ref: e51c4bc6e493a9cd0d9e9d7f1d24c57ae77bab65
dir: /sys/src/cmd/audio/mp3dec/mad.h/
/* * libmad - MPEG audio decoder library * Copyright (C) 2000-2004 Underbit Technologies, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * If you would like to negotiate alternate licensing terms, you may do * so by contacting: Underbit Technologies, Inc. <[email protected]> */ # ifdef __cplusplus extern "C" { # endif # define FPM_INTEL # define SIZEOF_INT 4 # define SIZEOF_LONG 4 # define SIZEOF_LONG_LONG 8 /* Id: version.h,v 1.26 2004/01/23 09:41:33 rob Exp */ # ifndef LIBMAD_VERSION_H # define LIBMAD_VERSION_H # define MAD_VERSION_MAJOR 0 # define MAD_VERSION_MINOR 15 # define MAD_VERSION_PATCH 1 # define MAD_VERSION_EXTRA " (beta)" # define MAD_VERSION_STRINGIZE(str) #str # define MAD_VERSION_STRING(num) MAD_VERSION_STRINGIZE(num) # define MAD_VERSION MAD_VERSION_STRING(MAD_VERSION_MAJOR) "." \ MAD_VERSION_STRING(MAD_VERSION_MINOR) "." \ MAD_VERSION_STRING(MAD_VERSION_PATCH) \ MAD_VERSION_EXTRA # define MAD_PUBLISHYEAR "2000-2004" # define MAD_AUTHOR "Underbit Technologies, Inc." # define MAD_EMAIL "[email protected]" extern char const mad_version[]; extern char const mad_copyright[]; extern char const mad_author[]; extern char const mad_build[]; # endif /* Id: fixed.h,v 1.38 2004/02/17 02:02:03 rob Exp */ # ifndef LIBMAD_FIXED_H # define LIBMAD_FIXED_H # if SIZEOF_INT >= 4 typedef signed int mad_fixed_t; typedef signed int mad_fixed64hi_t; typedef unsigned int mad_fixed64lo_t; # else typedef signed long mad_fixed_t; typedef signed long mad_fixed64hi_t; typedef unsigned long mad_fixed64lo_t; # endif # if defined(_MSC_VER) # define mad_fixed64_t signed __int64 # elif 1 || defined(__GNUC__) # define mad_fixed64_t signed long long # endif # if defined(FPM_FLOAT) typedef double mad_sample_t; # else typedef mad_fixed_t mad_sample_t; # endif /* * Fixed-point format: 0xABBBBBBB * A == whole part (sign + 3 bits) * B == fractional part (28 bits) * * Values are signed two's complement, so the effective range is: * 0x80000000 to 0x7fffffff * -8.0 to +7.9999999962747097015380859375 * * The smallest representable value is: * 0x00000001 == 0.0000000037252902984619140625 (i.e. about 3.725e-9) * * 28 bits of fractional accuracy represent about * 8.6 digits of decimal accuracy. * * Fixed-point numbers can be added or subtracted as normal * integers, but multiplication requires shifting the 64-bit result * from 56 fractional bits back to 28 (and rounding.) * * Changing the definition of MAD_F_FRACBITS is only partially * supported, and must be done with care. */ # define MAD_F_FRACBITS 28 # define MAD_F(x) ((mad_fixed_t) (x##L)) # define MAD_F_MIN ((mad_fixed_t) -0x80000000L) # define MAD_F_MAX ((mad_fixed_t) +0x7fffffffL) # define MAD_F_ONE MAD_F(0x10000000) # define mad_f_tofixed(x) ((mad_fixed_t) \ ((x) * (double) (1L << MAD_F_FRACBITS) + 0.5)) # define mad_f_todouble(x) ((double) \ ((x) / (double) (1L << MAD_F_FRACBITS))) # define mad_f_intpart(x) ((x) >> MAD_F_FRACBITS) # define