ref: c6a92afc7ac0382d90bf0fbd1d2e3e258a57aad4
dir: /sys/src/cmd/audio/libFLAC/md5.c/
#ifdef HAVE_CONFIG_H # include <config.h> #endif #include <stdlib.h> /* for malloc() */ #include <string.h> /* for memcpy() */ #include "private/md5.h" #include "share/alloc.h" #include "share/compat.h" #include "share/endswap.h" /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. * * Changed so as no longer to depend on Colin Plumb's `usual.h' header * definitions; now uses stuff from dpkg's config.h. * - Ian Jackson <[email protected]>. * Still in the public domain. * * Josh Coalson: made some changes to integrate with libFLAC. * Still in the public domain. */ /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f,w,x,y,z,in,s) \ (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16]) { register FLAC__uint32 a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } #if WORDS_BIGENDIAN //@@@@@@ OPT: use bswap/intrinsics static void byteSwap(FLAC__uint32 *buf, uint32_t words) { register FLAC__uint32 x; do { x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); } while (--words); } static void byteSwapX16(FLAC__uint32 *buf) { register FLAC__uint32 x; x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf = (x >> 16) | (x << 16); } #else #define byteSwap(buf, words) #define byteSwapX16(buf) #endif /* * Update context to reflect the concatenation of another buffer full * of bytes. */ static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, uint32_t len) { FLAC__uint32 t; /* Update byte count */ t = ctx->bytes[0]; if ((ctx->bytes[0] = t + len) < t) ctx->bytes[1]++; /* Carry from low to high */ t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ if (t > len) { memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len); return; } /* First chunk is an odd size */ memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t); byteSwapX16(ctx->in); FLAC__MD5Transform(ctx->buf, ctx->in); buf += t; len -= t; /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteSwapX16(ctx->in); FLAC__MD5Transform(ctx->buf, ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void FLAC__MD5Init(FLAC__MD5Context *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bytes[0] = 0; ctx->bytes[1] = 0; ctx->internal_buf.p8 = 0; ctx->capacity = 0; } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx) { int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ FLAC__byte *p = (FLAC__byte *)ctx->in + count; /* Set the first char of padding to 0x80. There is always room. */ *p++ = 0x80; /* Bytes of padding needed to make 56 bytes (-8..55) */ count = 56 - 1 - count; if (count < 0) { /* Padding forces an extra block */ memset(p, 0, count + 8); byteSwapX16(ctx->in); FLAC__MD5Transform(ctx->buf, ctx->in); p = (FLAC__byte *)ctx->in; count = 56; } memset(p, 0, count); byteSwap(ctx->in, 14); /* Append length in bits and transform */ ctx->in[14] = ctx->bytes[0] << 3; ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; FLAC__MD5Transform(ctx->buf, ctx->in); byteSwap(ctx->buf, 4); memcpy(digest, ctx->buf, 16); if (0 != ctx->internal_buf.p8) { free(ctx->internal_buf.p8); ctx->internal_buf.p8 = 0; ctx->capacity = 0; } memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ } /* * Convert the incoming audio signal to a byte stream */ static void format_input_(FLAC__multibyte *mbuf, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample) { FLAC__byte *buf_ = mbuf->p8; FLAC__int16 *buf16 = mbuf->p16; FLAC__int32 *buf32 = mbuf->p32; FLAC__int32 a_word; uint32_t channel, sample; /* Storage in the output buffer, buf, is little endian. */ #define BYTES_CHANNEL_SELECTOR(bytes, channels) (bytes * 100 + channels) /* First do the most commonly used combinations. */ switch (BYTES_CHANNEL_SELECTOR (bytes_per_sample, channels)) { /* One byte per sample. */ case (BYTES_CHANNEL_SELECTOR (1, 1)): for (sample = 0; sample < samples; sample++) *buf_++ = signal[0][sample]; return; case (BYTES_CHANNEL_SELECTOR (1, 2)): for (sample = 0; sample < samples; sample++) { *buf_++ = signal[0][sample]; *buf_++ = signal[1][sample]; } return; case (BYTES_CHANNEL_SELECTOR (1, 4)): for (sample = 0; sample < samples; sample++) { *buf_++ = signal[0][sample]; *buf_++ = signal[1][sample]; *buf_++ = signal[2][sample]; *buf_++ = signal[3][sample]; } return; case (BYTES_CHANNEL_SELECTOR (1, 6)): for (sample = 0; sample < samples; sample++) { *buf_++ = signal[0][sample]; *buf_++ = signal[1][sample]; *buf_++ = signal[2][sample]; *buf_++ = signal[3][sample]; *buf_++ = signal[4][sample]; *buf_++ = signal[5][sample]; } return; case (BYTES_CHANNEL_SELECTOR (1, 8)): for (sample = 0; sample < samples; sample++) { *buf_++ = signal[0][sample]; *buf_++ = signal[1][sample]; *buf_++ = signal[2][sample]; *buf_++ = signal[3][sample]; *buf_++ = signal[4][sample]; *buf_++ = signal[5][sample]; *buf_++ = signal[6][sample]; *buf_++ = signal[7][sample]; } return; /* Two bytes per sample. */ case (BYTES_CHANNEL_SELECTOR (2, 1)): for (sample = 0; sample < samples; sample++) *buf16++ = H2LE_16(signal[0][sample]); return; case (BYTES_CHANNEL_SELECTOR (2, 2)): for (sample = 0; sample < samples; sample++) { *buf16++ = H2LE_16(signal[0][sample]); *buf16++ = H2LE_16(signal[1][sample]); } return; case (BYTES_CHANNEL_SELECTOR (2, 4)): for (sample = 0; sample < samples; sample++) { *buf16++ = H2LE_16(signal[0][sample]); *buf16++ = H2LE_16(signal[1][sample]); *buf16++ = H2LE_16(signal[2][sample]); *buf16++ = H2LE_16(signal[3][sample]); } return; case (BYTES_CHANNEL_SELECTOR (2, 6)): for (sample = 0; sample < samples; sample++) { *buf16++ = H2LE_16(signal[0][sample]); *buf16++ = H2LE_16(signal[1][sample]); *buf16++ = H2LE_16(signal[2][sample]); *buf16++ = H2LE_16(signal[3][sample]); *buf16++ = H2LE_16(signal[4][sample]); *buf16++ = H2LE_16(signal[5][sample]); } return; case (BYTES_CHANNEL_SELECTOR (2, 8)): for (sample = 0; sample < samples; sample++) { *buf16++ = H2LE_16(signal[0][sample]); *buf16++ = H2LE_16(signal[1][sample]); *buf16++ = H2LE_16(signal[2][sample]); *buf16++ = H2LE_16(signal[3][sample]); *buf16++ = H2LE_16(signal[4][sample]); *buf16++ = H2LE_16(signal[5][sample]); *buf16++ = H2LE_16(signal[6][sample]); *buf16++ = H2LE_16(signal[7][sample]); } return; /* Three bytes per sample. */ case (BYTES_CHANNEL_SELECTOR (3, 1)): for (sample = 0; sample < samples; sample++) { a_word = signal[0][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } return; case (BYTES_CHANNEL_SELECTOR (3, 2)): for (sample = 0; sample < samples; sample++) { a_word = signal[0][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word = signal[1][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } return; /* Four bytes per sample. */ case (BYTES_CHANNEL_SELECTOR (4, 1)): for (sample = 0; sample < samples; sample++) *buf32++ = H2LE_32(signal[0][sample]); return; case (BYTES_CHANNEL_SELECTOR (4, 2)): for (sample = 0; sample < samples; sample++) { *buf32++ = H2LE_32(signal[0][sample]); *buf32++ = H2LE_32(signal[1][sample]); } return; case (BYTES_CHANNEL_SELECTOR (4, 4)): for (sample = 0; sample < samples; sample++) { *buf32++ = H2LE_32(signal[0][sample]); *buf32++ = H2LE_32(signal[1][sample]); *buf32++ = H2LE_32(signal[2][sample]); *buf32++ = H2LE_32(signal[3][sample]); } return; case (BYTES_CHANNEL_SELECTOR (4, 6)): for (sample = 0; sample < samples; sample++) { *buf32++ = H2LE_32(signal[0][sample]); *buf32++ = H2LE_32(signal[1][sample]); *buf32++ = H2LE_32(signal[2][sample]); *buf32++ = H2LE_32(signal[3][sample]); *buf32++ = H2LE_32(signal[4][sample]); *buf32++ = H2LE_32(signal[5][sample]); } return; case (BYTES_CHANNEL_SELECTOR (4, 8)): for (sample = 0; sample < samples; sample++) { *buf32++ = H2LE_32(signal[0][sample]); *buf32++ = H2LE_32(signal[1][sample]); *buf32++ = H2LE_32(signal[2][sample]); *buf32++ = H2LE_32(signal[3][sample]); *buf32++ = H2LE_32(signal[4][sample]); *buf32++ = H2LE_32(signal[5][sample]); *buf32++ = H2LE_32(signal[6][sample]); *buf32++ = H2LE_32(signal[7][sample]); } return; default: break; } /* General version. */ switch (bytes_per_sample) { case 1: for (sample = 0; sample < samples; sample++) for (channel = 0; channel < channels; channel++) *buf_++ = signal[channel][sample]; return; case 2: for (sample = 0; sample < samples; sample++) for (channel = 0; channel < channels; channel++) *buf16++ = H2LE_16(signal[channel][sample]); return; case 3: for (sample = 0; sample < samples; sample++) for (channel = 0; channel < channels; channel++) { a_word = signal[channel][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } return; case 4: for (sample = 0; sample < samples; sample++) for (channel = 0; channel < channels; channel++) *buf32++ = H2LE_32(signal[channel][sample]); return; default: break; } } /* * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it. */ FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample) { const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample; /* overflow check */ if ((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample) return false; if ((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples) return false; if (ctx->capacity < bytes_needed) { if (0 == (ctx->internal_buf.p8 = safe_realloc_(ctx->internal_buf.p8, bytes_needed))) { if (0 == (ctx->internal_buf.p8 = safe_malloc_(bytes_needed))) { ctx->capacity = 0; return false; } } ctx->capacity = bytes_needed; } format_input_(&ctx->internal_buf, signal, channels, samples, bytes_per_sample); FLAC__MD5Update(ctx, ctx->internal_buf.p8, bytes_needed); return true; }