ref: 9cb67a523ff08a41ff0025d117cbdd598c00e36a
dir: /sys/src/9/zynq/emmc.c/
/* * external mass media controller (mmc / sd host interface) * * derived from Richard Miller's bcm/emmc.c */ #include "u.h" #include "../port/lib.h" #include "../port/error.h" #include "mem.h" #include "dat.h" #include "fns.h" #include "io.h" #include "../port/sd.h" enum { Initfreq = 400000, /* initialisation frequency for MMC */ SDfreq = 25000000, /* standard SD frequency */ DTO = 14, /* data timeout exponent (guesswork) */ MMCSelect = 7, /* mmc/sd card select command */ Setbuswidth = 6, /* mmc/sd set bus width command */ }; enum { /* Controller registers */ Sysaddr = 0x00>>2, Blksizecnt = 0x04>>2, Arg1 = 0x08>>2, Cmdtm = 0x0c>>2, Resp0 = 0x10>>2, Resp1 = 0x14>>2, Resp2 = 0x18>>2, Resp3 = 0x1c>>2, Data = 0x20>>2, Status = 0x24>>2, Control0 = 0x28>>2, Control1 = 0x2c>>2, Interrupt = 0x30>>2, Irptmask = 0x34>>2, Irpten = 0x38>>2, Capabilites = 0x40>>2, Forceirpt = 0x50>>2, Boottimeout = 0x60>>2, Dbgsel = 0x64>>2, Spiintspt = 0xf0>>2, Slotisrver = 0xfc>>2, /* Control0 */ Dwidth4 = 1<<1, Dwidth1 = 0<<1, /* Control1 */ Srstdata = 1<<26, /* reset data circuit */ Srstcmd = 1<<25, /* reset command circuit */ Srsthc = 1<<24, /* reset complete host controller */ Datatoshift = 16, /* data timeout unit exponent */ Datatomask = 0xF0000, Clkfreq8shift = 8, /* SD clock base divider LSBs */ Clkfreq8mask = 0xFF00, Clkfreqms2shift = 6, /* SD clock base divider MSBs */ Clkfreqms2mask = 0xC0, Clkgendiv = 0<<5, /* SD clock divided */ Clkgenprog = 1<<5, /* SD clock programmable */ Clken = 1<<2, /* SD clock enable */ Clkstable = 1<<1, Clkintlen = 1<<0, /* enable internal EMMC clocks */ /* Cmdtm */ Indexshift = 24, Suspend = 1<<22, Resume = 2<<22, Abort = 3<<22, Isdata = 1<<21, Ixchken = 1<<20, Crcchken = 1<<19, Respmask = 3<<16, Respnone = 0<<16, Resp136 = 1<<16, Resp48 = 2<<16, Resp48busy = 3<<16, Multiblock = 1<<5, Host2card = 0<<4, Card2host = 1<<4, Autocmd12 = 1<<2, Autocmd23 = 2<<2, Blkcnten = 1<<1, Dmaen = 1<<0, /* Interrupt */ Acmderr = 1<<24, Denderr = 1<<22, Dcrcerr = 1<<21, Dtoerr = 1<<20, Cbaderr = 1<<19, Cenderr = 1<<18, Ccrcerr = 1<<17, Ctoerr = 1<<16, Err = 1<<15, Cardintr = 1<<8, Cardinsert = 1<<6, Readrdy = 1<<5, Writerdy = 1<<4, Dmaintr = 1<<3, Datadone = 1<<1, Cmddone = 1<<0, /* Status */ Present = 1<<18, Bufread = 1<<11, Bufwrite = 1<<10, Readtrans = 1<<9, Writetrans = 1<<8, Datactive = 1<<2, Datinhibit = 1<<1, Cmdinhibit = 1<<0, }; static int cmdinfo[64] = { [0] Ixchken, [2] Resp136, [3] Resp48 | Ixchken | Crcchken, [6] Resp48 | Ixchken | Crcchken, [7] Resp48busy | Ixchken | Crcchken, [8] Resp48 | Ixchken | Crcchken, [9] Resp136, [12] Resp48busy | Ixchken | Crcchken, [13] Resp48 | Ixchken | Crcchken, [16] Resp48, [17] Resp48 | Isdata | Card2host | Ixchken | Crcchken | Dmaen, [18] Resp48 | Isdata | Card2host | Multiblock | Blkcnten | Ixchken | Crcchken | Dmaen, [24] Resp48 | Isdata | Host2card | Ixchken | Crcchken | Dmaen, [25] Resp48 | Isdata | Host2card | Multiblock | Blkcnten | Ixchken | Crcchken | Dmaen, [41] Resp48, [55] Resp48 | Ixchken | Crcchken, }; typedef struct Ctlr Ctlr; struct Ctlr { Rendez r; u32int *regs; int datadone; int fastclock; ulong extclk; int irq; }; static Ctlr emmc; static uint clkdiv(uint d) { uint v; assert(d < 1<<10); v = (d << Clkfreq8shift) & Clkfreq8mask; v |= ((d >> 8) << Clkfreqms2shift) & Clkfreqms2mask; return v; } static void interrupt(Ureg*, void*) { u32int *r; int i; r = emmc.regs; i = r[Interrupt]; r[Interrupt] = i & (Datadone|Err); emmc.datadone = i; wakeup(&emmc.r); } static int datadone(void*) { return emmc.datadone; } static int emmcinit(void) { u32int *r; int i; emmc.extclk = 100000000; emmc.irq = SDIO1IRQ; r = vmap(SDIO_BASE, 0x100); emmc.regs = r; r[Control1] = Srsthc; for(i = 0; i < 100; i++){ delay(10); if((r[Control1] & Srsthc) == 0) return 0; } print("emmc: reset timeout!