mad_f_fracpart(x) ((x) & ((1L << MAD_F_FRACBITS) - 1)) /* (x should be positive) */ # define mad_f_fromint(x) ((x) << MAD_F_FRACBITS) # define mad_f_add(x, y) ((x) + (y)) # define mad_f_sub(x, y) ((x) - (y)) # if defined(FPM_FLOAT) # error "FPM_FLOAT not yet supported" # undef MAD_F # define MAD_F(x) mad_f_todouble(x) # define mad_f_mul(x, y) ((x) * (y)) # define mad_f_scale64 # undef ASO_ZEROCHECK # elif defined(FPM_64BIT) /* * This version should be the most accurate if 64-bit types are supported by * the compiler, although it may not be the most efficient. */ # if defined(OPT_ACCURACY) # define mad_f_mul(x, y) \ ((mad_fixed_t) \ ((((mad_fixed64_t) (x) * (y)) + \ (1L << (MAD_F_SCALEBITS - 1))) >> MAD_F_SCALEBITS)) # else # define mad_f_mul(x, y) \ ((mad_fixed_t) (((mad_fixed64_t) (x) * (y)) >> MAD_F_SCALEBITS)) # endif # define MAD_F_SCALEBITS MAD_F_FRACBITS /* --- Intel --------------------------------------------------------------- */ # elif defined(FPM_INTEL) # if defined(_MSC_VER) # pragma warning(push) # pragma warning(disable: 4035) /* no return value */ static __forceinline mad_fixed_t mad_f_mul_inline(mad_fixed_t x, mad_fixed_t y) { enum { fracbits = MAD_F_FRACBITS }; __asm { mov eax, x imul y shrd eax, edx, fracbits } /* implicit return of eax */ } # pragma warning(pop) # define mad_f_mul mad_f_mul_inline # define mad_f_scale64 # else /* * This Intel version is fast and accurate; the disposition of the least * significant bit depends on OPT_ACCURACY via mad_f_scale64(). */ # define MAD_F_MLX(hi, lo, x, y) \ asm ("imull %3" \ : "=a" (lo), "=d" (hi) \ : "%a" (x), "rm" (y) \ : "cc") # if defined(OPT_ACCURACY) /* * This gives best accuracy but is not very fast. */ # define MAD_F_MLA(hi, lo, x, y) \ ({ mad_fixed64hi_t __hi; \ mad_fixed64lo_t __lo; \ MAD_F_MLX(__hi, __lo, (x), (y)); \ asm ("addl %2,%0\n\t" \ "adcl %3,%1" \ : "=rm" (lo), "=rm" (hi) \ : "r" (__lo), "r" (__hi), "0" (lo), "1" (hi) \ : "cc"); \ }) # endif /* OPT_ACCURACY */ # if defined(OPT_ACCURACY) /* * Surprisingly, this is faster than SHRD followed by ADC. */ # define mad_f_scale64(hi, lo) \ ({ mad_fixed64hi_t __hi_; \ mad_fixed64lo_t __lo_; \ mad_fixed_t __result; \ asm ("addl %4,%2\n\t" \ "adcl %5,%3" \ : "=rm" (__lo_), "=rm" (__hi_) \ : "0" (lo), "1" (hi), \ "ir" (1L << (MAD_F_SCALEBITS - 1)), "ir" (0) \ : "cc"); \ asm ("shrdl %3,%2,%1" \ : "=rm" (__result) \ : "0" (__lo_), "r" (__hi_), "I" (MAD_F_SCALEBITS) \ : "cc"); \ __result; \ }) # elif defined(OPT_INTEL) /* * Alternate Intel scaling that may or may not perform better. */ # define mad_f_scale64(hi, lo) \ ({ mad_fixed_t __result; \ asm ("shrl %3,%1\n\t" \ "shll %4,%2\n\t" \ "orl %2,%1" \ : "=rm" (__result) \ : "0" (lo), "r" (hi), \ "I" (MAD_F_SCALEBITS), "I" (32 - MAD_F_SCALEBITS) \ : "cc"); \ __result; \ }) # else # define mad_f_scale64(hi, lo) \ ({ mad_fixed_t __result; \ asm ("shrdl %3,%2,%1" \ : "=rm" (__result) \ : "0" (lo), "r" (hi), "I" (MAD_F_SCALEBITS) \ : "cc"); \ __result; \ }) # endif /* OPT_ACCURACY */ # define MAD_F_SCALEBITS MAD_F_FRACBITS # endif /* --- ARM ----------------------------------------------------------------- */ # elif defined(FPM_ARM) /* * This ARM V4 version is as accurate as FPM_64BIT but much faster. The * least significant bit is properly rounded at no CPU cycle cost! */ # if 1 /* * This is faster than the default implementation via MAD_F_MLX() and * mad_f_scale64(). */ # define mad_f_mul(x, y) \ ({ mad_fixed64hi_t __hi; \ mad_fixed64lo_t __lo; \ mad_fixed_t __result; \ asm ("smull %0, %1, %3, %4\n\t" \ "movs %0, %0, lsr %5\n\t" \ "adc %2, %0, %1, lsl %6" \ : "=&r" (__lo), "=&r" (__hi), "=r" (__result) \ : "%r" (x), "r" (y), \ "M" (MAD_F_SCALEBITS), "M" (32 - MAD_F_SCALEBITS) \ : "cc"); \ __result; \ }) # endif # define MAD_F_MLX(hi, lo, x, y) \ asm ("smull %0, %1, %2, %3" \ : "=&r" (lo), "=&r" (hi) \ : "%r" (x), "r" (y)) # define MAD_F_MLA(hi, lo, x, y) \ asm ("smlal %0, %1, %2, %3" \ : "+r" (lo), "+r" (hi) \ : "%r" (x), "r" (y)) # define MAD_F_MLN(hi, lo) \ asm ("rsbs %0, %2, #0\n\t" \ "rsc %1, %3, #0" \ : "=r" (lo), "=r" (hi) \ : "0" (lo), "1" (hi) \ : "cc") # define mad_f_scale64(hi, lo) \ ({ mad_fixed_t __result; \ asm ("movs %0, %1, lsr %3\n\t" \ "adc %0, %0, %2, lsl %4" \ : "=&r" (__result) \ : "r" (lo), "r" (hi), \ "M" (MAD_F_SCALEBITS), "M" (32 - MAD_F_SCALEBITS) \ : "cc"); \ __result; \ }) # define MAD_F_SCALEBITS MAD_F_FRACBITS /* --- MIPS ---------------------------------------------------------------- */ # elif defined(FPM_MIPS) /* * This MIPS version is fast and accurate; the disposition of the least * significant bit depends on OPT_ACCURACY via mad_f_scale64(). */ # define MAD_F_MLX(hi, lo, x, y) \ asm ("mult %2,%3" \ : "=l" (lo), "=h" (hi) \ : "%r" (x), "r" (y)) # if defined(HAVE_MADD_ASM) # define MAD_F_MLA(hi, lo, x, y) \ asm ("madd %2,%3" \ : "+l" (lo), "+h" (hi) \ : "%r" (x), "r" (y)) # elif defined(HAVE_MADD16_ASM) /* * This loses significant accuracy due to the 16-bit integer limit in the * multiply/accumulate instruction. */ # define MAD_F_ML0(hi, lo, x, y) \ asm ("mult %2,%3" \ : "=l" (lo), "=h" (hi) \ : "%r" ((x) >> 12), "r" ((y) >> 16)) # define MAD_F_MLA(hi, lo, x, y) \ asm ("madd16 %2,%3" \ : "+l" (lo), "+h" (hi) \ : "%r" ((x) >> 12), "r" ((y) >> 16)) # define MAD_F_MLZ(hi, lo) ((mad_fixed_t) (lo)) # endif # if defined(OPT_SPEED) # define mad_f_scale64(hi, lo) \ ((mad_fixed_t) ((hi) << (32 - MAD_F_SCALEBITS))) # define MAD_F_SCALEBITS MAD_F_FRACBITS # endif /* --- SPARC --------------------------------------------------------------- */ # elif defined(FPM_SPARC) /* * This SPARC V8 version is fast and accurate; the disposition of the least * significant bit depends on OPT_ACCURACY via mad_f_scale64(). */ # define MAD_F_MLX(hi, lo, x, y) \ asm ("smul %2, %3, %0\n\t" \ "rd %%y, %1" \ : "=r" (lo), "=r" (hi) \ : "%r" (x), "rI" (y)) /* --- PowerPC ------------------------------------------------------------- */ # elif defined(FPM_PPC) /* * This PowerPC version is fast and accurate; the disposition of the