ref: a291bbdeddfd41a2f0907ecbd7b819f0eedffdaf
dir: /sys/src/cmd/audio/libFLAC/bitbuffer.c/
/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000,2001,2002,2003,2004 Josh Coalson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <stdlib.h> /* for malloc() */ #include <string.h> /* for memcpy(), memset() */ #include "private/bitbuffer.h" #include "private/bitmath.h" #include "private/crc.h" #include "FLAC/assert.h" /* * Along the way you will see two versions of some functions, selected * by a FLAC__NO_MANUAL_INLINING macro. One is the simplified, more * readable, and slow version, and the other is the same function * where crucial parts have been manually inlined and are much faster. * */ /* * This should be at least twice as large as the largest number of blurbs * required to represent any 'number' (in any encoding) you are going to * read. With FLAC this is on the order of maybe a few hundred bits. * If the buffer is smaller than that, the decoder won't be able to read * in a whole number that is in a variable length encoding (e.g. Rice). * * The number we are actually using here is based on what would be the * approximate maximum size of a verbatim frame at the default block size, * for CD audio (4096 sample * 4 bytes per sample), plus some wiggle room. * 32kbytes sounds reasonable. For kicks we subtract out 64 bytes for any * alignment or malloc overhead. * * Increase this number to decrease the number of read callbacks, at the * expense of using more memory. Or decrease for the reverse effect, * keeping in mind the limit from the first paragraph. */ static const unsigned FLAC__BITBUFFER_DEFAULT_CAPACITY = ((65536 - 64) * 8) / FLAC__BITS_PER_BLURB; /* blurbs */ #if FLAC__BITS_PER_BLURB == 8 #define FLAC__BITS_PER_BLURB_LOG2 3 #define FLAC__BYTES_PER_BLURB 1 #define FLAC__BLURB_ALL_ONES ((FLAC__byte)0xff) #define FLAC__BLURB_TOP_BIT_ONE ((FLAC__byte)0x80) #define BLURB_BIT_TO_MASK(b) (((FLAC__blurb)'\x80') >> (b)) #define CRC16_UPDATE_BLURB(bb, blurb, crc) FLAC__CRC16_UPDATE((blurb), (crc)); #elif FLAC__BITS_PER_BLURB == 32 #define FLAC__BITS_PER_BLURB_LOG2 5 #define FLAC__BYTES_PER_BLURB 4 #define FLAC__BLURB_ALL_ONES ((FLAC__uint32)0xffffffff) #define FLAC__BLURB_TOP_BIT_ONE ((FLAC__uint32)0x80000000) #define BLURB_BIT_TO_MASK(b) (((FLAC__blurb)0x80000000) >> (b)) #define CRC16_UPDATE_BLURB(bb, blurb, crc) crc16_update_blurb((bb), (blurb)); #else /* ERROR, only sizes of 8 and 32 are supported */ #endif #define FLAC__BLURBS_TO_BITS(blurbs) ((blurbs) << FLAC__BITS_PER_BLURB_LOG2) #ifdef min #undef min #endif #define min(x,y) ((x)<(y)?(x):(y)) #ifdef max #undef max #endif #define max(x,y) ((x)>(y)?(x):(y)) /* adjust for compilers that can't understand using LLU suffix for uint64_t literals */ #ifdef _MSC_VER #define FLAC__U64L(x) x #else #define FLAC__U64L(x) x##LLU #endif #ifndef FLaC__INLINE #define FLaC__INLINE #endif struct FLAC__BitBuffer { FLAC__blurb *buffer; unsigned capacity; /* in blurbs */ unsigned blurbs, bits; unsigned total_bits; /* must always == FLAC__BITS_PER_BLURB*blurbs+bits */ unsigned consumed_blurbs, consumed_bits; unsigned total_consumed_bits; /* must always == FLAC__BITS_PER_BLURB*consumed_blurbs+consumed_bits */ FLAC__uint16 read_crc16; #if FLAC__BITS_PER_BLURB == 32 unsigned crc16_align; #endif FLAC__blurb save_head, save_tail; }; #if FLAC__BITS_PER_BLURB == 32 static void crc16_update_blurb(FLAC__BitBuffer *bb, FLAC__blurb blurb) { if(bb->crc16_align == 0) { FLAC__CRC16_UPDATE(blurb >> 24, bb->read_crc16); FLAC__CRC16_UPDATE((blurb >> 16) & 0xff, bb->read_crc16); FLAC__CRC16_UPDATE((blurb >> 8) & 0xff, bb->read_crc16); FLAC__CRC16_UPDATE(blurb & 0xff, bb->read_crc16); } else if(bb->crc16_align == 8) { FLAC__CRC16_UPDATE((blurb >> 16) & 0xff, bb->read_crc16); FLAC__CRC16_UPDATE((blurb >> 8) & 0xff, bb->read_crc16); FLAC__CRC16_UPDATE(blurb & 0xff, bb->read_crc16); } else if(bb->crc16_align == 16) { FLAC__CRC16_UPDATE((blurb >> 8) & 0xff, bb->read_crc16); FLAC__CRC16_UPDATE(blurb & 0xff, bb->read_crc16); } else if(bb->crc16_align == 24) { FLAC__CRC16_UPDATE(blurb & 0xff, bb->read_crc16); } bb->crc16_align = 0; } #endif /* * WATCHOUT: The current implentation is not friendly to shrinking, i.e. it * does not shift left what is consumed, it just chops off the end, whether * there is unconsumed data there or not. This is OK because currently we * never shrink the buffer, but if this ever changes, we'll have to do some * fixups here. */ static FLAC__bool bitbuffer_resize_(FLAC__BitBuffer *bb, unsigned new_capacity) { FLAC__blurb *new_buffer; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); if(bb->capacity == new_capacity) return true; new_buffer = (FLAC__blurb*)calloc(new_capacity, sizeof(FLAC__blurb)); if(new_buffer == 0) return false; memcpy(new_buffer, bb->buffer, sizeof(FLAC__blurb)*min(bb->blurbs+(bb->bits?1:0), new_capacity)); if(new_capacity < bb->blurbs+(bb->bits?1:0)) { bb->blurbs = new_capacity; bb->bits = 0; bb->total_bits = FLAC__BLURBS_TO_BITS(new_capacity); } if(new_capacity < bb->consumed_blurbs+(bb->consumed_bits?1:0)) { bb->consumed_blurbs = new_capacity; bb->consumed_bits = 0; bb->total_consumed_bits = FLAC__BLURBS_TO_BITS(new_capacity); } free(bb->buffer); /* we've already asserted above that (0 != bb->buffer) */ bb->buffer = new_buffer; bb->capacity = new_capacity; return true; } static FLAC__bool bitbuffer_grow_(FLAC__BitBuffer *bb, unsigned min_blurbs_to_add) { unsigned new_capacity; FLAC__ASSERT(min_blurbs_to_add > 0); new_capacity = max(bb->capacity * 2, bb->capacity + min_blurbs_to_add); return bitbuffer_resize_(bb, new_capacity); } static FLAC__bool bitbuffer_ensure_size_(FLAC__BitBuffer *bb, unsigned bits_to_add) { FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); if(FLAC__BLURBS_TO_BITS(bb->capacity) < bb->total_bits + bits_to_add) return bitbuffer_grow_(bb, (bits_to_add >> FLAC__BITS_PER_BLURB_LOG2) + 2); else return true; } static FLAC__bool bitbuffer_read_from_client_(FLAC__BitBuffer *bb, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { unsigned bytes; FLAC__byte *target; /* first shift the unconsumed buffer data toward the front as much as possible */ if(bb->total_consumed_bits >= FLAC__BITS_PER_BLURB) { unsigned l = 0, r = bb->consumed_blurbs, r_end = bb->blurbs + (bb->bits? 1:0); for( ; r < r_end; l++, r++) bb->buffer[l] = bb->buffer[r]; for( ; l < r_end; l++) bb->buffer[l] = 0; bb->blurbs -= bb->consumed_blurbs; bb->total_bits -= FLAC__BLURBS_TO_BITS(bb->consumed_blurbs); bb->consumed_blurbs = 0; bb->total_consumed_bits = bb->consumed_bits; } /* grow if we need to */ if(bb->capacity <= 1) { if(!bitbuffer_resize_(bb, 16)) return false; } /* set the target for reading, taking into account blurb alignment */ #if FLAC__BITS_PER_BLURB == 8 /* blurb == byte, so no gyrations necessary: */ target = bb->buffer + bb->blurbs; bytes = bb->capacity - bb->blurbs; #elif FLAC__BITS_PER_BLURB == 32 /* @@@ WATCHOUT: code currently only works for big-endian: */ FLAC__ASSERT((bb->bits & 7) == 0); target = (FLAC__byte*)(bb->buffer + bb->blurbs) + (bb->bits >> 3); bytes = ((bb->capacity - bb->blurbs) << 2) - (bb->bits >> 3); /* i.e. (bb->capacity - bb->blurbs) * FLAC__BYTES_PER_BLURB - (bb->bits / 8) */ #else FLAC__ASSERT(false); /* ERROR, only sizes of 8 and 32 are supported */ #endif /* finally, read in some data */ if(!read_callback(target, &bytes, client_data)) return false; /* now we have to handle partial blurb cases: */ #if FLAC__BITS_PER_BLURB == 8 /* blurb == byte, so no gyrations necessary: */ bb->blurbs += bytes; bb->total_bits += FLAC__BLURBS_TO_BITS(bytes); #elif FLAC__BITS_PER_BLURB == 32 /* @@@ WATCHOUT: code currently only works for big-endian: */ { const unsigned aligned_bytes = (bb->bits >> 3) + bytes; bb->blurbs += (aligned_bytes >> 2); /* i.e. aligned_bytes / FLAC__BYTES_PER_BLURB */ bb->bits = (aligned_bytes & 3u) << 3; /* i.e. (aligned_bytes % FLAC__BYTES_PER_BLURB) * 8 */ bb->total_bits += (bytes << 3); } #else FLAC__ASSERT(false); /* ERROR, only sizes of 8 and 32 are supported */ #endif return