994530942 #endif void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]) { /* a readable, but slower, version */ #if 0 FLAC__real d; unsigned i; FLAC__ASSERT(lag > 0); FLAC__ASSERT(lag <= data_len); while(lag--) { for(i = lag, d = 0.0; i < data_len; i++) d += data[i] * data[i - lag]; autoc[lag] = d; } #endif /* * this version tends to run faster because of better data locality * ('data_len' is usually much larger than 'lag') */ FLAC__real d; unsigned sample, coeff; const unsigned limit = data_len - lag; FLAC__ASSERT(lag > 0); FLAC__ASSERT(lag <= data_len); for(coeff = 0; coeff < lag; coeff++) autoc[coeff] = 0.0; for(sample = 0; sample <= limit; sample++) { d = data[sample]; for(coeff = 0; coeff < lag; coeff++) autoc[coeff] += d * data[sample+coeff]; } for(; sample < data_len; sample++) { d = data[sample]; for(coeff = 0; coeff < data_len - sample; coeff++) autoc[coeff] += d * data[sample+coeff]; } } void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__real error[]) { unsigned i, j; double r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER]; FLAC__ASSERT(0 < max_order); FLAC__ASSERT(max_order <= FLAC__MAX_LPC_ORDER); FLAC__ASSERT(autoc[0] != 0.0); err = autoc[0]; for(i = 0; i < max_order; i++) { /* Sum up this iteration's reflection coefficient. */ r = -autoc[i+1]; for(j = 0; j < i; j++) r -= lpc[j] * autoc[i-j]; ref[i] = (r/=err); /* Update LPC coefficients and total error. */ lpc[i]=r; for(j = 0; j < (i>>1); j++) { double tmp = lpc[j]; lpc[j] += r * lpc[i-1-j]; lpc[i-1-j] += r * tmp; } if(i & 1) lpc[j] += lpc[j] * r; err *= (1.0 - r * r); /* save this order */ for(j = 0; j <= i; j++) lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */ error[i] = (FLAC__real)err; } } int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift) { unsigned i; double d, cmax = -1e32; FLAC__int32 qmax, qmin; const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1; const int min_shiftlimit = -max_shiftlimit - 1; FLAC__ASSERT(precision > 0); FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION); /* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */ precision--; qmax = 1 << precision; qmin = -qmax; qmax--; for(i = 0; i < order; i++) { if(lp_coeff[i] == 0.0) continue; d = fabs(lp_coeff[i]); if(d > cmax) cmax = d; } redo_it: if(cmax <= 0.0) { /* => coefficients are all 0, which means our constant-detect didn't work */ return 2; } else { int log2cmax; (void)frexp(cmax, &log2cmax); log2cmax--; *shift = (int)precision - log2cmax - 1; if(*shift < min_shiftlimit || *shift > max_shiftlimit) { #if 0 /*@@@ this does not seem to help at all, but was not extensively tested either: */ if(*shift > max_shiftlimit) *shift = max_shiftlimit; else #endif return 1; } } if(*shift >= 0) { for(i = 0; i < order; i++) { qlp_coeff[i] = (FLAC__int32)floor((double)lp_coeff[i] * (double)(1 << *shift)); /* double-check the result */ if(qlp_coeff[i] > qmax || qlp_coeff[i] < qmin) { #ifdef FLAC__OVERFLOW_DETECT fprintf(stderr,"FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (double)lp_coeff[i] * (double)(1 << *shift), floor((double)lp_coeff[i] * (double)(1 << *shift))); #endif cmax *= 2.0; goto redo_it; } } } else { /* (*shift < 0) */ const int nshift = -(*shift); #ifdef DEBUG fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift = %d\n", *shift); #endif for(i = 0; i < order; i++) { qlp_coeff[i] = (FLAC__int32)floor((double)lp_coeff[i] / (double)(1 << nshift)); /* double-check the result */ if(qlp_coeff[i] > qmax || qlp_coeff[i] < qmin) { #ifdef FLAC__OVERFLOW_DETECT fprintf(stderr,"FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (double)lp_coeff[i] / (double)(1 << nshift), floor((double)lp_coeff[i] / (double)(1 << nshift))); #endif cmax *= 2.0; goto redo_it; } } } return 0; } void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 data[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]) { #ifdef FLAC__OVERFLOW_DETECT FLAC__int64 sumo; #endif unsigned i, j; FLAC__int32 sum; const FLAC__int32 *history; #ifdef FLAC__OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i<order;i++) fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]); fprintf(stderr,"\n"); #endif FLAC__ASSERT(order > 0); for(i = 0; i < data_len; i++) { #ifdef FLAC__OVERFLOW_DETECT sumo = 0; #endif sum = 0; history = data; for(j = 0; j < order; j++) { sum += qlp_coeff[j] * (*(--history)); #ifdef FLAC__OVERFLOW_DETECT sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history); #if defined _MSC_VER if(sumo > 2147483647I64 || sumo < -2147483648I64) fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo); #else if(sumo > 2147483647ll || sumo < -2147483648ll) fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo); #endif #endif } *(residual++) = *(data++) - (sum >> lp_quantization); } /* Here's a slower but clearer version: for(i = 0; i < data_len; i++) { sum = 0; for(j = 