ref: e9e55a21f66a3eff114025dcb1fe62570d0fa3e6
dir: /sys/src/ape/lib/ap/math/jn.c/
#include <math.h> #include <errno.h> /* floating point Bessel's function of the first and second kinds and of integer order. int n; double x; jn(n,x); returns the value of Jn(x) for all integer values of n and all real values of x. There are no error returns. Calls j0, j1. For n=0, j0(x) is called, for n=1, j1(x) is called, for n<x, forward recursion us used starting from values of j0(x) and j1(x). for n>x, a continued fraction approximation to j(n,x)/j(n-1,x) is evaluated and then backward recursion is used starting from a supposed value for j(n,x). The resulting value of j(0,x) is compared with the actual value to correct the supposed value of j(n,x). yn(n,x) is similar in all respects, except that forward recursion is used for all values of n>1. */ double j0(double); double j1(double); double y0(double); double y1(double); double jn(int n, double x) { int i; double a, b, temp; double xsq, t; if(n < 0) { n = -n; x = -x; } if(n == 0) return j0(x); if(n == 1) return j1(x); if(x == 0) return 0; if(n > x) goto recurs; a = j0(x); b = j1(x); for(i=1; i<n; i++) { temp = b; b = (2*i/x)*b - a; a = temp; } return b; recurs: xsq = x*x; for(t=0,i=n+16; i>n; i--) t = xsq/(2*i - t); t = x/(2*n-t); a = t; b = 1; for(i=n-1; i>0; i--) { temp = b; b = (2*i/x)*b - a; a = temp; } return t*j0(x)/b; } double yn(int n, double x) { int i; int sign; double a, b, temp; if (x <= 0) { errno = EDOM; return -HUGE_VAL; } sign = 1; if(n < 0) { n = -n; if(n%2 == 1) sign = -1; } if(n == 0) return y0(x); if(n == 1) return sign*y1(x); a = y0(x); b = y1(x); for(i=1; i<n; i++) { temp = b; b = (2*i/x)*b - a; a = temp; } return sign*b; }