true; } /*********************************************************************** * * Class constructor/destructor * ***********************************************************************/ FLAC__BitBuffer *FLAC__bitbuffer_new(void) { FLAC__BitBuffer *bb = (FLAC__BitBuffer*)calloc(1, sizeof(FLAC__BitBuffer)); /* calloc() implies: memset(bb, 0, sizeof(FLAC__BitBuffer)); bb->buffer = 0; bb->capacity = 0; bb->blurbs = bb->bits = bb->total_bits = 0; bb->consumed_blurbs = bb->consumed_bits = bb->total_consumed_bits = 0; */ return bb; } void FLAC__bitbuffer_delete(FLAC__BitBuffer *bb) { FLAC__ASSERT(0 != bb); FLAC__bitbuffer_free(bb); free(bb); } /*********************************************************************** * * Public class methods * ***********************************************************************/ FLAC__bool FLAC__bitbuffer_init(FLAC__BitBuffer *bb) { FLAC__ASSERT(0 != bb); bb->buffer = 0; bb->capacity = 0; bb->blurbs = bb->bits = bb->total_bits = 0; bb->consumed_blurbs = bb->consumed_bits = bb->total_consumed_bits = 0; return FLAC__bitbuffer_clear(bb); } FLAC__bool FLAC__bitbuffer_init_from(FLAC__BitBuffer *bb, const FLAC__byte buffer[], unsigned bytes) { FLAC__ASSERT(0 != bb); FLAC__ASSERT(bytes > 0); if(!FLAC__bitbuffer_init(bb)) return false; if(!bitbuffer_ensure_size_(bb, bytes << 3)) return false; FLAC__ASSERT(0 != buffer); /* @@@ WATCHOUT: code currently only works for 8-bits-per-blurb inclusive-or big-endian: */ memcpy((FLAC__byte*)bb->buffer, buffer, sizeof(FLAC__byte)*bytes); bb->blurbs = bytes / FLAC__BYTES_PER_BLURB; bb->bits = (bytes % FLAC__BYTES_PER_BLURB) << 3; bb->total_bits = bytes << 3; return true; } FLAC__bool FLAC__bitbuffer_concatenate_aligned(FLAC__BitBuffer *dest, const FLAC__BitBuffer *src) { unsigned bits_to_add = src->total_bits - src->total_consumed_bits; FLAC__ASSERT(0 != dest); FLAC__ASSERT(0 != src); if(bits_to_add == 0) return true; if(dest->bits != src->consumed_bits) return false; if(!bitbuffer_ensure_size_(dest, bits_to_add)) return false; if(dest->bits == 0) { memcpy(dest->buffer+dest->blurbs, src->buffer+src->consumed_blurbs, sizeof(FLAC__blurb)*(src->blurbs-src->consumed_blurbs + ((src->bits)? 1:0))); } else if(dest->bits + bits_to_add > FLAC__BITS_PER_BLURB) { dest->buffer[dest->blurbs] <<= (FLAC__BITS_PER_BLURB - dest->bits); dest->buffer[dest->blurbs] |= (src->buffer[src->consumed_blurbs] & ((1u << (FLAC__BITS_PER_BLURB-dest->bits)) - 1)); memcpy(dest->buffer+dest->blurbs+1, src->buffer+src->consumed_blurbs+1, sizeof(FLAC__blurb)*(src->blurbs-src->consumed_blurbs-1 + ((src->bits)? 1:0))); } else { dest->buffer[dest->blurbs] <<= bits_to_add; dest->buffer[dest->blurbs] |= (src->buffer[src->consumed_blurbs] & ((1u << bits_to_add) - 1)); } dest->bits = src->bits; dest->total_bits += bits_to_add; dest->blurbs = dest->total_bits / FLAC__BITS_PER_BLURB; return true; } void FLAC__bitbuffer_free(FLAC__BitBuffer *bb) { FLAC__ASSERT(0 != bb); if(0 != bb->buffer) free(bb->buffer); bb->buffer = 0; bb->capacity = 0; bb->blurbs = bb->bits = bb->total_bits = 0; bb->consumed_blurbs = bb->consumed_bits = bb->total_consumed_bits = 0; } FLAC__bool FLAC__bitbuffer_clear(FLAC__BitBuffer *bb) { if(bb->buffer == 0) { bb->capacity = FLAC__BITBUFFER_DEFAULT_CAPACITY; bb->buffer = (FLAC__blurb*)calloc(bb->capacity, sizeof(FLAC__blurb)); if(bb->buffer == 0) return false; } else { memset(bb->buffer, 0, bb->blurbs + (bb->bits?1:0)); } bb->blurbs = bb->bits = bb->total_bits = 0; bb->consumed_blurbs = bb->consumed_bits = bb->total_consumed_bits = 0; return true; } FLAC__bool FLAC__bitbuffer_clone(FLAC__BitBuffer *dest, const FLAC__BitBuffer *src) { FLAC__ASSERT(0 != dest); FLAC__ASSERT(0 != dest->buffer); FLAC__ASSERT(0 != src); FLAC__ASSERT(0 != src->buffer); if(dest->capacity < src->capacity) if(!bitbuffer_resize_(dest, src->capacity)) return false; memcpy(dest->buffer, src->buffer, sizeof(FLAC__blurb)*min(src->capacity, src->blurbs+1)); dest->blurbs = src->blurbs; dest->bits = src->bits; dest->total_bits = src->total_bits; dest->consumed_blurbs = src->consumed_blurbs; dest->consumed_bits = src->consumed_bits; dest->total_consumed_bits = src->total_consumed_bits; dest->read_crc16 = src->read_crc16; return true; } void FLAC__bitbuffer_reset_read_crc16(FLAC__BitBuffer *bb, FLAC__uint16 seed) { FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT((bb->consumed_bits & 7) == 0); bb->read_crc16 = seed; #if FLAC__BITS_PER_BLURB == 8 /* no need to do anything */ #elif FLAC__BITS_PER_BLURB == 32 bb->crc16_align = bb->consumed_bits; #else FLAC__ASSERT(false); /* ERROR, only sizes of 8 and 32 are supported */ #endif } FLAC__uint16 FLAC__bitbuffer_get_read_crc16(FLAC__BitBuffer *bb) { FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT((bb->bits & 7) == 0); FLAC__ASSERT((bb->consumed_bits & 7) == 0); #if FLAC__BITS_PER_BLURB == 8 /* no need to do anything */ #elif FLAC__BITS_PER_BLURB == 32 /*@@@ BUG: even though this probably can't happen with FLAC, need to fix the case where we are called here for the very first blurb and crc16_align is > 0 */ if(bb->bits == 0 || bb->consumed_blurbs < bb->blurbs) { if(bb->consumed_bits == 8) { const FLAC__blurb blurb = bb->buffer[bb->consumed_blurbs]; FLAC__CRC16_UPDATE(blurb >> 24, bb->read_crc16); } else if(bb->consumed_bits == 16) { const FLAC__blurb blurb = bb->buffer[bb->consumed_blurbs]; FLAC__CRC16_UPDATE(blurb >> 24, bb->read_crc16); FLAC__CRC16_UPDATE((blurb >> 16) & 0xff, bb->read_crc16); } else if(bb->consumed_bits == 24) { const FLAC__blurb blurb = bb->buffer[bb->consumed_blurbs]; FLAC__CRC16_UPDATE(blurb >> 24, bb->read_crc16); FLAC__CRC16_UPDATE((blurb >> 16) & 0xff, bb->read_crc16); FLAC__CRC16_UPDATE((blurb >> 8) & 0xff, bb->read_crc16); } } else { if(bb->consumed_bits == 8) { const FLAC__blurb blurb = bb->buffer[bb->consumed_blurbs]; FLAC__CRC16_UPDATE(blurb >> (bb->bits-8), bb->read_crc16); } else if(bb->consumed_bits == 16) { const FLAC__blurb blurb = bb->buffer[bb->consumed_blurbs]; FLAC__CRC16_UPDATE(blurb >> (bb->bits-8), bb->read_crc16); FLAC__CRC16_UPDATE((blurb >> (bb->bits-16)) & 0xff, bb->read_crc16); } else if(bb->consumed_bits == 24) { const FLAC__blurb blurb = bb->buffer[bb->consumed_blurbs]; FLAC__CRC16_UPDATE(blurb >> (bb->bits-8), bb->read_crc16); FLAC__CRC16_UPDATE((blurb >> (bb->bits-16)) & 0xff, bb->read_crc16); FLAC__CRC16_UPDATE((blurb >> (bb->bits-24)) & 0xff, bb->read_crc16); } } bb->crc16_align = bb->consumed_bits; #else FLAC__ASSERT(false); /* ERROR, only sizes of 8 and 32 are supported */ #endif return bb->read_crc16; } FLAC__uint16 FLAC__bitbuffer_get_write_crc16(const FLAC__BitBuffer *bb) { FLAC__ASSERT((bb->bits & 7) == 0); /* assert that we're byte-aligned */ #if FLAC__BITS_PER_BLURB == 8 return FLAC__crc16(bb->buffer, bb->blurbs); #elif FLAC__BITS_PER_BLURB == 32 /* @@@ WATCHOUT: code currently only works for big-endian: */ return FLAC__crc16((FLAC__byte*)(bb->buffer), (bb->blurbs * FLAC__BYTES_PER_BLURB) + (bb->bits >> 3)); #else FLAC__ASSERT(false); /* ERROR, only sizes of 8 and 32 are supported */ #endif } FLAC__byte FLAC__bitbuffer_get_write_crc8(const FLAC__BitBuffer *bb) { FLAC__ASSERT(0 != bb); FLAC__ASSERT((bb->bits & 7) == 0); /* assert that we're byte-aligned */ FLAC__ASSERT(bb->buffer[0] == 0xff); /* MAGIC NUMBER for the first byte of the sync code */ #if FLAC__BITS_PER_BLURB == 8 return FLAC__crc8(bb->buffer, bb->blurbs); #elif FLAC__BITS_PER_BLURB == 32 /* @@@ WATCHOUT: code currently only works for big-endian: */ return FLAC__crc8((FLAC__byte*)(bb->buffer), (bb->blurbs * FLAC__BYTES_PER_BLURB) + (bb->bits >> 3)); #else FLAC__ASSERT(false); /* ERROR, only sizes of 8 and 32 are supported */ #endif } FLAC__bool FLAC__bitbuffer_is_byte_aligned(const FLAC__BitBuffer *bb) { return ((bb->bits & 7) == 0); } FLAC__bool FLAC__bitbuffer_is_consumed_byte_aligned(const FLAC__BitBuffer *bb) { return ((bb->consumed_bits & 7) == 0); } unsigned FLAC__bitbuffer_bits_left_for_byte_alignment(const FLAC__BitBuffer *bb) { return 8 - (bb->consumed_bits & 7); } unsigned