ref: 7d88fe0269278966a1da1a8ab1160d7a0a6febb5
dir: /sys/man/2/addpt/
.TH ADDPT 2 .SH NAME addpt, subpt, mulpt, divpt, rectaddpt, rectsubpt, insetrect, canonrect, eqpt, eqrect, ptinrect, rectinrect, rectXrect, rectclip, combinerect, Dx, Dy, Pt, Rect, Rpt \- arithmetic on points and rectangles .SH SYNOPSIS .B #include <u.h> .br .B #include <libc.h> .br .B #include <draw.h> .PP .B Point addpt(Point p, Point q) .PP .B Point subpt(Point p, Point q) .PP .B Point mulpt(Point p, int a) .PP .B Point divpt(Point p, int a) .PP .B Rectangle rectaddpt(Rectangle r, Point p) .PP .B Rectangle rectsubpt(Rectangle r, Point p) .PP .B Rectangle insetrect(Rectangle r, int n) .PP .B Rectangle canonrect(Rectangle r) .PP .B int eqpt(Point p, Point q) .PP .B int eqrect(Rectangle r, Rectangle s) .PP .B int ptinrect(Point p, Rectangle r) .PP .B int rectinrect(Rectangle r, Rectangle s) .PP .B int rectXrect(Rectangle r, Rectangle s) .PP .B int rectclip(Rectangle *rp, Rectangle b) .PP .B void combinerect(Rectangle *rp, Rectangle b) .PP .B int Dx(Rectangle r) .PP .B int Dy(Rectangle r) .PP .B Point Pt(int x, int y) .PP .B Rectangle Rect(int x0, int y0, int x1, int y1) .PP .B Rectangle Rpt(Point p, Point q) .SH DESCRIPTION The functions .IR Pt , .I Rect and .I Rpt construct geometrical data types from their components. .PP .I Addpt returns the Point sum of its arguments: .BI Pt( p .x+ q .x, .IB p .y+ q .y) \f1. .I Subpt returns the Point difference of its arguments: .BI Pt( p .x- q .x, .IB p .y- q .y) \f1. .I Mulpt returns the Point .BI Pt( p .x* a , .IB p .y* a ) \f1. .I Divpt returns the Point .BI Pt( p .x/ a , .IB p .y/ a ) \f1. .PP .I Rectaddpt returns the Rectangle .BI Rect(add( r .min, .IB p ) \f1, .BI add( r .max, .IB p )) \f1; .I rectsubpt returns the Rectangle .BI Rpt(sub( r .min, .IB p ), .BI sub( r .max, .IB p ))\fR. .PP .I Insetrect returns the Rectangle .BI Rect( r .min.x+ n \f1, .IB r .min.y+ n \f1, .IB r .max.x- n \f1, .IB r .max.y- n ) \f1. .PP .I Canonrect returns a rectangle with the same extent as .IR r , canonicalized so that .B min.x ≤ .BR max.x , and .B min.y ≤ .BR max.y . .PP .I Eqpt compares its argument Points and returns 0 if unequal, 1 if equal. .I Eqrect does the same for its argument Rectangles. .PP .I Ptinrect returns 1 if .I p is a point within .IR r , and 0 otherwise. .PP .I Rectinrect returns 1 if all the pixels in .I r are also in .IR s , and 0 otherwise. .PP .I RectXrect returns 1 if .I r and .I s share any point, and 0 otherwise. .PP .I Rectclip clips in place the Rectangle pointed to by .I rp so that it is completely contained within .IR b . The return value is 1 if any part of .RI * rp is within .IR b . Otherwise, the return value is 0 and .RI * rp is unchanged. .PP .I Combinerect overwrites .B *rp with the smallest rectangle sufficient to cover all the pixels of .B *rp and .BR b . .PP The functions .I Dx and .I Dy give the width (Δx) and height (Δy) of a Rectangle. They are implemented as macros. .SH SOURCE .B /sys/src/libdraw .SH SEE ALSO .IR graphics (2)