ref: d8999511e0921e2aaa45f862c5b4ca9098d78a96
dir: /sys/src/libsec/port/sha2block64.c/
/* * sha2_256 block cipher - unrolled version * * note: the following upper and lower case macro names are distinct * and reflect the functions defined in FIPS pub. 180-2. */ #include "os.h" #define ROTR(x,n) (((x) >> (n)) | ((x) << (32-(n)))) #define sigma0(x) (ROTR((x),7) ^ ROTR((x),18) ^ ((x) >> 3)) #define sigma1(x) (ROTR((x),17) ^ ROTR((x),19) ^ ((x) >> 10)) #define SIGMA0(x) (ROTR((x),2) ^ ROTR((x),13) ^ ROTR((x),22)) #define SIGMA1(x) (ROTR((x),6) ^ ROTR((x),11) ^ ROTR((x),25)) #define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) #define Maj(x,y,z) (((x) | (y)) & ((z) | ((x) & (y)))) /* * first 32 bits of the fractional parts of cube roots of * first 64 primes (2..311). */ static u32int K256[64] = { 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5, 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5, 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3, 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174, 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc, 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da, 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7, 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967, 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13, 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85, 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3, 0xd192e819,0xd6990624,0xf40e3585,0x106aa070, 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5, 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3, 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208, 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2, }; void _sha2block64(uchar *p, ulong len, u32int *s) { u32int w[16], a, b, c, d, e, f, g, h; uchar *end; /* at this point, we have a multiple of 64 bytes */ for(end = p+len; p < end;){ a = s[0]; b = s[1]; c = s[2]; d = s[3]; e = s[4]; f = s[5]; g = s[6]; h = s[7]; #define STEP(a,b,c,d,e,f,g,h,i) \ if(i < 16) {\ w[i] = p[0]<<24 | p[1]<<16 | p[2]<<8 | p[3]; \ p += 4; \ } else { \ w[i&15] += sigma1(w[i-2&15]) + w[i-7&15] + sigma0(w[i-15&15]); \ } \ h += SIGMA1(e) + Ch(e,f,g) + K256[i] + w[i&15]; \ d += h; \ h += SIGMA0(a) + Maj(a,b,c); STEP(a,b,c,d,e,f,g,h,0); STEP(h,a,b,c,d,e,f,g,1); STEP(g,h,a,b,c,d,e,f,2); STEP(f,g,h,a,b,c,d,e,3); STEP(e,f,g,h,a,b,c,d,4); STEP(d,e,f,g,h,a,b,c,5); STEP(c,d,e,f,g,h,a,b,6); STEP(b,c,d,e,f,g,h,a,7); STEP(a,b,c,d,e,f,g,h,8); STEP(h,a,b,c,d,e,f,g,9); STEP(g,h,a,b,c,d,e,f,10); STEP(f,g,h,a,b,c,d,e,11); STEP(e,f,g,h,a,b,c,d,12); STEP(d,e,f,g,h,a,b,c,13); STEP(c,d,e,f,g,h,a,b,14); STEP(b,c,d,e,f,g,h,a,15); STEP(a,b,c,d,e,f,g,h,16); STEP(h,a,b,c,d,e,f,g,17); STEP(g,h,a,b,c,d,e,f,18); STEP(f,g,h,a,b,c,d,e,19); STEP(e,f,g,h,a,b,c,d,20); STEP(d,e,f,g,h,a,b,c,21); STEP(c,d,e,f,g,h,a,b,22); STEP(b,c,d,e,f,g,h,a,23); STEP(a,b,c,d,e,f,g,h,24); STEP(h,a,b,c,d,e,f,g,25); STEP(g,h,a,b,c,d,e,f,26); STEP(f,g,h,a,b,c,d,e,27); STEP(e,f,g,h,a,b,c,d,28); STEP(d,e,f,g,h,a,b,c,29); STEP(c,d,e,f,g,h,a,b,30); STEP(b,c,d,e,f,g,h,a,31); STEP(a,b,c,d,e,f,g,h,32); STEP(h,a,b,c,d,e,f,g,33); STEP(g,h,a,b,c,d,e,f,34); STEP(f,g,h,a,b,c,d,e,35); STEP(e,f,g,h,a,b,c,d,36); STEP(d,e,f,g,h,a,b,c,37); STEP(c,d,e,f,g,h,a,b,38); STEP(b,c,d,e,f,g,h,a,39); STEP(a,b,c,d,e,f,g,h,40); STEP(h,a,b,c,d,e,f,g,41); STEP(g,h,a,b,c,d,e,f,42); STEP(f,g,h,a,b,c,d,e,43); STEP(e,f,g,h,a,b,c,d,44); STEP(d,e,f,g,h,a,b,c,45); STEP(c,d,e,f,g,h,a,b,46); STEP(b,c,d,e,f,g,h,a,47); STEP(a,b,c,d,e,f,g,h,48); STEP(h,a,b,c,d,e,f,g,49); STEP(g,h,a,b,c,d,e,f,50); STEP(f,g,h,a,b,c,d,e,51); STEP(e,f,g,h,a,b,c,d,52); STEP(d,e,f,g,h,a,b,c,53); STEP(c,d,e,f,g,h,a,b,54); STEP(b,c,d,e,f,g,h,a,55); STEP(a,b,c,d,e,f,g,h,56); STEP(h,a,b,c,d,e,f,g,57); STEP(g,h,a,b,c,d,e,f,58); STEP(f,g,h,a,b,c,d,e,59); STEP(e,f,g,h,a,b,c,d,60); STEP(d,e,f,g,h,a,b,c,61); STEP(c,d,e,f,g,h,a,b,62); STEP(b,c,d,e,f,g,h,a,63); s[0] += a; s[1] += b; s[2] += c; s[3] += d; s[4] += e; s[5] += f; s[6] += g; s[7] += h; } }