FLAC__bitbuffer_get_input_bytes_unconsumed(const FLAC__BitBuffer *bb) { FLAC__ASSERT((bb->consumed_bits & 7) == 0 && (bb->bits & 7) == 0); return (bb->total_bits - bb->total_consumed_bits) >> 3; } void FLAC__bitbuffer_get_buffer(FLAC__BitBuffer *bb, const FLAC__byte **buffer, unsigned *bytes) { FLAC__ASSERT((bb->consumed_bits & 7) == 0 && (bb->bits & 7) == 0); #if FLAC__BITS_PER_BLURB == 8 *buffer = bb->buffer + bb->consumed_blurbs; *bytes = bb->blurbs - bb->consumed_blurbs; #elif FLAC__BITS_PER_BLURB == 32 /* @@@ WATCHOUT: code currently only works for big-endian: */ *buffer = (FLAC__byte*)(bb->buffer + bb->consumed_blurbs) + (bb->consumed_bits >> 3); *bytes = (bb->total_bits - bb->total_consumed_bits) >> 3; #else FLAC__ASSERT(false); /* ERROR, only sizes of 8 and 32 are supported */ #endif } void FLAC__bitbuffer_release_buffer(FLAC__BitBuffer *bb) { #if FLAC__BITS_PER_BLURB == 8 (void)bb; #elif FLAC__BITS_PER_BLURB == 32 /* @@@ WATCHOUT: code currently only works for big-endian: */ (void)bb; #else FLAC__ASSERT(false); /* ERROR, only sizes of 8 and 32 are supported */ #endif } FLAC__bool FLAC__bitbuffer_write_zeroes(FLAC__BitBuffer *bb, unsigned bits) { unsigned n; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); if(bits == 0) return true; if(!bitbuffer_ensure_size_(bb, bits)) return false; bb->total_bits += bits; while(bits > 0) { n = min(FLAC__BITS_PER_BLURB - bb->bits, bits); bb->buffer[bb->blurbs] <<= n; bits -= n; bb->bits += n; if(bb->bits == FLAC__BITS_PER_BLURB) { bb->blurbs++; bb->bits = 0; } } return true; } FLaC__INLINE FLAC__bool FLAC__bitbuffer_write_raw_uint32(FLAC__BitBuffer *bb, FLAC__uint32 val, unsigned bits) { unsigned n, k; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 32); if(bits == 0) return true; /* inline the size check so we don't incure a function call unnecessarily */ if(FLAC__BLURBS_TO_BITS(bb->capacity) < bb->total_bits + bits) { if(!bitbuffer_ensure_size_(bb, bits)) return false; } /* zero-out unused bits; WATCHOUT: other code relies on this, so this needs to stay */ if(bits < 32) /* @@@ gcc seems to require this because the following line causes incorrect results when bits==32; investigate */ val &= (~(0xffffffff << bits)); /* zero-out unused bits */ bb->total_bits += bits; while(bits > 0) { n = FLAC__BITS_PER_BLURB - bb->bits; if(n == FLAC__BITS_PER_BLURB) { /* i.e. bb->bits == 0 */ if(bits < FLAC__BITS_PER_BLURB) { bb->buffer[bb->blurbs] = (FLAC__blurb)val; bb->bits = bits; break; } else if(bits == FLAC__BITS_PER_BLURB) { bb->buffer[bb->blurbs++] = (FLAC__blurb)val; break; } else { k = bits - FLAC__BITS_PER_BLURB; bb->buffer[bb->blurbs++] = (FLAC__blurb)(val >> k); /* we know k < 32 so no need to protect against the gcc bug mentioned above */ val &= (~(0xffffffff << k)); bits -= FLAC__BITS_PER_BLURB; } } else if(bits <= n) { bb->buffer[bb->blurbs] <<= bits; bb->buffer[bb->blurbs] |= val; if(bits == n) { bb->blurbs++; bb->bits = 0; } else bb->bits += bits; break; } else { k = bits - n; bb->buffer[bb->blurbs] <<= n; bb->buffer[bb->blurbs] |= (val >> k); /* we know n > 0 so k < 32 so no need to protect against the gcc bug mentioned above */ val &= (~(0xffffffff << k)); bits -= n; bb->blurbs++; bb->bits = 0; } } return true; } FLAC__bool FLAC__bitbuffer_write_raw_int32(FLAC__BitBuffer *bb, FLAC__int32 val, unsigned bits) { return FLAC__bitbuffer_write_raw_uint32(bb, (FLAC__uint32)val, bits); } FLAC__bool FLAC__bitbuffer_write_raw_uint64(FLAC__BitBuffer *bb, FLAC__uint64 val, unsigned bits) { static const FLAC__uint64 mask[] = { 0, FLAC__U64L(0x0000000000000001), FLAC__U64L(0x0000000000000003), FLAC__U64L(0x0000000000000007), FLAC__U64L(0x000000000000000F), FLAC__U64L(0x000000000000001F), FLAC__U64L(0x000000000000003F), FLAC__U64L(0x000000000000007F), FLAC__U64L(0x00000000000000FF), FLAC__U64L(0x00000000000001FF), FLAC__U64L(0x00000000000003FF), FLAC__U64L(0x00000000000007FF), FLAC__U64L(0x0000000000000FFF), FLAC__U64L(0x0000000000001FFF), FLAC__U64L(0x0000000000003FFF), FLAC__U64L(0x0000000000007FFF), FLAC__U64L(0x000000000000FFFF), FLAC__U64L(0x000000000001FFFF), FLAC__U64L(0x000000000003FFFF), FLAC__U64L(0x000000000007FFFF), FLAC__U64L(0x00000000000FFFFF), FLAC__U64L(0x00000000001FFFFF), FLAC__U64L(0x00000000003FFFFF), FLAC__U64L(0x00000000007FFFFF), FLAC__U64L(0x0000000000FFFFFF), FLAC__U64L(0x0000000001FFFFFF), FLAC__U64L(0x0000000003FFFFFF), FLAC__U64L(0x0000000007FFFFFF), FLAC__U64L(0x000000000FFFFFFF), FLAC__U64L(0x000000001FFFFFFF), FLAC__U64L(0x000000003FFFFFFF), FLAC__U64L(0x000000007FFFFFFF), FLAC__U64L(0x00000000FFFFFFFF), FLAC__U64L(0x00000001FFFFFFFF), FLAC__U64L(0x00000003FFFFFFFF), FLAC__U64L(0x00000007FFFFFFFF), FLAC__U64L(0x0000000FFFFFFFFF), FLAC__U64L(0x0000001FFFFFFFFF), FLAC__U64L(0x0000003FFFFFFFFF), FLAC__U64L(0x0000007FFFFFFFFF), FLAC__U64L(0x000000FFFFFFFFFF), FLAC__U64L(0x000001FFFFFFFFFF), FLAC__U64L(0x000003FFFFFFFFFF), FLAC__U64L(0x000007FFFFFFFFFF), FLAC__U64L(0x00000FFFFFFFFFFF), FLAC__U64L(0x00001FFFFFFFFFFF), FLAC__U64L(0x00003FFFFFFFFFFF), FLAC__U64L(0x00007FFFFFFFFFFF), FLAC__U64L(0x0000FFFFFFFFFFFF), FLAC__U64L(0x0001FFFFFFFFFFFF), FLAC__U64L(0x0003FFFFFFFFFFFF), FLAC__U64L(0x0007FFFFFFFFFFFF), FLAC__U64L(0x000FFFFFFFFFFFFF), FLAC__U64L(0x001FFFFFFFFFFFFF), FLAC__U64L(0x003FFFFFFFFFFFFF), FLAC__U64L(0x007FFFFFFFFFFFFF), FLAC__U64L(0x00FFFFFFFFFFFFFF), FLAC__U64L(0x01FFFFFFFFFFFFFF), FLAC__U64L(0x03FFFFFFFFFFFFFF), FLAC__U64L(0x07FFFFFFFFFFFFFF), FLAC__U64L(0x0FFFFFFFFFFFFFFF), FLAC__U64L(0x1FFFFFFFFFFFFFFF), FLAC__U64L(0x3FFFFFFFFFFFFFFF), FLAC__U64L(0x7FFFFFFFFFFFFFFF), FLAC__U64L(0xFFFFFFFFFFFFFFFF) }; unsigned n, k; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 64); if(bits == 0) return true; if(!bitbuffer_ensure_size_(bb, bits)) return false; val &= mask[bits]; bb->total_bits += bits; while(bits > 0) { if(bb->bits == 0) { if(bits < FLAC__BITS_PER_BLURB) { bb->buffer[bb->blurbs] = (FLAC__blurb)val; bb->bits = bits; break; } else if(bits == FLAC__BITS_PER_BLURB) { bb->buffer[bb->blurbs++] = (FLAC__blurb)val; break; } else { k = bits - FLAC__BITS_PER_BLURB; bb->buffer[bb->blurbs++] = (FLAC__blurb)(val >> k); /* we know k < 64 so no need to protect against the gcc bug mentioned above */ val &= (~(FLAC__U64L(0xffffffffffffffff) << k)); bits -= FLAC__BITS_PER_BLURB; } } else { n = min(FLAC__BITS_PER_BLURB - bb->bits, bits); k = bits - n; bb->buffer[bb->blurbs] <<= n; bb->buffer[bb->blurbs] |= (val >> k); /* we know n > 0 so k < 64 so no need to protect against the gcc bug mentioned above */ val &= (~(FLAC__U64L(0xffffffffffffffff) << k)); bits -= n; bb->bits += n; if(bb->bits == FLAC__BITS_PER_BLURB) { bb->blurbs++; bb->bits = 0; } } } return true; } #if 0 /* UNUSED */ FLAC__bool FLAC__bitbuffer_write_raw_int64(FLAC__BitBuffer *bb, FLAC__int64 val, unsigned bits) { return FLAC__bitbuffer_write_raw_uint64(bb, (FLAC__uint64)val, bits); } #endif FLaC__INLINE FLAC__bool FLAC__bitbuffer_write_raw_uint32_little_endian(FLAC__BitBuffer *bb, FLAC__uint32 val) { /* this doesn't need to be that fast as currently it is only used for vorbis comments */ /* NOTE: we rely on the fact that FLAC__bitbuffer_write_raw_uint32() masks out the unused bits */ if(!FLAC__bitbuffer_write_raw_uint32(bb, val, 8)) return false; if(!FLAC__bitbuffer_write_raw_uint32(bb, val>>8, 8)) return false; if(!FLAC__bitbuffer_write_raw_uint32(bb, val>>16, 8)) return false; if(!FLAC__bitbuffer_write_raw_uint32(bb, val>>24, 8)) return false; return true; } FLaC__INLINE FLAC__bool FLAC__bitbuffer_write_byte_block(FLAC__BitBuffer *bb, const FLAC__byte vals[], unsigned nvals) { unsigned i; /* this could be faster but currently we don't need it to be */ for(i = 0; i < nvals; i++) { if(!FLAC__bitbuffer_write_raw_uint32(bb, (FLAC__uint32)(vals[i]), 8)) return false; } return true; } FLAC__bool FLAC__bitbuffer_write_unary_unsigned(FLAC__BitBuffer *bb, unsigned val) { if(val < 32) return FLAC__bitbuffer_write_raw_uint32(bb, 1, ++val); else if(val < 64) return FLAC__bitbuffer_write_raw_uint64(bb, 1, ++val); else { if(!FLAC__bitbuffer_write_zeroes(bb, val)) return