least * significant bit depends on OPT_ACCURACY via mad_f_scale64(). */ # define MAD_F_MLX(hi, lo, x, y) \ do { \ asm ("mullw %0,%1,%2" \ : "=r" (lo) \ : "%r" (x), "r" (y)); \ asm ("mulhw %0,%1,%2" \ : "=r" (hi) \ : "%r" (x), "r" (y)); \ } \ while (0) # if defined(OPT_ACCURACY) /* * This gives best accuracy but is not very fast. */ # define MAD_F_MLA(hi, lo, x, y) \ ({ mad_fixed64hi_t __hi; \ mad_fixed64lo_t __lo; \ MAD_F_MLX(__hi, __lo, (x), (y)); \ asm ("addc %0,%2,%3\n\t" \ "adde %1,%4,%5" \ : "=r" (lo), "=r" (hi) \ : "%r" (lo), "r" (__lo), \ "%r" (hi), "r" (__hi) \ : "xer"); \ }) # endif # if defined(OPT_ACCURACY) /* * This is slower than the truncating version below it. */ # define mad_f_scale64(hi, lo) \ ({ mad_fixed_t __result, __round; \ asm ("rotrwi %0,%1,%2" \ : "=r" (__result) \ : "r" (lo), "i" (MAD_F_SCALEBITS)); \ asm ("extrwi %0,%1,1,0" \ : "=r" (__round) \ : "r" (__result)); \ asm ("insrwi %0,%1,%2,0" \ : "+r" (__result) \ : "r" (hi), "i" (MAD_F_SCALEBITS)); \ asm ("add %0,%1,%2" \ : "=r" (__result) \ : "%r" (__result), "r" (__round)); \ __result; \ }) # else # define mad_f_scale64(hi, lo) \ ({ mad_fixed_t __result; \ asm ("rotrwi %0,%1,%2" \ : "=r" (__result) \ : "r" (lo), "i" (MAD_F_SCALEBITS)); \ asm ("insrwi %0,%1,%2,0" \ : "+r" (__result) \ : "r" (hi), "i" (MAD_F_SCALEBITS)); \ __result; \ }) # endif # define MAD_F_SCALEBITS MAD_F_FRACBITS /* --- Default ------------------------------------------------------------- */ # elif defined(FPM_DEFAULT) /* * This version is the most portable but it loses significant accuracy. * Furthermore, accuracy is biased against the second argument, so care * should be taken when ordering operands. * * The scale factors are constant as this is not used with SSO. * * Pre-rounding is required to stay within the limits of compliance. */ # if defined(OPT_SPEED) # define mad_f_mul(x, y) (((x) >> 12) * ((y) >> 16)) # else # define mad_f_mul(x, y) ((((x) + (1L << 11)) >> 12) * \ (((y) + (1L << 15)) >> 16)) # endif /* ------------------------------------------------------------------------- */ # else # error "no FPM selected" # endif /* default implementations */ # if !defined(mad_f_mul) # define mad_f_mul(x, y) \ ({ register mad_fixed64hi_t __hi; \ register mad_fixed64lo_t __lo; \ MAD_F_MLX(__hi, __lo, (x), (y)); \ mad_f_scale64(__hi, __lo); \ }) # endif # if !defined(MAD_F_MLA) # define MAD_F_ML0(hi, lo, x, y) ((lo) = mad_f_mul((x), (y))) # define MAD_F_MLA(hi, lo, x, y) ((lo) += mad_f_mul((x), (y))) # define MAD_F_MLN(hi, lo) ((lo) = -(lo)) # define MAD_F_MLZ(hi, lo) ((void) (hi), (mad_fixed_t) (lo)) # endif # if !defined(MAD_F_ML0) # define MAD_F_ML0(hi, lo, x, y) MAD_F_MLX((hi), (lo), (x), (y)) # endif # if !defined(MAD_F_MLN) # define MAD_F_MLN(hi, lo) ((hi) = ((lo) = -(lo)) ? ~(hi) : -(hi)) # endif # if !defined(MAD_F_MLZ) # define MAD_F_MLZ(hi, lo) mad_f_scale64((hi), (lo)) # endif # if !defined(mad_f_scale64) # if defined(OPT_ACCURACY) # define mad_f_scale64(hi, lo) \ ((((mad_fixed_t) \ (((hi) << (32 - (MAD_F_SCALEBITS - 1))) | \ ((lo) >> (MAD_F_SCALEBITS - 1)))) + 1) >> 1) # else # define mad_f_scale64(hi, lo) \ ((mad_fixed_t) \ (((hi) << (32 - MAD_F_SCALEBITS)) | \ ((lo) >> MAD_F_SCALEBITS))) # endif # define MAD_F_SCALEBITS MAD_F_FRACBITS # endif /* C routines */ mad_fixed_t mad_f_abs(mad_fixed_t); mad_fixed_t mad_f_div(mad_fixed_t, mad_fixed_t); # endif /* Id: bit.h,v 1.12 2004/01/23 09:41:32 rob Exp */ # ifndef LIBMAD_BIT_H # define LIBMAD_BIT_H struct mad_bitptr { unsigned char const *byte; unsigned short cache; unsigned short left; }; void mad_bit_init(struct mad_bitptr *, unsigned char const *); # define mad_bit_finish(bitptr) /* nothing */ unsigned int mad_bit_length(struct mad_bitptr const *, struct mad_bitptr const *); # define mad_bit_bitsleft(bitptr) ((bitptr)->left) unsigned char const *mad_bit_nextbyte(struct mad_bitptr const *); void mad_bit_skip(struct mad_bitptr *, unsigned int); unsigned long mad_bit_read(struct mad_bitptr *, unsigned int); void mad_bit_write(struct mad_bitptr *, unsigned int, unsigned long); unsigned short mad_bit_crc(struct mad_bitptr, unsigned int, unsigned short); # endif /* Id: timer.h,v 1.16 2004/01/23 09:41:33 rob Exp */ # ifndef LIBMAD_TIMER_H # define LIBMAD_TIMER_H typedef struct { signed long seconds; /* whole seconds */ unsigned long fraction; /* 1/MAD_TIMER_RESOLUTION seconds */ } mad_timer_t; extern mad_timer_t const mad_timer_zero; # define MAD_TIMER_RESOLUTION 352800000UL enum mad_units { MAD_UNITS_HOURS = -2, MAD_UNITS_MINUTES = -1, MAD_UNITS_SECONDS = 0, /* metric units */ MAD_UNITS_DECISECONDS = 10, MAD_UNITS_CENTISECONDS = 100, MAD_UNITS_MILLISECONDS = 1000, /* audio sample units */ MAD_UNITS_8000_HZ = 8000, MAD_UNITS_11025_HZ = 11025, MAD_UNITS_12000_HZ = 12000, MAD_UNITS_16000_HZ = 16000, MAD_UNITS_22050_HZ = 22050, MAD_UNITS_24000_HZ = 24000, MAD_UNITS_32000_HZ = 32000, MAD_UNITS_44100_HZ = 44100, MAD_UNITS_48000_HZ = 48000, /* video frame/field units */ MAD_UNITS_24_FPS = 24, MAD_UNITS_25_FPS = 25, MAD_UNITS_30_FPS = 30, MAD_UNITS_48_FPS = 48, MAD_UNITS_50_FPS = 50, MAD_UNITS_60_FPS = 60, /* CD audio frames */ MAD_UNITS_75_FPS = 75, /* video drop-frame units */ MAD_UNITS_23_976_FPS = -24, MAD_UNITS_24_975_FPS = -25, MAD_UNITS_29_97_FPS = -30, MAD_UNITS_47_952_FPS = -48, MAD_UNITS_49_95_FPS = -50, MAD_UNITS_59_94_FPS = -60 }; # define mad_timer_reset(timer) ((void) (*(timer) = mad_timer_zero)) int mad_timer_compare(mad_timer_t, mad_timer_t); # define mad_timer_sign(timer) mad_timer_compare((timer), mad_timer_zero) void mad_timer_negate(mad_timer_t *); mad_timer_t mad_timer_abs(mad_timer_t); void mad_timer_set(mad_timer_t *, unsigned long, unsigned long, unsigned long); void mad_timer_add(mad_timer_t *, mad_timer_t); void mad_timer_multiply(mad_timer_t *, signed long); signed long mad_timer_count(mad_timer_t, enum mad_units); unsigned long mad_timer_fraction(mad_timer_t, unsigned long); void mad_timer_string(mad_timer_t, char *, char const *, enum mad_units, enum mad_units, unsigned