ref: 921aa0a6c387eaeca5c485f7d9c49bdef7a435a9
dir: /sys/src/cmd/audio/libFLAC/fixed.c/
/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000,2001,2002,2003,2004 Josh Coalson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <math.h> #include "private/fixed.h" #include "FLAC/assert.h" #ifndef M_LN2 /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */ #define M_LN2 0.69314718055994530942 #endif #ifdef min #undef min #endif #define min(x,y) ((x) < (y)? (x) : (y)) #ifdef local_abs #undef local_abs #endif #define local_abs(x) ((unsigned)((x)<0? -(x) : (x))) unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__real residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) { FLAC__int32 last_error_0 = data[-1]; FLAC__int32 last_error_1 = data[-1] - data[-2]; FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]); FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]); FLAC__int32 error, save; FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0; unsigned i, order; for(i = 0; i < data_len; i++) { error = data[i] ; total_error_0 += local_abs(error); save = error; error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error; error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error; error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error; error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save; } if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4)) order = 0; else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4)) order = 1; else if(total_error_2 < min(total_error_3, total_error_4)) order = 2; else if(total_error_3 < total_error_4) order = 3; else order = 4; /* Estimate the expected number of bits per residual signal sample. */ /* 'total_error*' is linearly related to the variance of the residual */ /* signal, so we use it directly to compute E(|x|) */ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); FLAC__ASSERT(data_len > 0 || total_error_1 == 0); FLAC__ASSERT(data_len > 0 || total_error_2 == 0); FLAC__ASSERT(data_len > 0 || total_error_3 == 0); FLAC__ASSERT(data_len > 0 || total_error_4 == 0); residual_bits_per_sample[0] = (FLAC__real)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (FLAC__real)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (FLAC__real)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (FLAC__real)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (FLAC__real)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); return order; } unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__real residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) { FLAC__int32 last_error_0 = data[-1]; FLAC__int32 last_error_1 = data[-1] - data[-2]; FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]); FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]); FLAC__int32 error, save; /* total_error_* are 64-bits to avoid overflow when encoding * erratic signals when the bits-per-sample and blocksize are * large. */ FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0; unsigned i, order; for(i = 0; i < data_len; i++) { error = data[i] ; total_error_0 += local_abs(error); save = error; error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error; error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error; error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error; error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save; } if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4)) order = 0; else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4)) order = 1; else if(total_error_2 < min(total_error_3, total_error_4)) order = 2; else if(total_error_3 < total_error_4) order = 3; else order = 4; /* Estimate the expected number of bits per residual signal sample. */ /* 'total_error*' is linearly related to the variance of the residual */ /* signal, so we use it directly to compute E(|x|) */ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); FLAC__ASSERT(data_len > 0 || total_error_1 == 0); FLAC__ASSERT(data_len > 0 || total_error_2 == 0); FLAC__ASSERT(data_len > 0 || total_error_3 == 0); FLAC__ASSERT(data_len > 0 || total_error_4 == 0); #if defined _MSC_VER || defined __MINGW32__ /* with VC++ you have to spoon feed it the casting */ residual_bits_per_sample[0] = (FLAC__real)((total_error_0 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_0 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (FLAC__real)((total_error_1 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_1 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (FLAC__real)((total_error_2 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_2 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (FLAC__real)((total_error_3 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_3 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (FLAC__real)((total_error_4 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_4 / (double)data_len) / M_LN2 : 0.0); #else residual_bits_per_sample[0] = (FLAC__real)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (FLAC__real)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (FLAC__real)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (FLAC__real)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (FLAC__real)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); #endif return order; } void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, unsigned order, FLAC__int32 residual[]) { const int idata_len = (int)data_len; int i; switch(order) { case 0: for(i = 0; i < idata_len; i++) { residual[i] = data[i]; } break; case 1: for(i = 0; i < idata_len; i++) { residual[i] = data[i] - data[i-1]; } break; case 2: for(i = 0; i < idata_len; i++) { /* == data[i] - 2*data[i-1] + data[i-2] */ residual[i] = data[i] - (data[i-1] << 1) + data[i-2]; } break; case 3: for(i = 0; i < idata_len; i++) { /* == data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3] */ residual[i] = data[i] - (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) - data[i-3]; } break; case 4: for(i = 0; i < idata_len; i++) { /* == data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4] */ residual[i] = data[i] - ((data[i-1]+data[i-3])<<2) + ((data[i-2]<<2) + (data[i-2]<<1)) + data[i-4]; } break; default: FLAC__ASSERT(0); } } void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len, unsigned order, FLAC__int32 data[]) { int i, idata_len = (int)data_len; switch(order) { case 0: for(i = 0; i < idata_len; i++) { data[i] = residual[i]; } break; case 1: for(i = 0; i < idata_len; i++) { data[i] = residual[i] + data[i-1]; } break; case 2: for(i = 0; i < idata_len; i++) { /* == residual[i] + 2*data[i-1] - data[i-2] */ data[i] = residual[i] + (data[i-1]<<1) - data[i-2]; } break; case 3: for(i = 0; i < idata_len; i++) { /* residual[i] + 3*data[i-1] - 3*data[i-2]) + data[i-3] */ data[i] = residual[i] + (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) + data[i-3]; } break; case 4: for(i = 0; i < idata_len; i++) { /* == residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4] */ data[i] = residual[i] + ((data[i-1]+data[i-3])<<2) - ((data[i-2]<<2) + (data[i-2]<<1)) - data[i-4]; } break; default: FLAC__ASSERT(0); } }