false; return FLAC__bitbuffer_write_raw_uint32(bb, 1, 1); } } unsigned FLAC__bitbuffer_rice_bits(int val, unsigned parameter) { unsigned msbs, uval; /* fold signed to unsigned */ if(val < 0) /* equivalent to * (unsigned)(((--val) << 1) - 1); * but without the overflow problem at MININT */ uval = (unsigned)(((-(++val)) << 1) + 1); else uval = (unsigned)(val << 1); msbs = uval >> parameter; return 1 + parameter + msbs; } #if 0 /* UNUSED */ unsigned FLAC__bitbuffer_golomb_bits_signed(int val, unsigned parameter) { unsigned bits, msbs, uval; unsigned k; FLAC__ASSERT(parameter > 0); /* fold signed to unsigned */ if(val < 0) /* equivalent to * (unsigned)(((--val) << 1) - 1); * but without the overflow problem at MININT */ uval = (unsigned)(((-(++val)) << 1) + 1); else uval = (unsigned)(val << 1); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<<k) { FLAC__ASSERT(k <= 30); msbs = uval >> k; bits = 1 + k + msbs; } else { unsigned q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); bits = 1 + q + k; if(r >= d) bits++; } return bits; } unsigned FLAC__bitbuffer_golomb_bits_unsigned(unsigned uval, unsigned parameter) { unsigned bits, msbs; unsigned k; FLAC__ASSERT(parameter > 0); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<<k) { FLAC__ASSERT(k <= 30); msbs = uval >> k; bits = 1 + k + msbs; } else { unsigned q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); bits = 1 + q + k; if(r >= d) bits++; } return bits; } #endif /* UNUSED */ #ifdef FLAC__SYMMETRIC_RICE FLAC__bool FLAC__bitbuffer_write_symmetric_rice_signed(FLAC__BitBuffer *bb, int val, unsigned parameter) { unsigned total_bits, interesting_bits, msbs; FLAC__uint32 pattern; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter <= 31); /* init pattern with the unary end bit and the sign bit */ if(val < 0) { pattern = 3; val = -val; } else pattern = 2; msbs = val >> parameter; interesting_bits = 2 + parameter; total_bits = interesting_bits + msbs; pattern <<= parameter; pattern |= (val & ((1<<parameter)-1)); /* the binary LSBs */ if(total_bits <= 32) { if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, total_bits)) return false; } else { /* write the unary MSBs */ if(!FLAC__bitbuffer_write_zeroes(bb, msbs)) return false; /* write the unary end bit, the sign bit, and binary LSBs */ if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, interesting_bits)) return false; } return true; } #if 0 /* UNUSED */ FLAC__bool FLAC__bitbuffer_write_symmetric_rice_signed_guarded(FLAC__BitBuffer *bb, int val, unsigned parameter, unsigned max_bits, FLAC__bool *overflow) { unsigned total_bits, interesting_bits, msbs; FLAC__uint32 pattern; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter <= 31); *overflow = false; /* init pattern with the unary end bit and the sign bit */ if(val < 0) { pattern = 3; val = -val; } else pattern = 2; msbs = val >> parameter; interesting_bits = 2 + parameter; total_bits = interesting_bits + msbs; pattern <<= parameter; pattern |= (val & ((1<<parameter)-1)); /* the binary LSBs */ if(total_bits <= 32) { if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, total_bits)) return false; } else if(total_bits > max_bits) { *overflow = true; return true; } else { /* write the unary MSBs */ if(!FLAC__bitbuffer_write_zeroes(bb, msbs)) return false; /* write the unary end bit, the sign bit, and binary LSBs */ if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, interesting_bits)) return false; } return true; } #endif /* UNUSED */ FLAC__bool FLAC__bitbuffer_write_symmetric_rice_signed_escape(FLAC__BitBuffer *bb, int val, unsigned parameter) { unsigned total_bits, val_bits; FLAC__uint32 pattern; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter <= 31); val_bits = FLAC__bitmath_silog2(val); total_bits = 2 + parameter + 5 + val_bits; if(total_bits <= 32) { pattern = 3; pattern <<= (parameter + 5); pattern |= val_bits; pattern <<= val_bits; pattern |= (val & ((1 << val_bits) - 1)); if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, total_bits)) return false; } else { /* write the '-0' escape code first */ if(!FLAC__bitbuffer_write_raw_uint32(bb, 3u << parameter, 2+parameter)) return false; /* write the length */ if(!FLAC__bitbuffer_write_raw_uint32(bb, val_bits, 5)) return false; /* write the value */ if(!FLAC__bitbuffer_write_raw_int32(bb, val, val_bits)) return false; } return true; } #endif /* ifdef FLAC__SYMMETRIC_RICE */ FLAC__bool FLAC__bitbuffer_write_rice_signed(FLAC__BitBuffer *bb, int val, unsigned parameter) { unsigned total_bits, interesting_bits, msbs, uval; FLAC__uint32 pattern; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter <= 30); /* fold signed to unsigned */ if(val < 0) /* equivalent to * (unsigned)(((--val) << 1) - 1); * but without the overflow problem at MININT */ uval = (unsigned)(((-(++val)) << 1) + 1); else uval = (unsigned)(val << 1); msbs = uval >> parameter; interesting_bits = 1 + parameter; total_bits = interesting_bits + msbs; pattern = 1 << parameter; /* the unary end bit */ pattern |= (uval & ((1<<parameter)-1)); /* the binary LSBs */ if(total_bits <= 32) { if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, total_bits)) return false; } else { /* write the unary MSBs */ if(!FLAC__bitbuffer_write_zeroes(bb, msbs)) return false; /* write the unary end bit and binary LSBs */ if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, interesting_bits)) return false; } return true; } #if 0 /* UNUSED */ FLAC__bool FLAC__bitbuffer_write_rice_signed_guarded(FLAC__BitBuffer *bb, int val, unsigned parameter, unsigned max_bits, FLAC__bool *overflow) { unsigned total_bits, interesting_bits, msbs, uval; FLAC__uint32 pattern; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter <= 30); *overflow = false; /* fold signed to unsigned */ if(val < 0) /* equivalent to * (unsigned)(((--val) << 1) - 1); * but without the overflow problem at MININT */ uval = (unsigned)(((-(++val)) << 1) + 1); else uval = (unsigned)(val << 1); msbs = uval >> parameter; interesting_bits = 1 + parameter; total_bits = interesting_bits + msbs; pattern = 1 << parameter; /* the unary end bit */ pattern |= (uval & ((1<<parameter)-1)); /* the binary LSBs */ if(total_bits <= 32) { if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, total_bits)) return false; } else if(total_bits > max_bits) { *overflow = true; return true; } else { /* write the unary MSBs */ if(!FLAC__bitbuffer_write_zeroes(bb, msbs)) return false; /* write the unary end bit and binary LSBs */ if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, interesting_bits)) return false; } return true; } #endif /* UNUSED */ #if 0 /* UNUSED */ FLAC__bool FLAC__bitbuffer_write_golomb_signed(FLAC__BitBuffer *bb, int val, unsigned parameter) { unsigned total_bits, msbs, uval; unsigned k; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter > 0); /* fold signed to unsigned */ if(val < 0) /* equivalent to * (unsigned)(((--val) << 1) - 1); * but without the overflow problem at MININT */ uval = (unsigned)(((-(++val)) << 1) + 1); else uval = (unsigned)(val << 1); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<<k) { unsigned pattern; FLAC__ASSERT(k <= 30); msbs = uval >> k; total_bits = 1 + k + msbs; pattern = 1 << k; /* the unary end bit */ pattern |= (uval & ((1u<<k)-1)); /* the binary LSBs */ if(total_bits <= 32) { if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, total_bits)) return false; } else { /* write the unary MSBs */ if(!FLAC__bitbuffer_write_zeroes(bb, msbs)) return false; /* write the unary end bit and binary LSBs */ if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, k+1)) return false; } } else { unsigned q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); /* write the unary MSBs */ if(!FLAC__bitbuffer_write_zeroes(bb, q)) return false; /* write the unary end bit */ if(!FLAC__bitbuffer_write_raw_uint32(bb, 1, 1)) return false; /* write the binary LSBs */ if(r >= d) { if(!FLAC__bitbuffer_write_raw_uint32(bb, r+d, k+1)) return false; } else { if(!FLAC__bitbuffer_write_raw_uint32(bb, r, k)) return