0; j < order; j++) sum += qlp_coeff[j] * data[i-j-1]; residual[i] = data[i] - (sum >> lp_quantization); } */ } void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 data[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]) { unsigned i, j; FLAC__int64 sum; const FLAC__int32 *history; #ifdef FLAC__OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i<order;i++) fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]); fprintf(stderr,"\n"); #endif FLAC__ASSERT(order > 0); for(i = 0; i < data_len; i++) { sum = 0; history = data; for(j = 0; j < order; j++) sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history)); #ifdef FLAC__OVERFLOW_DETECT if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) { fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%lld\n", i, sum >> lp_quantization); break; } if(FLAC__bitmath_silog2_wide((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) { fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%lld, residual=%lld\n", i, *data, sum >> lp_quantization, (FLAC__int64)(*data) - (sum >> lp_quantization)); break; } #endif *(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization); } } void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]) { #ifdef FLAC__OVERFLOW_DETECT FLAC__int64 sumo; #endif unsigned i, j; FLAC__int32 sum; const FLAC__int32 *history; #ifdef FLAC__OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i<order;i++) fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]); fprintf(stderr,"\n"); #endif FLAC__ASSERT(order > 0); for(i = 0; i < data_len; i++) { #ifdef FLAC__OVERFLOW_DETECT sumo = 0; #endif sum = 0; history = data; for(j = 0; j < order; j++) { sum += qlp_coeff[j] * (*(--history)); #ifdef FLAC__OVERFLOW_DETECT sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history); #if defined _MSC_VER if(sumo > 2147483647I64 || sumo < -2147483648I64) fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo); #else if(sumo > 2147483647ll || sumo < -2147483648ll) fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo); #endif #endif } *(data++) = *(residual++) + (sum >> lp_quantization); } /* Here's a slower but clearer version: for(i = 0; i < data_len; i++) { sum = 0; for(j = 0; j < order; j++) sum += qlp_coeff[j] * data[i-j-1]; data[i] = residual[i] + (sum >> lp_quantization); } */ } void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]) { unsigned i, j; FLAC__int64 sum; const FLAC__int32 *history; #ifdef FLAC__OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i<order;i++) fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]); fprintf(stderr,"\n"); #endif FLAC__ASSERT(order > 0); for(i = 0; i < data_len; i++) { sum = 0; history = data; for(j = 0; j < order; j++) sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history)); #ifdef FLAC__OVERFLOW_DETECT if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) { fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%lld\n", i, sum >> lp_quantization); break; } if(FLAC__bitmath_silog2_wide((FLAC__int64)(*residual) + (sum >> lp_quantization)) > 32) { fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%lld, data=%lld\n", i, *residual, sum >> lp_quantization, (FLAC__int64)(*residual) + (sum >> lp_quantization)); break; } #endif *(data++) = *(residual++) + (FLAC__int32)(sum >> lp_quantization); } } FLAC__real FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__real lpc_error, unsigned total_samples) { double error_scale; FLAC__ASSERT(total_samples > 0); error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__real)total_samples; return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale); } FLAC__real FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__real lpc_error, double error_scale) { if(lpc_error > 0.0) { FLAC__real bps = (FLAC__real)((double)0.5 * log(error_scale * lpc_error) / M_LN2); if(bps >= 0.0) return bps; else return 0.0; } else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate float resolution */ return (FLAC__real)1e32; } else { return 0.0; } } unsigned FLAC__lpc_compute_best_order(const FLAC__real lpc_error[], unsigned max_order, unsigned total_samples, unsigned bits_per_signal_sample) { unsigned order, best_order; FLAC__real best_bits, tmp_bits; double error_scale; FLAC__ASSERT(max_order > 0); FLAC__ASSERT(total_samples > 0); error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__real)total_samples; best_order = 0; best_bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[0], error_scale) * (FLAC__real)total_samples; for(order = 1; order < max_order; order++) { tmp_bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[order], error_scale) * (FLAC__real)(total_samples - order) + (FLAC__real)(order * bits_per_signal_sample); if(tmp_bits < best_bits) { best_order = order; best_bits = tmp_bits; } } return best_order+1; /* +1 since index of lpc_error[] is order-1 */ }