ref: dbf13129a702cc066517acf147fb01c13df456cb
dir: /sys/src/libgeometry/tstack.c/
/*% cc -gpc % * These transformation routines maintain stacks of transformations * and their inverses. * t=pushmat(t) push matrix stack * t=popmat(t) pop matrix stack * rot(t, a, axis) multiply stack top by rotation * qrot(t, q) multiply stack top by rotation, q is unit quaternion * scale(t, x, y, z) multiply stack top by scale * move(t, x, y, z) multiply stack top by translation * xform(t, m) multiply stack top by m * ixform(t, m, inv) multiply stack top by m. inv is the inverse of m. * look(t, e, l, u) multiply stack top by viewing transformation * persp(t, fov, n, f) multiply stack top by perspective transformation * viewport(t, r, aspect) * multiply stack top by window->viewport transformation. */ #include <u.h> #include <libc.h> #include <draw.h> #include <geometry.h> Space *pushmat(Space *t){ Space *v; v=malloc(sizeof(Space)); if(t==0){ ident(v->t); ident(v->tinv); } else *v=*t; v->next=t; return v; } Space *popmat(Space *t){ Space *v; if(t==0) return 0; v=t->next; free(t); return v; } void rot(Space *t, double theta, int axis){ double s=sin(radians(theta)), c=cos(radians(theta)); Matrix m, inv; register i=(axis+1)%3, j=(axis+2)%3; ident(m); m[i][i] = c; m[i][j] = -s; m[j][i] = s; m[j][j] = c; ident(inv); inv[i][i] = c; inv[i][j] = s; inv[j][i] = -s; inv[j][j] = c; ixform(t, m, inv); } void qrot(Space *t, Quaternion q){ Matrix m, inv; int i, j; qtom(m, q); for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i]; ixform(t, m, inv); } void scale(Space *t, double x, double y, double z){ Matrix m, inv; ident(m); m[0][0]=x; m[1][1]=y; m[2][2]=z; ident(inv); inv[0][0]=1/x; inv[1][1]=1/y; inv[2][2]=1/z; ixform(t, m, inv); } void move(Space *t, double x, double y, double z){ Matrix m, inv; ident(m); m[0][3]=x; m[1][3]=y; m[2][3]=z; ident(inv); inv[0][3]=-x; inv[1][3]=-y; inv[2][3]=-z; ixform(t, m, inv); } void xform(Space *t, Matrix m){ Matrix inv; if(invertmat(m, inv)==0) return; ixform(t, m, inv); } void ixform(Space *t, Matrix m, Matrix inv){ matmul(t->t, m); matmulr(t->tinv, inv); } /* * multiply the top of the matrix stack by a view-pointing transformation * with the eyepoint at e, looking at point l, with u at the top of the screen. * The coordinate system is deemed to be right-handed. * The generated transformation transforms this view into a view from * the origin, looking in the positive y direction, with the z axis pointing up, * and x to the right. */ void look(Space *t, Point3 e, Point3 l, Point3 u){ Matrix m, inv; Point3 r; l=unit3(sub3(l, e)); u=unit3(vrem3(sub3(u, e), l)); r=cross3(l, u); /* make the matrix to transform from (rlu) space to (xyz) space */ ident(m); m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z; m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z; m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z; ident(inv); inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x; inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y; inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z; ixform(t, m, inv); move(t, -e.x, -e.y, -e.z); } /* * generate a transformation that maps the frustum with apex at the origin, * apex angle=fov and clipping planes y=n and y=f into the double-unit cube. * plane y=n maps to y'=-1, y=f maps to y'=1 */ int persp(Space *t, double fov, double n, double f){ Matrix m; double z; if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */ return -1; z=1/tan(radians(fov)/2); m[0][0]=z; m[0][1]=0; m[0][2]=0; m[0][3]=0; m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]); m[2][0]=0; m[2][1]=0; m[2][2]=z; m[2][3]=0; m[3][0]=0; m[3][1]=1; m[3][2]=0; m[3][3]=0; xform(t, m); return 0; } /* * Map the unit-cube window into the given screen viewport. * r has min at the top left, max just outside the lower right. Aspect is the * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!) * The whole window is transformed to fit centered inside the viewport with equal * slop on either top and bottom or left and right, depending on the viewport's * aspect ratio. * The window is viewed down the y axis, with x to the left and z up. The viewport * has x increasing to the right and y increasing down. The window's y coordinates * are mapped, unchanged, into the viewport's z coordinates. */ void viewport(Space *t, Rectangle r, double aspect){ Matrix m; double xc, yc, wid, hgt, scale; xc=.5*(r.min.x+r.max.x); yc=.5*(r.min.y+r.max.y); wid=(r.max.x-r.min.x)*aspect; hgt=r.max.y-r.min.y; scale=.5*(wid<hgt?wid:hgt); ident(m); m[0][0]=scale; m[0][3]=xc; m[1][1]=0; m[1][2]=-scale; m[1][3]=yc; m[2][1]=1; m[2][2]=0; /* should get inverse by hand */ xform(t, m); }