false; } } return true; } FLAC__bool FLAC__bitbuffer_write_golomb_unsigned(FLAC__BitBuffer *bb, unsigned uval, unsigned parameter) { unsigned total_bits, msbs; unsigned k; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter > 0); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<<k) { unsigned pattern; FLAC__ASSERT(k <= 30); msbs = uval >> k; total_bits = 1 + k + msbs; pattern = 1 << k; /* the unary end bit */ pattern |= (uval & ((1u<<k)-1)); /* the binary LSBs */ if(total_bits <= 32) { if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, total_bits)) return false; } else { /* write the unary MSBs */ if(!FLAC__bitbuffer_write_zeroes(bb, msbs)) return false; /* write the unary end bit and binary LSBs */ if(!FLAC__bitbuffer_write_raw_uint32(bb, pattern, k+1)) return false; } } else { unsigned q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); /* write the unary MSBs */ if(!FLAC__bitbuffer_write_zeroes(bb, q)) return false; /* write the unary end bit */ if(!FLAC__bitbuffer_write_raw_uint32(bb, 1, 1)) return false; /* write the binary LSBs */ if(r >= d) { if(!FLAC__bitbuffer_write_raw_uint32(bb, r+d, k+1)) return false; } else { if(!FLAC__bitbuffer_write_raw_uint32(bb, r, k)) return false; } } return true; } #endif /* UNUSED */ FLAC__bool FLAC__bitbuffer_write_utf8_uint32(FLAC__BitBuffer *bb, FLAC__uint32 val) { FLAC__bool ok = 1; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(!(val & 0x80000000)); /* this version only handles 31 bits */ if(val < 0x80) { return FLAC__bitbuffer_write_raw_uint32(bb, val, 8); } else if(val < 0x800) { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xC0 | (val>>6), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (val&0x3F), 8); } else if(val < 0x10000) { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xE0 | (val>>12), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (val&0x3F), 8); } else if(val < 0x200000) { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xF0 | (val>>18), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>12)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (val&0x3F), 8); } else if(val < 0x4000000) { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xF8 | (val>>24), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>18)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>12)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (val&0x3F), 8); } else { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xFC | (val>>30), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>24)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>18)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>12)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (val&0x3F), 8); } return ok; } FLAC__bool FLAC__bitbuffer_write_utf8_uint64(FLAC__BitBuffer *bb, FLAC__uint64 val) { FLAC__bool ok = 1; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(!(val & FLAC__U64L(0xFFFFFFF000000000))); /* this version only handles 36 bits */ if(val < 0x80) { return FLAC__bitbuffer_write_raw_uint32(bb, (FLAC__uint32)val, 8); } else if(val < 0x800) { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xC0 | (FLAC__uint32)(val>>6), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x10000) { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xE0 | (FLAC__uint32)(val>>12), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x200000) { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xF0 | (FLAC__uint32)(val>>18), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x4000000) { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xF8 | (FLAC__uint32)(val>>24), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x80000000) { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xFC | (FLAC__uint32)(val>>30), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else { ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0xFE, 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>30)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitbuffer_write_raw_uint32(bb, 0x80 | (FLAC__uint32)(val&0x3F), 8); } return ok; } FLAC__bool FLAC__bitbuffer_zero_pad_to_byte_boundary(FLAC__BitBuffer *bb) { /* 0-pad to byte boundary */ if(bb->bits & 7u) return FLAC__bitbuffer_write_zeroes(bb, 8 - (bb->bits & 7u)); else return true; } FLAC__bool FLAC__bitbuffer_peek_bit(FLAC__BitBuffer *bb, unsigned *val, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { /* to avoid a drastic speed penalty we don't: FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bb->bits == 0); */ while(1) { if(bb->total_consumed_bits < bb->total_bits) { *val = (bb->buffer[bb->consumed_blurbs] & BLURB_BIT_TO_MASK(bb->consumed_bits))? 1 : 0; return true; } else { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; } } } FLAC__bool FLAC__bitbuffer_read_bit(FLAC__BitBuffer *bb, unsigned *val, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { /* to avoid a drastic speed penalty we don't: FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bb->bits == 0); */ while(1) { if(bb->total_consumed_bits < bb->total_bits) { *val = (bb->buffer[bb->consumed_blurbs] & BLURB_BIT_TO_MASK(bb->consumed_bits))? 1 : 0; bb->consumed_bits++; if(bb->consumed_bits == FLAC__BITS_PER_BLURB) { CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; } bb->total_consumed_bits++; return true; } else { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; } } } FLAC__bool FLAC__bitbuffer_read_bit_to_uint32(FLAC__BitBuffer *bb, FLAC__uint32 *val, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { /* to avoid a drastic speed penalty we don't: FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bb->bits == 0); */ while(1) { if(bb->total_consumed_bits < bb->total_bits) { *val <<= 1; *val |= (bb->buffer[bb->consumed_blurbs] & BLURB_BIT_TO_MASK(bb->consumed_bits))? 1 : 0; bb->consumed_bits++; if(bb->consumed_bits == FLAC__BITS_PER_BLURB) { CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; } bb->total_consumed_bits++; return true; } else { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; } } } FLAC__bool FLAC__bitbuffer_read_bit_to_uint64(FLAC__BitBuffer *bb, FLAC__uint64 *val, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { /* to avoid a drastic speed penalty we don't: FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bb->bits == 0); */ while(1) { if(bb->total_consumed_bits < bb->total_bits) { *val <<= 1; *val |= (bb->buffer[bb->consumed_blurbs] & BLURB_BIT_TO_MASK(bb->consumed_bits))? 1 : 0; bb->consumed_bits++; if(bb->consumed_bits == FLAC__BITS_PER_BLURB) { CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; } bb->total_consumed_bits++; return true; } else { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; } } } FLaC__INLINE FLAC__bool FLAC__bitbuffer_read_raw_uint32(FLAC__BitBuffer *bb, FLAC__uint32 *val, const unsigned bits, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) #ifdef FLAC__NO_MANUAL_INLINING { unsigned i; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 32); *val = 0; for(i = 0; i < bits; i++) { if(!FLAC__bitbuffer_read_bit_to_uint32(bb, val, read_callback, client_data)) return false; } return true; } #else { unsigned i, bits_ = bits; FLAC__uint32 v = 0; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 32); FLAC__ASSERT((bb->capacity*FLAC__BITS_PER_BLURB) * 2 >= bits); if(bits == 0) { *val = 0; return true; } while(bb->total_consumed_bits + bits > bb->total_bits) { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; } #if FLAC__BITS_PER_BLURB > 8 if(bb->bits == 0 || bb->consumed_blurbs < bb->blurbs) { /*@@@ comment on why this is here*/ #endif if(bb->consumed_bits) { i = FLAC__BITS_PER_BLURB - bb->consumed_bits; if(i <= bits_) { v = bb->buffer[bb->consumed_blurbs] & (FLAC__BLURB_ALL_ONES >> bb->consumed_bits); bits_ -= i; CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; /* we hold off updating bb->total_consumed_bits until the end */ } else { *val = (bb->buffer[bb->consumed_blurbs] & (FLAC__BLURB_ALL_ONES >> bb->consumed_bits)) >> (i-bits_); bb->consumed_bits += bits_; bb->total_consumed_bits += bits_; return