\n"); return -1; } static int emmcinquiry(char *inquiry, int inqlen) { uint ver; ver = emmc.regs[Slotisrver] >> 16; return snprint(inquiry, inqlen, "eMMC SD Host Controller %2.2x Version %2.2x", ver&0xFF, ver>>8); } static void emmcenable(void) { int i; emmc.regs[Control1] = clkdiv(emmc.extclk / Initfreq - 1) | DTO << Datatoshift | Clkgendiv | Clken | Clkintlen; for(i = 0; i < 1000; i++){ delay(1); if(emmc.regs[Control1] & Clkstable) break; } if(i == 1000) print("SD clock won't initialise!\n"); emmc.regs[Irptmask] = ~(Dtoerr|Cardintr|Dmaintr); intrenable(emmc.irq, interrupt, nil, LEVEL, sdio.name); } static int emmccmd(u32int cmd, u32int arg, u32int *resp) { ulong now; u32int *r; u32int c; int i; assert(cmd < nelem(cmdinfo) && cmdinfo[cmd] != 0); c = (cmd << Indexshift) | cmdinfo[cmd]; r = emmc.regs; if(r[Status] & Cmdinhibit){ print("emmccmd: need to reset Cmdinhibit intr %ux stat %ux\n", r[Interrupt], r[Status]); r[Control1] |= Srstcmd; while(r[Control1] & Srstcmd) ; while(r[Status] & Cmdinhibit) ; } if((c & Isdata || (c & Respmask) == Resp48busy) && r[Status] & Datinhibit){ print("emmccmd: need to reset Datinhibit intr %ux stat %ux\n", r[Interrupt], r[Status]); r[Control1] |= Srstdata; while(r[Control1] & Srstdata) ; while(r[Status] & Datinhibit) ; } r[Arg1] = arg; if((i = r[Interrupt]) != 0){ if(i != Cardinsert) print("emmc: before command, intr was %ux\n", i); r[Interrupt] = i; } r[Cmdtm] = c; now = m->ticks; while(((i=r[Interrupt])&(Cmddone|Err)) == 0) if((long)(m->ticks-now) > HZ) break; if((i&(Cmddone|Err)) != Cmddone){ if((i&~Err) != Ctoerr) print("emmc: cmd %ux error intr %ux stat %ux\n", c, i, r[Status]); r[Interrupt] = i; if(r[Status]&Cmdinhibit){ r[Control1] |= Srstcmd; while(r[Control1]&Srstcmd) ; } error(Eio); } r[Interrupt] = i & ~(Datadone|Readrdy|Writerdy); switch(c & Respmask){ case Resp136: resp[0] = r[Resp0]<<8; resp[1] = r[Resp0]>>24 | r[Resp1]<<8; resp[2] = r[Resp1]>>24 | r[Resp2]<<8; resp[3] = r[Resp2]>>24 | r[Resp3]<<8; break; case Resp48: case Resp48busy: resp[0] = r[Resp0]; break; case Respnone: resp[0] = 0; break; } if((c & Respmask) == Resp48busy){ r[Irpten] = Datadone|Err; tsleep(&emmc.r, datadone, 0, 3000); i = emmc.datadone; emmc.datadone = 0; r[Irpten] = 0; if((i & Datadone) == 0) print("emmcio: no Datadone after CMD%d\n", cmd); if(i & Err) print("emmcio: CMD%d error interrupt %ux\n", cmd, r[Interrupt]); r[Interrupt] = i; } /* * Once card is selected, use faster clock */ if(cmd == MMCSelect){ delay(10); r[Control1] = clkdiv(emmc.extclk / SDfreq - 1) | DTO << Datatoshift | Clkgendiv | Clken | Clkintlen; for(i = 0; i < 1000; i++){ delay(1); if(r[Control1] & Clkstable) break; } delay(10); emmc.fastclock = 1; } /* * If card bus width changes, change host bus width */ if(cmd == Setbuswidth) switch(arg){ case 0: r[Control0] &= ~Dwidth4; break; case 2: r[Control0] |= Dwidth4; break; } return 0; } static void emmciosetup(int, void *buf, int bsize, int bcount) { u32int *r; uintptr pa; int len; len = bsize*bcount; if(len > (0x1000<<7)) error(Etoobig); pa = PADDR(buf); cleandse((uchar*)buf, (uchar*)buf+len); clean2pa(pa, pa+len); r = emmc.regs; r[Sysaddr] = pa; r[Blksizecnt] = 7<<12 | bcount<<16 | bsize; r[Irpten] = Datadone|Err; } static void emmcio(int write, uchar *buf, int len) { u32int *r; int i; tsleep(&emmc.r, datadone, 0, 3000); i = emmc.datadone; emmc.datadone = 0; r = emmc.regs; r[Irpten] = 0; if((i & Datadone) == 0){ print("emmcio: %d timeout intr %ux stat %ux\n", write, i, r[Status]); r[Interrupt] = i; error(Eio); } if(i & Err){ print("emmcio: %d error intr %ux stat %ux\n", write, r[Interrupt], r[Status]); r[Interrupt] = i; error(Eio); } if(i) r[Interrupt] = i; if(!write){ uintptr pa = PADDR(buf); invaldse((uchar*)buf, (uchar*)buf+len); inval2pa(pa, pa+len); } } SDio sdio = { "emmc", emmcinit, emmcenable, emmcinquiry, emmccmd, emmciosetup, emmcio, };