ref: dd29da46bb1cacce17e3028543aaa02a42cffe2e
dir: /r_part.c/
#include "quakedef.h" #define MAX_PARTICLES 4096 // default max # of particles at one // time #define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter what's // on the command line static int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61}; static int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66}; static int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3}; particle_t *active_particles, *free_particles; static particle_t *particles; static int r_numparticles; vec3_t r_pright, r_pup, r_ppn; void R_InitParticles(void) { r_numparticles = MAX_PARTICLES; particles = Hunk_Alloc(r_numparticles * sizeof *particles); } /* =============== R_EntityParticles =============== */ static vec3_t avelocities[NUMVERTEXNORMALS]; static const float beamlength = 16; void R_EntityParticles (entity_t *ent) { int i; particle_t *p; float angle; float sp, sy, cp, cy; vec3_t forward; float dist; dist = 64; if(!avelocities[0][0]){ for (i=0 ; i<NUMVERTEXNORMALS ; i++){ avelocities[i][0] = (rand()&255) * 0.01; avelocities[i][1] = (rand()&255) * 0.01; avelocities[i][2] = (rand()&255) * 0.01; } } for (i=0 ; i<NUMVERTEXNORMALS ; i++) { angle = cl.time * avelocities[i][0]; sy = sinf(angle); cy = cosf(angle); angle = cl.time * avelocities[i][1]; sp = sinf(angle); cp = cosf(angle); forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.01; p->color = q1pal[0x6f]; p->type = pt_explode; p->org[0] = ent->origin[0] + r_avertexnormals[i][0]*dist + forward[0]*beamlength; p->org[1] = ent->origin[1] + r_avertexnormals[i][1]*dist + forward[1]*beamlength; p->org[2] = ent->origin[2] + r_avertexnormals[i][2]*dist + forward[2]*beamlength; } } /* =============== R_ClearParticles =============== */ void R_ClearParticles (void) { int i; free_particles = &particles[0]; active_particles = nil; for (i=0 ;i<r_numparticles ; i++) particles[i].next = &particles[i+1]; particles[r_numparticles-1].next = nil; } /* =============== R_ParseParticleEffect Parse an effect out of the server message =============== */ void R_ParseParticleEffect (void) { vec3_t org, dir; int i, count, msgcount, color; MSG_ReadVec(cl.protocol, org); for (i=0 ; i<3 ; i++) dir[i] = MSG_ReadChar () * (1.0/16); msgcount = MSG_ReadByte (); color = MSG_ReadByte (); count = msgcount < 255 ? msgcount : 1024; R_RunParticleEffect (org, dir, color, count); } /* =============== R_ParticleExplosion =============== */ void R_ParticleExplosion (vec3_t org) { int i, j; particle_t *p; for (i=0 ; i<1024 ; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 5; p->color = q1pal[ramp1[0]]; p->ramp = rand()&3; if (i & 1) { p->type = pt_explode; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } else { p->type = pt_explode2; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } } /* =============== R_ParticleExplosion2 =============== */ void R_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength) { int i, j; particle_t *p; int colorMod = 0; for (i=0; i<512; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.3; p->color = q1pal[colorStart + (colorMod % colorLength)]; colorMod++; p->type = pt_blob; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } /* =============== R_BlobExplosion =============== */ void R_BlobExplosion (vec3_t org) { int i, j; particle_t *p; for (i=0 ; i<1024 ; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 1 + (rand()&8)*0.05; if (i & 1) { p->type = pt_blob; p->color = q1pal[66 + rand()%6]; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } else { p->type = pt_blob2; p->color = q1pal[150 + rand()%6]; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } } /* =============== R_RunParticleEffect =============== */ void R_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count) { int i, j; particle_t *p; for (i=0 ; i<count ; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; if (count == 1024) { // rocket explosion p->die = cl.time + 5; p->color = q1pal[ramp1[0]]; p->ramp = rand()&3; if (i & 1) { p->type = pt_explode; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } else { p->type = pt_explode2; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } else { p->die = cl.time + 0.1*(rand()%5); p->color = q1pal[(color&~7) + (rand()&7)]; p->type = pt_slowgrav; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()&15)-8); p->vel[j] = dir[j]*15;// + (rand()%300)-150; } } } } /* =============== R_LavaSplash =============== */ void R_LavaSplash (vec3_t org) { int i, j, k; particle_t *p; float