true; } } #if FLAC__BITS_PER_BLURB == 32 /* note that we know bits_ cannot be > 32 because of previous assertions */ if(bits_ == FLAC__BITS_PER_BLURB) { v = bb->buffer[bb->consumed_blurbs]; CRC16_UPDATE_BLURB(bb, v, bb->read_crc16); bb->consumed_blurbs++; /* bb->consumed_bits is already 0 */ bb->total_consumed_bits += bits; *val = v; return true; } #else while(bits_ >= FLAC__BITS_PER_BLURB) { v <<= FLAC__BITS_PER_BLURB; v |= bb->buffer[bb->consumed_blurbs]; bits_ -= FLAC__BITS_PER_BLURB; CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; /* bb->consumed_bits is already 0 */ /* we hold off updating bb->total_consumed_bits until the end */ } #endif if(bits_ > 0) { v <<= bits_; v |= (bb->buffer[bb->consumed_blurbs] >> (FLAC__BITS_PER_BLURB-bits_)); bb->consumed_bits = bits_; /* we hold off updating bb->total_consumed_bits until the end */ } bb->total_consumed_bits += bits; *val = v; #if FLAC__BITS_PER_BLURB > 8 } else { *val = 0; for(i = 0; i < bits; i++) { if(!FLAC__bitbuffer_read_bit_to_uint32(bb, val, read_callback, client_data)) return false; } } #endif return true; } #endif FLAC__bool FLAC__bitbuffer_read_raw_int32(FLAC__BitBuffer *bb, FLAC__int32 *val, const unsigned bits, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) #ifdef FLAC__NO_MANUAL_INLINING { unsigned i; FLAC__uint32 v; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 32); if(bits == 0) { *val = 0; return true; } v = 0; for(i = 0; i < bits; i++) { if(!FLAC__bitbuffer_read_bit_to_uint32(bb, &v, read_callback, client_data)) return false; } /* fix the sign */ i = 32 - bits; if(i) { v <<= i; *val = (FLAC__int32)v; *val >>= i; } else *val = (FLAC__int32)v; return true; } #else { unsigned i, bits_ = bits; FLAC__uint32 v = 0; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 32); FLAC__ASSERT((bb->capacity*FLAC__BITS_PER_BLURB) * 2 >= bits); if(bits == 0) { *val = 0; return true; } while(bb->total_consumed_bits + bits > bb->total_bits) { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; } #if FLAC__BITS_PER_BLURB > 8 if(bb->bits == 0 || bb->consumed_blurbs < bb->blurbs) { /*@@@ comment on why this is here*/ #endif if(bb->consumed_bits) { i = FLAC__BITS_PER_BLURB - bb->consumed_bits; if(i <= bits_) { v = bb->buffer[bb->consumed_blurbs] & (FLAC__BLURB_ALL_ONES >> bb->consumed_bits); bits_ -= i; CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; /* we hold off updating bb->total_consumed_bits until the end */ } else { /* bits_ must be < FLAC__BITS_PER_BLURB-1 if we get to here */ v = (bb->buffer[bb->consumed_blurbs] & (FLAC__BLURB_ALL_ONES >> bb->consumed_bits)); v <<= (32-i); *val = (FLAC__int32)v; *val >>= (32-bits_); bb->consumed_bits += bits_; bb->total_consumed_bits += bits_; return true; } } #if FLAC__BITS_PER_BLURB == 32 /* note that we know bits_ cannot be > 32 because of previous assertions */ if(bits_ == FLAC__BITS_PER_BLURB) { v = bb->buffer[bb->consumed_blurbs]; bits_ = 0; CRC16_UPDATE_BLURB(bb, v, bb->read_crc16); bb->consumed_blurbs++; /* bb->consumed_bits is already 0 */ /* we hold off updating bb->total_consumed_bits until the end */ } #else while(bits_ >= FLAC__BITS_PER_BLURB) { v <<= FLAC__BITS_PER_BLURB; v |= bb->buffer[bb->consumed_blurbs]; bits_ -= FLAC__BITS_PER_BLURB; CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; /* bb->consumed_bits is already 0 */ /* we hold off updating bb->total_consumed_bits until the end */ } #endif if(bits_ > 0) { v <<= bits_; v |= (bb->buffer[bb->consumed_blurbs] >> (FLAC__BITS_PER_BLURB-bits_)); bb->consumed_bits = bits_; /* we hold off updating bb->total_consumed_bits until the end */ } bb->total_consumed_bits += bits; #if FLAC__BITS_PER_BLURB > 8 } else { for(i = 0; i < bits; i++) { if(!FLAC__bitbuffer_read_bit_to_uint32(bb, &v, read_callback, client_data)) return false; } } #endif /* fix the sign */ i = 32 - bits; if(i) { v <<= i; *val = (FLAC__int32)v; *val >>= i; } else *val = (FLAC__int32)v; return true; } #endif FLAC__bool FLAC__bitbuffer_read_raw_uint64(FLAC__BitBuffer *bb, FLAC__uint64 *val, const unsigned bits, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) #ifdef FLAC__NO_MANUAL_INLINING { unsigned i; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 64); *val = 0; for(i = 0; i < bits; i++) { if(!FLAC__bitbuffer_read_bit_to_uint64(bb, val, read_callback, client_data)) return false; } return true; } #else { unsigned i, bits_ = bits; FLAC__uint64 v = 0; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 64); FLAC__ASSERT((bb->capacity*FLAC__BITS_PER_BLURB) * 2 >= bits); if(bits == 0) { *val = 0; return true; } while(bb->total_consumed_bits + bits > bb->total_bits) { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; } #if FLAC__BITS_PER_BLURB > 8 if(bb->bits == 0 || bb->consumed_blurbs < bb->blurbs) { /*@@@ comment on why this is here*/ #endif if(bb->consumed_bits) { i = FLAC__BITS_PER_BLURB - bb->consumed_bits; if(i <= bits_) { v = bb->buffer[bb->consumed_blurbs] & (FLAC__BLURB_ALL_ONES >> bb->consumed_bits); bits_ -= i; CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; /* we hold off updating bb->total_consumed_bits until the end */ } else { *val = (bb->buffer[bb->consumed_blurbs] & (FLAC__BLURB_ALL_ONES >> bb->consumed_bits)) >> (i-bits_); bb->consumed_bits += bits_; bb->total_consumed_bits += bits_; return true; } } while(bits_ >= FLAC__BITS_PER_BLURB) { v <<= FLAC__BITS_PER_BLURB; v |= bb->buffer[bb->consumed_blurbs]; bits_ -= FLAC__BITS_PER_BLURB; CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; /* bb->consumed_bits is already 0 */ /* we hold off updating bb->total_consumed_bits until the end */ } if(bits_ > 0) { v <<= bits_; v |= (bb->buffer[bb->consumed_blurbs] >> (FLAC__BITS_PER_BLURB-bits_)); bb->consumed_bits = bits_; /* we hold off updating bb->total_consumed_bits until the end */ } bb->total_consumed_bits += bits; *val = v; #if FLAC__BITS_PER_BLURB > 8 } else { *val = 0; for(i = 0; i < bits; i++) { if(!FLAC__bitbuffer_read_bit_to_uint64(bb, val, read_callback, client_data)) return false; } } #endif return true; } #endif #if 0 /* UNUSED */ FLAC__bool FLAC__bitbuffer_read_raw_int64(FLAC__BitBuffer *bb, FLAC__int64 *val, const unsigned bits, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) #ifdef FLAC__NO_MANUAL_INLINING { unsigned i; FLAC__uint64 v; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 64); v = 0; for(i = 0; i < bits; i++) { if(!FLAC__bitbuffer_read_bit_to_uint64(bb, &v, read_callback, client_data)) return false; } /* fix the sign */ i = 64 - bits; if(i) { v <<= i; *val = (FLAC__int64)v; *val >>= i; } else *val = (FLAC__int64)v; return true; } #else { unsigned i, bits_ = bits; FLAC__uint64 v = 0; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(bits <= 64); FLAC__ASSERT((bb->capacity*FLAC__BITS_PER_BLURB) * 2 >= bits); if(bits == 0) { *val = 0; return true; } while(bb->total_consumed_bits + bits > bb->total_bits) { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; } #if FLAC__BITS_PER_BLURB > 8 if(bb->bits == 0 || bb->consumed_blurbs < bb->blurbs) { /*@@@ comment on why this is here*/ #endif if(bb->consumed_bits) { i = FLAC__BITS_PER_BLURB - bb->consumed_bits; if(i <= bits_) { v = bb->buffer[bb->consumed_blurbs] & (FLAC__BLURB_ALL_ONES >> bb->consumed_bits); bits_ -= i; CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; /* we hold off updating bb->total_consumed_bits until the end */ } else { /* bits_ must be < FLAC__BITS_PER_BLURB-1 if we get to here */ v = (bb->buffer[bb->consumed_blurbs] & (FLAC__BLURB_ALL_ONES >> bb->consumed_bits)); v <<= (64-i); *val = (FLAC__int64)v; *val >>= (64-bits_); bb->consumed_bits += bits_; bb->total_consumed_bits += bits_; return true; } } while(bits_ >= FLAC__BITS_PER_BLURB) { v <<= FLAC__BITS_PER_BLURB; v |= bb->buffer[bb->consumed_blurbs]; bits_ -= FLAC__BITS_PER_BLURB; CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; /* bb->consumed_bits is already 0 */ /* we hold off updating bb->total_consumed_bits until the end */ } if(bits_ > 0) { v <<= bits_; v |= (bb->buffer[bb->consumed_blurbs] >> (FLAC__BITS_PER_BLURB-bits_)); bb->consumed_bits = bits_; /* we hold off updating bb->total_consumed_bits until the end */ } bb->total_consumed_bits += bits; #if FLAC__BITS_PER_BLURB > 8 } else { for(i = 0; i < bits; i++) { if(!FLAC__bitbuffer_read_bit_to_uint64(bb, &v, read_callback, client_data)) return false; } } #endif /* fix the sign */ i = 64 - bits; if(i) { v <<= i; *val = (FLAC__int64)v; *val >>= i; } else *val = (FLAC__int64)v; return true; } #endif #endif FLaC__INLINE FLAC__bool FLAC__bitbuffer_read_raw_uint32_little_endian(FLAC__BitBuffer *bb, FLAC__uint32 *val, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { FLAC__uint32 x8, x32 = 0; /* this doesn't need to be that fast as currently it is only used for vorbis comments */ if(!FLAC__bitbuffer_read_raw_uint32(bb, &x32, 8, read_callback, client_data)) return false; if(!FLAC__bitbuffer_read_raw_uint32(bb, &x8, 8, read_callback, client_data)) return false; x32 |= (x8 << 8); if(!FLAC__bitbuffer_read_raw_uint32(bb, &x8, 8, read_callback, client_data)) return false; x32 |= (x8 << 16); if(!FLAC__bitbuffer_read_raw_uint32(bb, &x8, 8, read_callback, client_data)) return false; x32 |= (x8 << 24); *val = x32; return true; } FLAC__bool FLAC__bitbuffer_skip_bits_no_crc(FLAC__BitBuffer *bb, unsigned bits, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { /* * @@@ a slightly faster implementation is possible but * probably not that useful since this is only called a * couple of times in the metadata readers. */ FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); if(bits > 0) { const unsigned n = bb->consumed_bits & 7; unsigned m; FLAC__uint32 x; if(n != 0) { m = min(8-n, bits); if(!FLAC__bitbuffer_read_raw_uint32(bb, &x, m, read_callback, client_data)) return false; bits -= m; } m = bits / 8; if(m > 0) { if(!FLAC__bitbuffer_read_byte_block_aligned_no_crc(bb, 0, m, read_callback, client_data)) return false; bits %= 8; } if(bits > 0) { if(!FLAC__bitbuffer_read_raw_uint32(bb, &x, bits, read_callback, client_data)) return false; } } return true; } FLAC__bool FLAC__bitbuffer_read_byte_block_aligned_no_crc(FLAC__BitBuffer *bb, FLAC__byte *val, unsigned nvals, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(FLAC__bitbuffer_is_byte_aligned(bb)); FLAC__ASSERT(FLAC__bitbuffer_is_consumed_byte_aligned(bb)); #if FLAC__BITS_PER_BLURB == 8 while(nvals > 0) { unsigned chunk = min(nvals, bb->blurbs - bb->consumed_blurbs); if(chunk == 0) { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; } else { if(0 != val) { memcpy(val, bb->buffer + bb->consumed_blurbs, FLAC__BYTES_PER_BLURB * chunk); val += FLAC__BYTES_PER_BLURB * chunk; } nvals -= chunk; bb->consumed_blurbs += chunk; bb->total_consumed_bits = (bb->consumed_blurbs << FLAC__BITS_PER_BLURB_LOG2); } } #else @@@ need to write this still FLAC__ASSERT(0); #endif return true; } FLaC__INLINE FLAC__bool FLAC__bitbuffer_read_unary_unsigned(FLAC__BitBuffer *bb, unsigned *val, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) #ifdef FLAC__NO_MANUAL_INLINING { unsigned bit, val_ = 0; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); while(1) { if(!FLAC__bitbuffer_read_bit(bb, &bit, read_callback, client_data)) return false; if(bit) break; else val_++; } *val = val_; return true; } #else { unsigned i, val_ = 0; unsigned total_blurbs_ = (bb->total_bits + (FLAC__BITS_PER_BLURB-1)) / FLAC__BITS_PER_BLURB; FLAC__blurb b; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); #if FLAC__BITS_PER_BLURB > 8 if(bb->bits == 0 || bb->consumed_blurbs < bb->blurbs) { /*@@@ comment on why this is here*/ #endif if(bb->consumed_bits) { b = bb->buffer[bb->consumed_blurbs] << bb->consumed_bits; if(b) { for(i = 0; !(b & FLAC__BLURB_TOP_BIT_ONE); i++) b <<= 1; *val = i; i++; bb->consumed_bits += i; bb->total_consumed_bits += i; if(bb->consumed_bits == FLAC__BITS_PER_BLURB) { CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; } return true; } else { val_ = FLAC__BITS_PER_BLURB - bb->consumed_bits; CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; bb->total_consumed_bits += val_; } } while(1) { if(bb->consumed_blurbs >= total_blurbs_) { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; total_blurbs_ = (bb->total_bits + (FLAC__BITS_PER_BLURB-1)) / FLAC__BITS_PER_BLURB; } b = bb->buffer[bb->consumed_blurbs]; if(b) { for(i = 0; !(b & FLAC__BLURB_TOP_BIT_ONE); i++) b <<= 1; val_ += i; i++; bb->consumed_bits = i; *val = val_; if(i == FLAC__BITS_PER_BLURB) { CRC16_UPDATE_BLURB(bb, bb->buffer[bb->consumed_blurbs], bb->read_crc16); bb->consumed_blurbs++; bb->consumed_bits = 0; } bb->total_consumed_bits += i; return true; } else { val_ += FLAC__BITS_PER_BLURB; CRC16_UPDATE_BLURB(bb, 0, bb->read_crc16); bb->consumed_blurbs++; /* bb->consumed_bits is already 0 */ bb->total_consumed_bits += FLAC__BITS_PER_BLURB; } } #if FLAC__BITS_PER_BLURB > 8 } else { while(1) { if(!FLAC__bitbuffer_read_bit(bb, &i, read_callback, client_data)) return false; if(i) break; else val_++; } *val = val_; return true; } #endif } #endif #ifdef FLAC__SYMMETRIC_RICE FLAC__bool FLAC__bitbuffer_read_symmetric_rice_signed(FLAC__BitBuffer *bb, int *val, unsigned parameter, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { FLAC__uint32 sign = 0, lsbs = 0, msbs = 0; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter <= 31); /* read the unary MSBs and end bit */ if(!FLAC__bitbuffer_read_unary_unsigned(bb, &msbs, read_callback, client_data)) return false; /* read the sign bit */ if(!FLAC__bitbuffer_read_bit_to_uint32(bb, &sign, read_callback, client_data)) return false; /* read the binary LSBs */ if(!FLAC__bitbuffer_read_raw_uint32(bb, &lsbs, parameter, read_callback, client_data)) return false; /* compose the value */ *val = (msbs << parameter) | lsbs; if(sign) *val = -(*val); return true; } #endif /* ifdef FLAC__SYMMETRIC_RICE */ FLAC__bool FLAC__bitbuffer_read_rice_signed(FLAC__BitBuffer *bb, int *val, unsigned parameter, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { FLAC__uint32 lsbs = 0, msbs = 0; unsigned uval; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter <= 31); /* read the unary MSBs and end bit */ if(!FLAC__bitbuffer_read_unary_unsigned(bb, &msbs, read_callback, client_data)) return false; /* read the binary LSBs */ if(!FLAC__bitbuffer_read_raw_uint32(bb, &lsbs, parameter, read_callback, client_data)) return false; /* compose the value */ uval = (msbs << parameter) | lsbs; if(uval & 1) *val = -((int)(uval >> 1)) - 1; else *val = (int)(uval >> 1); return true; } FLAC__bool FLAC__bitbuffer_read_rice_signed_block(FLAC__BitBuffer *bb, int vals[], unsigned nvals, unsigned parameter, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { const FLAC__blurb *buffer = bb->buffer; unsigned i, j, val_i = 0; unsigned cbits = 0, uval = 0, msbs = 0, lsbs_left = 0; FLAC__blurb blurb, save_blurb; unsigned state = 0; /* 0 = getting unary MSBs, 1 = getting binary LSBs */ FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); FLAC__ASSERT(parameter <= 31); if(nvals == 0) return true; i = bb->consumed_blurbs; /* * We unroll the main loop to take care of partially consumed blurbs here. */ if(bb->consumed_bits > 0) { save_blurb = blurb = buffer[i]; cbits = bb->consumed_bits; blurb <<= cbits; while(1) { if(state == 0) { if(blurb) { for(j = 0; !