long); # endif /* Id: stream.h,v 1.20 2004/02/05 09:02:39 rob Exp */ # ifndef LIBMAD_STREAM_H # define LIBMAD_STREAM_H # define MAD_BUFFER_GUARD 8 # define MAD_BUFFER_MDLEN (511 + 2048 + MAD_BUFFER_GUARD) enum mad_error { MAD_ERROR_NONE = 0x0000, /* no error */ MAD_ERROR_BUFLEN = 0x0001, /* input buffer too small (or EOF) */ MAD_ERROR_BUFPTR = 0x0002, /* invalid (null) buffer pointer */ MAD_ERROR_NOMEM = 0x0031, /* not enough memory */ MAD_ERROR_LOSTSYNC = 0x0101, /* lost synchronization */ MAD_ERROR_BADLAYER = 0x0102, /* reserved header layer value */ MAD_ERROR_BADBITRATE = 0x0103, /* forbidden bitrate value */ MAD_ERROR_BADSAMPLERATE = 0x0104, /* reserved sample frequency value */ MAD_ERROR_BADEMPHASIS = 0x0105, /* reserved emphasis value */ MAD_ERROR_BADCRC = 0x0201, /* CRC check failed */ MAD_ERROR_BADBITALLOC = 0x0211, /* forbidden bit allocation value */ MAD_ERROR_BADSCALEFACTOR = 0x0221, /* bad scalefactor index */ MAD_ERROR_BADMODE = 0x0222, /* bad bitrate/mode combination */ MAD_ERROR_BADFRAMELEN = 0x0231, /* bad frame length */ MAD_ERROR_BADBIGVALUES = 0x0232, /* bad big_values count */ MAD_ERROR_BADBLOCKTYPE = 0x0233, /* reserved block_type */ MAD_ERROR_BADSCFSI = 0x0234, /* bad scalefactor selection info */ MAD_ERROR_BADDATAPTR = 0x0235, /* bad main_data_begin pointer */ MAD_ERROR_BADPART3LEN = 0x0236, /* bad audio data length */ MAD_ERROR_BADHUFFTABLE = 0x0237, /* bad Huffman table select */ MAD_ERROR_BADHUFFDATA = 0x0238, /* Huffman data overrun */ MAD_ERROR_BADSTEREO = 0x0239 /* incompatible block_type for JS */ }; # define MAD_RECOVERABLE(error) ((error) & 0xff00) struct mad_stream { unsigned char const *buffer; /* input bitstream buffer */ unsigned char const *bufend; /* end of buffer */ unsigned long skiplen; /* bytes to skip before next frame */ int sync; /* stream sync found */ unsigned long freerate; /* free bitrate (fixed) */ unsigned char const *this_frame; /* start of current frame */ unsigned char const *next_frame; /* start of next frame */ struct mad_bitptr ptr; /* current processing bit pointer */ struct mad_bitptr anc_ptr; /* ancillary bits pointer */ unsigned int anc_bitlen; /* number of ancillary bits */ unsigned char (*main_data)[MAD_BUFFER_MDLEN]; /* Layer III main_data() */ unsigned int md_len; /* bytes in main_data */ int options; /* decoding options (see below) */ enum mad_error error; /* error code (see above) */ }; enum { MAD_OPTION_IGNORECRC = 0x0001, /* ignore CRC errors */ MAD_OPTION_HALFSAMPLERATE = 0x0002 /* generate PCM at 1/2 sample rate */ # if 0 /* not yet implemented */ MAD_OPTION_LEFTCHANNEL = 0x0010, /* decode left channel only */ MAD_OPTION_RIGHTCHANNEL = 0x0020, /* decode right channel only */ MAD_OPTION_SINGLECHANNEL = 0x0030 /* combine channels */ # endif }; void mad_stream_init(struct mad_stream *); void mad_stream_finish(struct mad_stream *); # define mad_stream_options(stream, opts) \ ((void) ((stream)->options = (opts))) void mad_stream_buffer(struct mad_stream *, unsigned char const *, unsigned