vel; vec3_t dir; for (i=-16 ; i<16 ; i++) for (j=-16 ; j<16 ; j++) for (k=0 ; k<1 ; k++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 2 + (rand()&31) * 0.02; p->color = q1pal[224 + (rand()&7)]; p->type = pt_slowgrav; dir[0] = j*8 + (rand()&7); dir[1] = i*8 + (rand()&7); dir[2] = 256; p->org[0] = org[0] + dir[0]; p->org[1] = org[1] + dir[1]; p->org[2] = org[2] + (rand()&63); VectorNormalize (dir); vel = 50 + (rand()&63); VectorScale (dir, vel, p->vel); } } /* =============== R_TeleportSplash =============== */ void R_TeleportSplash (vec3_t org) { int i, j, k; particle_t *p; float vel; vec3_t dir; for (i=-16 ; i<16 ; i+=4) for (j=-16 ; j<16 ; j+=4) for (k=-24 ; k<32 ; k+=4) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.2 + (rand()&7) * 0.02; p->color = q1pal[7 + (rand()&7)]; p->type = pt_slowgrav; dir[0] = j*8; dir[1] = i*8; dir[2] = k*8; p->org[0] = org[0] + i + (rand()&3); p->org[1] = org[1] + j + (rand()&3); p->org[2] = org[2] + k + (rand()&3); VectorNormalize (dir); vel = 50 + (rand()&63); VectorScale (dir, vel, p->vel); } } void R_RocketTrail (vec3_t start, vec3_t end, int type) { vec3_t vec; float len; int j; particle_t *p; int dec; static int tracercount; VectorSubtract (end, start, vec); len = VectorNormalize (vec); if (type < 128) dec = 3; else { dec = 1; type -= 128; } while (len > 0) { len -= dec; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorCopy (vec3_origin, p->vel); p->die = cl.time + 2; switch (type) { case 0: // rocket trail p->ramp = (rand()&3); p->color = q1pal[ramp3[(int)p->ramp]]; p->type = pt_fire; for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()%6)-3); break; case 1: // smoke smoke p->ramp = (rand()&3) + 2; p->color = q1pal[ramp3[(int)p->ramp]]; p->type = pt_fire; for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()%6)-3); break; case 2: // blood p->type = pt_grav; p->color = q1pal[67 + (rand()&3)]; for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()%6)-3); break; case 3: case 5: // tracer p->die = cl.time + 0.5; p->type = pt_static; if (type == 3) p->color = q1pal[52 + ((tracercount&4)<<1)]; else p->color = q1pal[230 + ((tracercount&4)<<1)]; tracercount++; VectorCopy (start, p->org); if (tracercount & 1) { p->vel[0] = 30*vec[1]; p->vel[1] = 30*-vec[0]; } else { p->vel[0] = 30*-vec[1]; p->vel[1] = 30*vec[0]; } break; case 4: // slight blood p->type = pt_grav; p->color = q1pal[67 + (rand()&3)]; for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()%6)-3); len -= 3; break; case 6: // voor trail p->color = q1pal[9*16 + 8 + (rand()&3)]; p->type = pt_static; p->die = cl.time + 0.3; for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()&15)-8); break; } VectorAdd (start, vec, start); } } /* =============== R_DrawParticles =============== */ extern cvar_t sv_gravity; void R_DrawParticles (void) { particle_t *p, *kill; float grav; int i; float time2, time3; float time1; float dvel; float frametime; VectorScale (vright, xscaleshrink, r_pright); VectorScale (vup, yscaleshrink, r_pup); VectorCopy (vpn, r_ppn); frametime = cl.time - cl.oldtime; time3 = frametime * 15; time2 = frametime * 10; // 15; time1 = frametime * 5; grav = frametime * sv_gravity.value * 0.05; dvel = 4*frametime; for ( ;; ) { kill = active_particles; if (kill && kill->die < cl.time) { active_particles = kill->next; kill->next = free_particles; free_particles = kill; continue; } break; } for (p=active_particles ; p ; p=p->next) { for ( ;; ) { kill = p->next; if (kill && kill->die < cl.time) { p->next = kill->next; kill->next = free_particles; free_particles = kill; continue; } break; } D_DrawParticle (p); p->org[0] += p->vel[0]*frametime; p->org[1] += p->vel[1]*frametime; p->org[2] += p->vel[2]*frametime; switch (p->type) { case pt_static: break; case pt_fire: p->ramp += time1; if (p->ramp >= 6) p->die = -1; else p->color = q1pal[ramp3[(int)p->ramp]]; p->vel[2] += grav; break; case pt_explode: p->ramp += time2; if (p->ramp >=8) p->die = -1; else p->color = q1pal[ramp1[(int)p->ramp]]; for (i=0 ; i<3 ; i++) p->vel[i] += p->vel[i]*dvel; p->vel[2] -= grav; break; case pt_explode2: p->ramp += time3; if (p->ramp >=8) p->die = -1; else p->color = q1pal[ramp2[(int)p->ramp]]; for (i=0 ; i<3 ; i++) p->vel[i] -= p->vel[i]*frametime; p->vel[2] -= grav; break; case pt_blob: for (i=0 ; i<3 ; i++) p->vel[i] += p->vel[i]*dvel; p->vel[2] -= grav; break; case pt_blob2: for (i=0 ; i<2 ; i++) p->vel[i] -= p->vel[i]*dvel; p->vel[2] -= grav; break; case pt_grav: case pt_slowgrav: p->vel[2] -= grav; break; } } }