(blurb & FLAC__BLURB_TOP_BIT_ONE); j++) blurb <<= 1; msbs += j; /* dispose of the unary end bit */ blurb <<= 1; j++; cbits += j; uval = 0; lsbs_left = parameter; state++; if(cbits == FLAC__BITS_PER_BLURB) { cbits = 0; CRC16_UPDATE_BLURB(bb, save_blurb, bb->read_crc16); break; } } else { msbs += FLAC__BITS_PER_BLURB - cbits; cbits = 0; CRC16_UPDATE_BLURB(bb, save_blurb, bb->read_crc16); break; } } else { const unsigned available_bits = FLAC__BITS_PER_BLURB - cbits; if(lsbs_left >= available_bits) { uval <<= available_bits; uval |= (blurb >> cbits); cbits = 0; CRC16_UPDATE_BLURB(bb, save_blurb, bb->read_crc16); if(lsbs_left == available_bits) { /* compose the value */ uval |= (msbs << parameter); if(uval & 1) vals[val_i++] = -((int)(uval >> 1)) - 1; else vals[val_i++] = (int)(uval >> 1); if(val_i == nvals) break; msbs = 0; state = 0; } lsbs_left -= available_bits; break; } else { uval <<= lsbs_left; uval |= (blurb >> (FLAC__BITS_PER_BLURB - lsbs_left)); blurb <<= lsbs_left; cbits += lsbs_left; /* compose the value */ uval |= (msbs << parameter); if(uval & 1) vals[val_i++] = -((int)(uval >> 1)) - 1; else vals[val_i++] = (int)(uval >> 1); if(val_i == nvals) { /* back up one if we exited the for loop because we read all nvals but the end came in the middle of a blurb */ i--; break; } msbs = 0; state = 0; } } } i++; bb->consumed_blurbs = i; bb->consumed_bits = cbits; bb->total_consumed_bits = (i << FLAC__BITS_PER_BLURB_LOG2) | cbits; } /* * Now that we are blurb-aligned the logic is slightly simpler */ while(val_i < nvals) { for( ; i < bb->blurbs && val_i < nvals; i++) { save_blurb = blurb = buffer[i]; cbits = 0; while(1) { if(state == 0) { if(blurb) { for(j = 0; !(blurb & FLAC__BLURB_TOP_BIT_ONE); j++) blurb <<= 1; msbs += j; /* dispose of the unary end bit */ blurb <<= 1; j++; cbits += j; uval = 0; lsbs_left = parameter; state++; if(cbits == FLAC__BITS_PER_BLURB) { cbits = 0; CRC16_UPDATE_BLURB(bb, save_blurb, bb->read_crc16); break; } } else { msbs += FLAC__BITS_PER_BLURB - cbits; cbits = 0; CRC16_UPDATE_BLURB(bb, save_blurb, bb->read_crc16); break; } } else { const unsigned available_bits = FLAC__BITS_PER_BLURB - cbits; if(lsbs_left >= available_bits) { uval <<= available_bits; uval |= (blurb >> cbits); cbits = 0; CRC16_UPDATE_BLURB(bb, save_blurb, bb->read_crc16); if(lsbs_left == available_bits) { /* compose the value */ uval |= (msbs << parameter); if(uval & 1) vals[val_i++] = -((int)(uval >> 1)) - 1; else vals[val_i++] = (int)(uval >> 1); if(val_i == nvals) break; msbs = 0; state = 0; } lsbs_left -= available_bits; break; } else { uval <<= lsbs_left; uval |= (blurb >> (FLAC__BITS_PER_BLURB - lsbs_left)); blurb <<= lsbs_left; cbits += lsbs_left; /* compose the value */ uval |= (msbs << parameter); if(uval & 1) vals[val_i++] = -((int)(uval >> 1)) - 1; else vals[val_i++] = (int)(uval >> 1); if(val_i == nvals) { /* back up one if we exited the for loop because we read all nvals but the end came in the middle of a blurb */ i--; break; } msbs = 0; state = 0; } } } } bb->consumed_blurbs = i; bb->consumed_bits = cbits; bb->total_consumed_bits = (i << FLAC__BITS_PER_BLURB_LOG2) | cbits; if(val_i < nvals) { if(!bitbuffer_read_from_client_(bb, read_callback, client_data)) return false; /* these must be zero because we can only get here if we got to the end of the buffer */ FLAC__ASSERT(bb->consumed_blurbs == 0); FLAC__ASSERT(bb->consumed_bits == 0); i = 0; } } return true; } #if 0 /* UNUSED */ FLAC__bool FLAC__bitbuffer_read_golomb_signed(FLAC__BitBuffer *bb, int *val, unsigned parameter, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { FLAC__uint32 lsbs = 0, msbs = 0; unsigned bit, uval, k; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); k = FLAC__bitmath_ilog2(parameter); /* read the unary MSBs and end bit */ if(!FLAC__bitbuffer_read_unary_unsigned(bb, &msbs, read_callback, client_data)) return false; /* read the binary LSBs */ if(!FLAC__bitbuffer_read_raw_uint32(bb, &lsbs, k, read_callback, client_data)) return false; if(parameter == 1u<<k) { /* compose the value */ uval = (msbs << k) | lsbs; } else { unsigned d = (1 << (k+1)) - parameter; if(lsbs >= d) { if(!FLAC__bitbuffer_read_bit(bb, &bit, read_callback, client_data)) return false; lsbs <<= 1; lsbs |= bit; lsbs -= d; } /* compose the value */ uval = msbs * parameter + lsbs; } /* unfold unsigned to signed */ if(uval & 1) *val = -((int)(uval >> 1)) - 1; else *val = (int)(uval >> 1); return true; } FLAC__bool FLAC__bitbuffer_read_golomb_unsigned(FLAC__BitBuffer *bb, unsigned *val, unsigned parameter, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data) { FLAC__uint32 lsbs, msbs = 0; unsigned bit, k; FLAC__ASSERT(0 != bb); FLAC__ASSERT(0 != bb->buffer); k = FLAC__bitmath_ilog2(parameter); /* read the unary MSBs and end bit */ if(!FLAC__bitbuffer_read_unary_unsigned(bb, &msbs, read_callback, client_data)) return false; /* read the binary LSBs */ if(!FLAC__bitbuffer_read_raw_uint32(bb, &lsbs, k, read_callback, client_data)) return false; if(parameter == 1u<<k) { /* compose the value */ *val = (msbs << k) | lsbs; } else { unsigned d = (1 << (k+1)) - parameter; if(lsbs >= d) { if(!FLAC__bitbuffer_read_bit(bb, &bit, read_callback, client_data)) return false; lsbs <<= 1; lsbs |= bit; lsbs -= d; } /* compose the value */ *val = msbs * parameter + lsbs; } return true; } #endif /* UNUSED */ /* on return, if *val == 0xffffffff then the utf-8 sequence was invalid, but the return value will be true */ FLAC__bool FLAC__bitbuffer_read_utf8_uint32(FLAC__BitBuffer *bb, FLAC__uint32 *val, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data, FLAC__byte *raw, unsigned *rawlen) { FLAC__uint32 v = 0; FLAC__uint32 x; unsigned i; if(!FLAC__bitbuffer_read_raw_uint32(bb, &x, 8, read_callback, client_data)) return false; if(raw) raw[(*rawlen)++] = (FLAC__byte)x; if(!(x & 0x80)) { /* 0xxxxxxx */ v = x; i = 0; } else if(x & 0xC0 && !(x & 0x20)) { /* 110xxxxx */ v = x & 0x1F; i = 1; } else if(x & 0xE0 && !(x & 0x10)) { /* 1110xxxx */ v = x & 0x0F; i = 2; } else if(x & 0xF0 && !(x & 0x08)) { /* 11110xxx */ v = x & 0x07; i = 3; } else if(x & 0xF8 && !(x & 0x04)) { /* 111110xx */ v = x & 0x03; i = 4; } else if(x & 0xFC && !(x & 0x02)) { /* 1111110x */ v = x & 0x01; i = 5; } else { *val = 0xffffffff; return true; } for( ; i; i--) { if(!FLAC__bitbuffer_read_raw_uint32(bb, &x, 8, read_callback, client_data)) return false; if(raw) raw[(*rawlen)++] = (FLAC__byte)x; if(!(x & 0x80) || (x & 0x40)) { /* 10xxxxxx */ *val = 0xffffffff; return true; } v <<= 6; v |= (x & 0x3F); } *val = v; return true; } /* on return, if *val == 0xffffffffffffffff then the utf-8 sequence was invalid, but the return value will be true */ FLAC__bool FLAC__bitbuffer_read_utf8_uint64(FLAC__BitBuffer *bb, FLAC__uint64 *val, FLAC__bool (*read_callback)(FLAC__byte buffer[], unsigned *bytes, void *client_data), void *client_data, FLAC__byte *raw, unsigned *rawlen) { FLAC__uint64 v = 0; FLAC__uint32 x; unsigned i; if(!FLAC__bitbuffer_read_raw_uint32(bb, &x, 8, read_callback, client_data)) return false; if(raw) raw[(*rawlen)++] = (FLAC__byte)x; if(!(x & 0x80)) { /* 0xxxxxxx */ v = x; i = 0; } else if(x & 0xC0 && !(x & 0x20)) { /* 110xxxxx */ v = x & 0x1F; i = 1; } else if(x & 0xE0 && !(x & 0x10)) { /* 1110xxxx */ v = x & 0x0F; i = 2; } else if(x & 0xF0 && !(x & 0x08)) { /* 11110xxx */ v = x & 0x07; i = 3; } else if(x & 0xF8 && !(x & 0x04)) { /* 111110xx */ v = x & 0x03; i = 4; } else if(x & 0xFC && !(x & 0x02)) { /* 1111110x */ v = x & 0x01; i = 5; } else if(x & 0xFE && !(x & 0x01)) { /* 11111110 */ v = 0; i = 6; } else { *val = FLAC__U64L(0xffffffffffffffff); return true; } for( ; i; i--) { if(!FLAC__bitbuffer_read_raw_uint32(bb, &x, 8, read_callback, client_data)) return false; if(raw) raw[(*rawlen)++] = (FLAC__byte)x; if(!(x & 0x80) || (x & 0x40)) { /* 10xxxxxx */ *val = FLAC__U64L(0xffffffffffffffff); return true; } v <<= 6; v |= (x & 0x3F); } *val = v; return true; } void FLAC__bitbuffer_dump(const FLAC__BitBuffer *bb, FILE *out) { unsigned i, j; if(bb == 0) { fprintf(out, "bitbuffer is NULL\n"); } else { fprintf(out, "bitbuffer: capacity=%u blurbs=%u bits=%u total_bits=%u consumed: blurbs=%u, bits=%u, total_bits=%u\n", bb->capacity, bb->blurbs, bb->bits, bb->total_bits, bb->consumed_blurbs, bb->consumed_bits, bb->total_consumed_bits); for(i = 0; i < bb->blurbs; i++) { fprintf(out, "%08X: ", i); for(j = 0; j < FLAC__BITS_PER_BLURB; j++) if(i*FLAC__BITS_PER_BLURB+j < bb->total_consumed_bits) fprintf(out, "."); else fprintf(out, "%01u", bb->buffer[i] & (1 << (FLAC__BITS_PER_BLURB-j-1)) ? 1:0); fprintf(out, "\n"); } if(bb->bits > 0) { fprintf(out, "%08X: ", i); for(j = 0; j < bb->bits; j++) if(i*FLAC__BITS_PER_BLURB+j < bb->total_consumed_bits) fprintf(out, "."); else fprintf(out, "%01u", bb->buffer[i] & (1 << (bb->bits-j-1)) ? 1:0); fprintf(out, "\n"); } } }