long); void mad_stream_skip(struct mad_stream *, unsigned long); int mad_stream_sync(struct mad_stream *); char const *mad_stream_errorstr(struct mad_stream const *); # endif /* Id: frame.h,v 1.20 2004/01/23 09:41:32 rob Exp */ # ifndef LIBMAD_FRAME_H # define LIBMAD_FRAME_H enum mad_layer { MAD_LAYER_I = 1, /* Layer I */ MAD_LAYER_II = 2, /* Layer II */ MAD_LAYER_III = 3 /* Layer III */ }; enum mad_mode { MAD_MODE_SINGLE_CHANNEL = 0, /* single channel */ MAD_MODE_DUAL_CHANNEL = 1, /* dual channel */ MAD_MODE_JOINT_STEREO = 2, /* joint (MS/intensity) stereo */ MAD_MODE_STEREO = 3 /* normal LR stereo */ }; enum mad_emphasis { MAD_EMPHASIS_NONE = 0, /* no emphasis */ MAD_EMPHASIS_50_15_US = 1, /* 50/15 microseconds emphasis */ MAD_EMPHASIS_CCITT_J_17 = 3, /* CCITT J.17 emphasis */ MAD_EMPHASIS_RESERVED = 2 /* unknown emphasis */ }; struct mad_header { enum mad_layer layer; /* audio layer (1, 2, or 3) */ enum mad_mode mode; /* channel mode (see above) */ int mode_extension; /* additional mode info */ enum mad_emphasis emphasis; /* de-emphasis to use (see above) */ unsigned long bitrate; /* stream bitrate (bps) */ unsigned int samplerate; /* sampling frequency (Hz) */ unsigned short crc_check; /* frame CRC accumulator */ unsigned short crc_target; /* final target CRC checksum */ int flags; /* flags (see below) */ int private_bits; /* private bits (see below) */ mad_timer_t duration; /* audio playing time of frame */ }; struct mad_frame { struct mad_header header; /* MPEG audio header */ int options; /* decoding options (from stream) */ mad_fixed_t sbsample[2][36][32]; /* synthesis subband filter samples */ mad_fixed_t (*overlap)[2][32][18]; /* Layer III block overlap data */ }; # define MAD_NCHANNELS(header) ((header)->mode ? 2 : 1) # define MAD_NSBSAMPLES(header) \ ((header)->layer == MAD_LAYER_I ? 12 : \ (((header)->layer == MAD_LAYER_III && \ ((header)->flags & MAD_FLAG_LSF_EXT)) ? 18 : 36)) enum { MAD_FLAG_NPRIVATE_III = 0x0007, /* number of Layer III private bits */ MAD_FLAG_INCOMPLETE = 0x0008, /* header but not data is decoded */ MAD_FLAG_PROTECTION = 0x0010, /* frame has CRC protection */ MAD_FLAG_COPYRIGHT = 0x0020, /* frame is copyright */ MAD_FLAG_ORIGINAL = 0x0040, /* frame is original (else copy) */ MAD_FLAG_PADDING = 0x0080, /* frame has additional slot */ MAD_FLAG_I_STEREO = 0x0100, /* uses intensity joint stereo */ MAD_FLAG_MS_STEREO = 0x0200, /* uses middle/side joint stereo */ MAD_FLAG_FREEFORMAT = 0x0400, /* uses free format bitrate */ MAD_FLAG_LSF_EXT = 0x1000, /* lower sampling freq. extension */ MAD_FLAG_MC_EXT = 0x2000, /* multichannel audio extension */ MAD_FLAG_MPEG_2_5_EXT = 0x4000 /* MPEG 2.5 (unofficial) extension */ }; enum { MAD_PRIVATE_HEADER = 0x0100, /* header private bit */ MAD_PRIVATE_III = 0x001f /* Layer III private bits (up to 5) */ }; void mad_header_init(struct mad_header *); # define mad_header_finish(header) /* nothing */ int mad_header_decode(struct mad_header *, struct mad_stream *); void mad_frame_init(struct mad_frame *); void mad_frame_finish(struct mad_frame *); int mad_frame_decode(struct mad_frame *, struct mad_stream *); void mad_frame_mute(struct mad_frame *); # endif /* Id: synth.h,v 1.15 2004/01/23 09:41:33 rob Exp */ # ifndef LIBMAD_SYNTH_H # define LIBMAD_SYNTH_H struct mad_pcm { unsigned int samplerate; /* sampling frequency (Hz) */ unsigned short channels; /* number of channels */ unsigned short length; /* number of samples per channel */ mad_fixed_t samples[2][1152]; /* PCM output samples [ch][sample] */ }; struct mad_synth { mad_fixed_t filter[2][2][2][16][8]; /* polyphase filterbank outputs */ /* [ch][eo][peo][s][v] */ unsigned int phase; /* current processing phase */ struct mad_pcm pcm; /* PCM output */ }; /* single channel PCM selector */ enum { MAD_PCM_CHANNEL_SINGLE = 0 }; /* dual channel PCM selector */ enum { MAD_PCM_CHANNEL_DUAL_1 = 0, MAD_PCM_CHANNEL_DUAL_2 = 1 }; /* stereo PCM selector */ enum { MAD_PCM_CHANNEL_STEREO_LEFT = 0, MAD_PCM_CHANNEL_STEREO_RIGHT = 1 }; void mad_synth_init(struct mad_synth *); # define mad_synth_finish(synth) /* nothing */ void mad_synth_mute(struct mad_synth *); void mad_synth_frame(struct mad_synth *, struct mad_frame const *); # endif /* Id: decoder.h,v 1.17 2004/01/23 09:41:32 rob Exp */ # ifndef LIBMAD_DECODER_H # define LIBMAD_DECODER_H enum mad_decoder_mode { MAD_DECODER_MODE_SYNC = 0, MAD_DECODER_MODE_ASYNC }; enum mad_flow { MAD_FLOW_CONTINUE = 0x0000, /* continue normally */ MAD_FLOW_STOP = 0x0010, /* stop decoding normally */ MAD_FLOW_BREAK = 0x0011, /* stop decoding and signal an error */ MAD_FLOW_IGNORE = 0x0020 /* ignore the current frame */ }; struct mad_decoder { enum mad_decoder_mode mode; int options; struct { long pid; int in; int out; } async; struct { struct mad_stream stream; struct mad_frame frame; struct mad_synth synth; } *sync; void *cb_data; enum mad_flow (*input_func)(void *, struct mad_stream *); enum mad_flow (*header_func)(void *, struct mad_header const *); enum mad_flow (*filter_func)(void *, struct mad_stream const *, struct mad_frame *); enum mad_flow (*output_func)(void *, struct mad_header const *, struct mad_pcm *); enum mad_flow (*error_func)(void *, struct mad_stream *, struct mad_frame *); enum mad_flow (*message_func)(void *, void *, unsigned int *); }; void mad_decoder_init(struct mad_decoder *, void *, enum mad_flow (*)(void *, struct mad_stream *), enum mad_flow (*)(void *, struct mad_header const *), enum mad_flow (*)(void *, struct mad_stream const *, struct mad_frame *), enum mad_flow (*)(void *, struct mad_header const *, struct mad_pcm *), enum mad_flow (*)(void *, struct mad_stream *, struct mad_frame *), enum mad_flow (*)(void *, void *, unsigned int *)); int mad_decoder_finish(struct mad_decoder *); # define mad_decoder_options(decoder, opts) \ ((void) ((decoder)->options = (opts))) int mad_decoder_run(struct mad_decoder *, enum mad_decoder_mode); int mad_decoder_message(struct mad_decoder *, void *, unsigned int *); # endif # ifdef __cplusplus } # endif