ref: 01565e17da503b6b50fa0a575932598cfbbb81b4
dir: /libfaad/mdct.c/
/* ** FAAD - Freeware Advanced Audio Decoder ** Copyright (C) 2002 M. Bakker ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** $Id: mdct.c,v 1.5 2002/03/16 13:38:36 menno Exp $ **/ /* * Fast MDCT Implementation using pre-twiddling and FFT using fftw * * * Optionally uses recurrence relation to find sine and cosine values without * lookup table or calling the actual sine or cosine function. * Works like this: * cos(2*Pi*(i+1)/N) = cos(2*Pi*i/N)*cos(2*Pi/N) - sin(2*Pi*i/N)*sin(2*Pi/N) * sin(2*Pi*(i+1)/N) = sin(2*Pi*i/N)*cos(2*Pi/N) + cos(2*Pi*i/N)*sin(2*Pi/N) * * In which cos(2*Pi/N) and sin(2*Pi/N) are constants and cos(2*Pi*i/N) and * sin(2*Pi*i/N) are the previous values. * (in the method used in this MDCT there is an extra factor 8, but I left that * out here to show more clearly the relation) * * Nice method for low memory usage, but lookup table is faster on most * machines. * */ #include "common.h" #include <stdlib.h> #include "mdct.h" void mdct_init(mdct_info *mdct, uint16_t len) { #ifdef USE_TWIDDLE_TABLE uint16_t i; #endif mdct->len = len; mdct->unscrambled = malloc(len/4*sizeof(uint16_t)); make_fft_order(mdct->unscrambled, len/4); #ifdef USE_TWIDDLE_TABLE mdct->twiddlers = malloc(len/2*sizeof(real_t)); for (i = 0; i < len/4; i++) { real_t angle = 2.0f * M_PI * (i + 1.0f/8.0f) / (real_t)len; mdct->twiddlers[i*2] = (real_t)cos(angle); mdct->twiddlers[i*2 + 1] = (real_t)sin(angle); } #endif } void mdct_end(mdct_info *mdct) { if (mdct->unscrambled) free(mdct->unscrambled); #ifdef USE_TWIDDLE_TABLE if (mdct->twiddlers) free(mdct->twiddlers); #endif } void MDCT_2048(mdct_info *mdct, fftw_real *in_data, fftw_real *out_data) { fftw_complex FFTarray[512]; real_t tempr, tempi, fac; #ifdef USE_TWIDDLE_TABLE /* use twiddle factor tables */ real_t *twiddlers = mdct->twiddlers; #else /* temps for pre and post twiddle */ real_t cosfreq8, sinfreq8, c, s, cold, cfreq, sfreq; #endif uint16_t i; fac = 2.; /* 2 from MDCT inverse to forward */ #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relation in pre-twiddle */ cfreq = 0.99999529123306274f; sfreq = 0.0030679567717015743f; cosfreq8 = 0.99999994039535522f; sinfreq8 = 0.00038349519824312089f; c = cosfreq8; s = sinfreq8; #endif for (i = 0; i < 512; i++) { uint16_t n = 1023 - (i << 1); if (i < 256) tempr = in_data[512 + n] + in_data[2559 - n]; else tempr = in_data[512 + n] - in_data[511 - n]; n = (i << 1); if (i < 256) tempi = in_data[512 + n] - in_data[511 - n]; else tempi = in_data[512 + n] + in_data[2559 - n]; /* calculate pre-twiddled FFT input */ #ifdef USE_TWIDDLE_TABLE FFTarray[i].re = tempr * twiddlers[n] + tempi * twiddlers[n + 1]; FFTarray[i].im = tempi * twiddlers[n] - tempr * twiddlers[n + 1]; #else FFTarray[i].re = tempr * c + tempi * s; FFTarray[i].im = tempi * c - tempr * s; /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } /* Perform in-place complex FFT of length N/4 */ pfftw_512(FFTarray); #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relations in post-twiddle */ c = cosfreq8; s = sinfreq8; #endif /* post-twiddle FFT output and then get output data */ for (i = 0; i < 512; i++) { uint16_t n = i << 1; uint16_t unscr = mdct->unscrambled[i]; /* get post-twiddled FFT output */ #ifdef USE_TWIDDLE_TABLE tempr = fac * (FFTarray[unscr].re * twiddlers[n] + FFTarray[unscr].im * twiddlers[n + 1]); tempi = fac * (FFTarray[unscr].im * twiddlers[n] - FFTarray[unscr].re * twiddlers[n + 1]); #else tempr = fac * (FFTarray[unscr].re * c + FFTarray[unscr].im * s); tempi = fac * (FFTarray[unscr].im * c - FFTarray[unscr].re * s); #endif /* fill in output values */ out_data[n] = -tempr; /* first half even */ out_data[1023 - n] = tempi; /* first half odd */ out_data[1024 + n] = -tempi; /* second half even */ out_data[2047 - n] = tempr; /* second half odd */ #ifndef USE_TWIDDLE_TABLE /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } } #ifdef LD_DEC void MDCT_1024(mdct_info *mdct, fftw_real *in_data, fftw_real *out_data) { fftw_complex FFTarray[256]; real_t tempr, tempi, fac; #ifdef USE_TWIDDLE_TABLE /* use twiddle factor tables */ real_t *twiddlers = mdct->twiddlers; #else /* temps for pre and post twiddle */ real_t cosfreq8, sinfreq8, c, s, cold, cfreq, sfreq; #endif uint16_t i; fac = 2.; /* 2 from MDCT inverse to forward */ #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relation in pre-twiddle */ cfreq = 0.9999811752826011426f; sfreq = 0.0061358846491544753f; cosfreq8 = 0.99999970586288221916f; sinfreq8 = 0.00076699031874270453f; c = cosfreq8; s = sinfreq8; #endif for (i = 0; i < 256; i++) { uint16_t n = 511 - (i << 1); if (i < 128) tempr = in_data[256 + n] + in_data[1279 - n]; else tempr = in_data[256 + n] - in_data[255 - n]; n = (i << 1); if (i < 128) tempi = in_data[256 + n] - in_data[255 - n]; else tempi = in_data[256 + n] + in_data[1279 - n]; /* calculate pre-twiddled FFT input */ #ifdef USE_TWIDDLE_TABLE FFTarray[i].re = tempr * twiddlers[n] + tempi * twiddlers[n + 1]; FFTarray[i].im = tempi * twiddlers[n] - tempr * twiddlers[n + 1]; #else FFTarray[i].re = tempr * c + tempi * s; FFTarray[i].im = tempi * c - tempr * s; /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } /* Perform in-place complex FFT of length N/4 */ pfftw_256(FFTarray); #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relations in post-twiddle */ c = cosfreq8; s = sinfreq8; #endif /* post-twiddle FFT output and then get output data */ for (i = 0; i < 256; i++) { uint16_t n = i << 1; uint16_t unscr = mdct->unscrambled[i]; /* get post-twiddled FFT output */ #ifdef USE_TWIDDLE_TABLE tempr = fac * (FFTarray[unscr].re * twiddlers[n] + FFTarray[unscr].im * twiddlers[n + 1]); tempi = fac * (FFTarray[unscr].im * twiddlers[n] - FFTarray[unscr].re * twiddlers[n + 1]); #else tempr = fac * (FFTarray[unscr].re * c + FFTarray[unscr].im * s); tempi = fac * (FFTarray[unscr].im * c - FFTarray[unscr].re * s); #endif /* fill in output values */ out_data[n] = -tempr; /* first half even */ out_data[511 - n] = tempi; /* first half odd */ out_data[512 + n] = -tempi; /* second half even */ out_data[1023 - n] = tempr; /* second half odd */ #ifndef USE_TWIDDLE_TABLE /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } } #endif void MDCT_256(mdct_info *mdct, fftw_real *in_data, fftw_real *out_data) { fftw_complex FFTarray[64]; /* the array for in-place FFT */ real_t tempr, tempi, fac; #ifdef USE_TWIDDLE_TABLE /* use twiddle factor tables */ real_t *twiddlers = mdct->twiddlers; #else /* temps for pre and post twiddle */ real_t cosfreq8, sinfreq8, c, s, cold, cfreq, sfreq; #endif uint16_t i; /* Choosing to allocate 2/N factor to Inverse Xform! */ fac = 2.; /* 2 from MDCT inverse to forward */ #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relation in pre-twiddle */ cfreq = 0.99969881772994995f; sfreq = 0.024541229009628296f; cosfreq8 = 0.99999529123306274f; sinfreq8 = 0.0030679568483393833f; c = cosfreq8; s = sinfreq8; #endif for (i = 0; i < 64; i++) { uint16_t n = 127 - (i << 1); if (i < 32) tempr = in_data[64 + n] + in_data[319 - n]; else tempr = in_data[64 + n] - in_data[63 - n]; n = i << 1; if (i < 32) tempi = in_data[64 + n] - in_data[63 - n]; else tempi = in_data[64 + n] + in_data[319 - n]; /* calculate pre-twiddled FFT input */ #ifdef USE_TWIDDLE_TABLE FFTarray[i].re = tempr * twiddlers[n] + tempi * twiddlers[n + 1]; FFTarray[i].im = tempi * twiddlers[n] - tempr * twiddlers[n + 1]; #else FFTarray[i].re = tempr * c + tempi * s; FFTarray[i].im = tempi * c - tempr * s; /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } /* Perform in-place complex FFT of length N/4 */ pfftw_64(FFTarray); #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relations in post-twiddle */ c = cosfreq8; s = sinfreq8; #endif /* post-twiddle FFT output and then get output data */ for (i = 0; i < 64; i++) { uint16_t n = i << 1; uint16_t unscr = mdct->unscrambled[i]; #ifdef USE_TWIDDLE_TABLE tempr = fac * (FFTarray[unscr].re * twiddlers[n] + FFTarray[unscr].im * twiddlers[n + 1]); tempi = fac * (FFTarray[unscr].im * twiddlers[n] - FFTarray[unscr].re * twiddlers[n + 1]); #else tempr = fac * (FFTarray[unscr].re * c + FFTarray[unscr].im * s); tempi = fac * (FFTarray[unscr].im * c - FFTarray[unscr].re * s); #endif /* fill in output values */ out_data[n] = -tempr; /* first half even */ out_data[127 - n] = tempi; /* first half odd */ out_data[128 + n] = -tempi; /* second half even */ out_data[255 - n] = tempr; /* second half odd */ #ifndef USE_TWIDDLE_TABLE /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } } void IMDCT_2048(mdct_info *mdct, fftw_real *in_data, fftw_real *out_data) { fftw_complex FFTarray[512]; /* the array for in-place FFT */ real_t tempr, tempi, fac; #ifdef USE_TWIDDLE_TABLE /* use twiddle factor tables */ real_t *twiddlers = mdct->twiddlers; #else /* temps for pre and post twiddle */ real_t cosfreq8, sinfreq8, c, s, cold, cfreq, sfreq; #endif uint16_t i; /* Choosing to allocate 2/N factor to Inverse Xform! */ fac = 0.0009765625f; #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relation in pre-twiddle */ cfreq = 0.99999529123306274f; sfreq = 0.0030679567717015743f; cosfreq8 = 0.99999994039535522f; sinfreq8 = 0.00038349519824312089f; c = cosfreq8; s = sinfreq8; #endif for (i = 0; i < 512; i++) { uint16_t n = i << 1; uint16_t unscr = mdct->unscrambled[i]; tempr = -in_data[n]; tempi = in_data[1023 - n]; /* calculate pre-twiddled FFT input */ #ifdef USE_TWIDDLE_TABLE FFTarray[unscr].re = tempr * twiddlers[n] - tempi * twiddlers[n + 1]; FFTarray[unscr].im = tempi * twiddlers[n] + tempr * twiddlers[n + 1]; #else FFTarray[unscr].re = tempr * c - tempi * s; FFTarray[unscr].im = tempi * c + tempr * s; /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } /* Perform in-place complex IFFT of length N/4 */ pfftwi_512(FFTarray); #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relations in post-twiddle */ c = cosfreq8; s = sinfreq8; #endif /* post-twiddle FFT output and then get output data */ for (i = 0; i < 512; i++) { uint16_t n = i << 1; /* get post-twiddled FFT output */ #ifdef USE_TWIDDLE_TABLE tempr = fac * (FFTarray[i].re * twiddlers[n] - FFTarray[i].im * twiddlers[n + 1]); tempi = fac * (FFTarray[i].im * twiddlers[n] + FFTarray[i].re * twiddlers[n + 1]); #else tempr = fac * (FFTarray[i].re * c - FFTarray[i].im * s); tempi = fac * (FFTarray[i].im * c + FFTarray[i].re * s); #endif /* fill in output values */ out_data [1535 - n] = tempr; if (i < 256) out_data[1536 + n] = tempr; else out_data[n - 512] = -tempr; out_data [512 + n] = tempi; if (i < 256) out_data[511 - n] = -tempi; else out_data[2559 - n] = tempi; #ifndef USE_TWIDDLE_TABLE /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } } #ifdef LD_DEC void IMDCT_1024(mdct_info *mdct, fftw_real *in_data, fftw_real *out_data) { fftw_complex FFTarray[256]; /* the array for in-place FFT */ real_t tempr, tempi, fac; #ifdef USE_TWIDDLE_TABLE /* use twiddle factor tables */ real_t *twiddlers = mdct->twiddlers; #else /* temps for pre and post twiddle */ real_t cosfreq8, sinfreq8, c, s, cold, cfreq, sfreq; #endif uint16_t i; /* Choosing to allocate 2/N factor to Inverse Xform! */ fac = 0.001953125f; #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relation in pre-twiddle */ cfreq = 0.9999811752826011426f; sfreq = 0.0061358846491544753f; cosfreq8 = 0.99999970586288221916f; sinfreq8 = 0.00076699031874270453f; c = cosfreq8; s = sinfreq8; #endif for (i = 0; i < 256; i++) { uint16_t n = i << 1; uint16_t unscr = mdct->unscrambled[i]; tempr = -in_data[n]; tempi = in_data[511 - n]; /* calculate pre-twiddled FFT input */ #ifdef USE_TWIDDLE_TABLE FFTarray[unscr].re = tempr * twiddlers[n] - tempi * twiddlers[n + 1]; FFTarray[unscr].im = tempi * twiddlers[n] + tempr * twiddlers[n + 1]; #else FFTarray[unscr].re = tempr * c - tempi * s; FFTarray[unscr].im = tempi * c + tempr * s; /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } /* Perform in-place complex IFFT of length N/4 */ pfftwi_256(FFTarray); #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relations in post-twiddle */ c = cosfreq8; s = sinfreq8; #endif /* post-twiddle FFT output and then get output data */ for (i = 0; i < 256; i++) { uint16_t n = i << 1; /* get post-twiddled FFT output */ #ifdef USE_TWIDDLE_TABLE tempr = fac * (FFTarray[i].re * twiddlers[n] - FFTarray[i].im * twiddlers[n + 1]); tempi = fac * (FFTarray[i].im * twiddlers[n] + FFTarray[i].re * twiddlers[n + 1]); #else tempr = fac * (FFTarray[i].re * c - FFTarray[i].im * s); tempi = fac * (FFTarray[i].im * c + FFTarray[i].re * s); #endif /* fill in output values */ out_data [767 - n] = tempr; if (i < 128) out_data[768 + n] = tempr; else out_data[n - 256] = -tempr; out_data [256 + n] = tempi; if (i < 128) out_data[255 - n] = -tempi; else out_data[1279 - n] = tempi; #ifndef USE_TWIDDLE_TABLE /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } } #endif void IMDCT_256(mdct_info *mdct, fftw_real *in_data, fftw_real *out_data) { fftw_complex FFTarray[64]; /* the array for in-place FFT */ real_t tempr, tempi, fac; #ifdef USE_TWIDDLE_TABLE /* use twiddle factor tables */ real_t *twiddlers = mdct->twiddlers; #else /* temps for pre and post twiddle */ real_t cosfreq8, sinfreq8, c, s, cold, cfreq, sfreq; #endif uint16_t i; /* Choosing to allocate 2/N factor to Inverse Xform! */ fac = 0.0078125f; /* remaining 2/N from 4/N IFFT factor */ #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relation in pre-twiddle */ cfreq = 0.99969881772994995f; sfreq = 0.024541229009628296f; cosfreq8 = 0.99999529123306274f; sinfreq8 = 0.0030679568483393833f; c = cosfreq8; s = sinfreq8; #endif for (i = 0; i < 64; i++) { uint16_t n = i << 1; uint16_t unscr = mdct->unscrambled[i]; tempr = -in_data[n]; tempi = in_data[127 - n]; /* calculate pre-twiddled FFT input */ #ifdef USE_TWIDDLE_TABLE FFTarray[unscr].re = tempr * twiddlers[n] - tempi * twiddlers[n + 1]; FFTarray[unscr].im = tempi * twiddlers[n] + tempr * twiddlers[n + 1]; #else FFTarray[unscr].re = tempr * c - tempi * s; FFTarray[unscr].im = tempi * c + tempr * s; /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } /* Perform in-place complex IFFT of length N/4 */ pfftwi_64(FFTarray); #ifndef USE_TWIDDLE_TABLE /* prepare for recurrence relations in post-twiddle */ c = cosfreq8; s = sinfreq8; #endif /* post-twiddle FFT output and then get output data */ for (i = 0; i < 64; i++) { uint16_t n = i << 1; #ifdef USE_TWIDDLE_TABLE /* get post-twiddled FFT output */ tempr = fac * (FFTarray[i].re * twiddlers[n] - FFTarray[i].im * twiddlers[n + 1]); tempi = fac * (FFTarray[i].im * twiddlers[n] + FFTarray[i].re * twiddlers[n + 1]); #else /* get post-twiddled FFT output */ tempr = fac * (FFTarray[i].re * c - FFTarray[i].im * s); tempi = fac * (FFTarray[i].im * c + FFTarray[i].re * s); #endif /* fill in output values */ out_data [191 - n] = tempr; if (i < 32) out_data[192 + n] = tempr; else out_data[n - 64] = -tempr; out_data [64 + n] = tempi; if (i < 32) out_data[63 - n] = -tempi; else out_data[319 - n] = tempi; #ifndef USE_TWIDDLE_TABLE /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; #endif } } /* Fast FFT */ #ifdef _MSC_VER #pragma warning(disable:4305) #endif static fftw_real K382683432[1] = {FFTW_KONST(+0.382683432365089771728459984030398866761344562)}; static fftw_real K923879532[1] = {FFTW_KONST(+0.923879532511286756128183189396788286822416626)}; static fftw_real K707106781[1] = {FFTW_KONST(+0.707106781186547524400844362104849039284835938)}; static fftw_real K831469612[1] = {FFTW_KONST(+0.831469612302545237078788377617905756738560812)}; static fftw_real K555570233[1] = {FFTW_KONST(+0.555570233019602224742830813948532874374937191)}; static fftw_real K195090322[1] = {FFTW_KONST(+0.195090322016128267848284868477022240927691618)}; static fftw_real K980785280[1] = {FFTW_KONST(+0.980785280403230449126182236134239036973933731)}; static fftw_complex PFFTW(W_64)[30] = { { 0.995184726672197, 0.0980171403295606 }, { 0.98078528040323, 0.195090322016128 }, { 0.98078528040323, 0.195090322016128 }, { 0.923879532511287, 0.38268343236509 }, { 0.956940335732209, 0.290284677254462 }, { 0.831469612302545, 0.555570233019602 }, { 0.923879532511287, 0.38268343236509 }, { 0.707106781186548, 0.707106781186547 }, { 0.881921264348355, 0.471396736825998 }, { 0.555570233019602, 0.831469612302545 }, { 0.831469612302545, 0.555570233019602 }, { 0.38268343236509, 0.923879532511287 }, { 0.773010453362737, 0.634393284163645 }, { 0.195090322016128, 0.98078528040323 }, { 0.707106781186548, 0.707106781186547 }, { 6.12303176911189e-17, 1 }, { 0.634393284163645, 0.773010453362737 }, { -0.195090322016128, 0.98078528040323 }, { 0.555570233019602, 0.831469612302545 }, { -0.38268343236509, 0.923879532511287 }, { 0.471396736825998, 0.881921264348355 }, { -0.555570233019602, 0.831469612302545 }, { 0.38268343236509, 0.923879532511287 }, { -0.707106781186547, 0.707106781186548 }, { 0.290284677254462, 0.956940335732209 }, { -0.831469612302545, 0.555570233019602 }, { 0.195090322016128, 0.98078528040323 }, { -0.923879532511287, 0.38268343236509 }, { 0.0980171403295608, 0.995184726672197 }, { -0.98078528040323, 0.195090322016129 }, }; static fftw_complex PFFTW(W_128)[62] = { { 0.998795456205172, 0.049067674327418 }, { 0.995184726672197, 0.0980171403295606 }, { 0.995184726672197, 0.0980171403295606 }, { 0.98078528040323, 0.195090322016128 }, { 0.989176509964781, 0.146730474455362 }, { 0.956940335732209, 0.290284677254462 }, { 0.98078528040323, 0.195090322016128 }, { 0.923879532511287, 0.38268343236509 }, { 0.970031253194544, 0.242980179903264 }, { 0.881921264348355, 0.471396736825998 }, { 0.956940335732209, 0.290284677254462 }, { 0.831469612302545, 0.555570233019602 }, { 0.941544065183021, 0.33688985339222 }, { 0.773010453362737, 0.634393284163645 }, { 0.923879532511287, 0.38268343236509 }, { 0.707106781186548, 0.707106781186547 }, { 0.903989293123443, 0.427555093430282 }, { 0.634393284163645, 0.773010453362737 }, { 0.881921264348355, 0.471396736825998 }, { 0.555570233019602, 0.831469612302545 }, { 0.857728610000272, 0.514102744193222 }, { 0.471396736825998, 0.881921264348355 }, { 0.831469612302545, 0.555570233019602 }, { 0.38268343236509, 0.923879532511287 }, { 0.803207531480645, 0.595699304492433 }, { 0.290284677254462, 0.956940335732209 }, { 0.773010453362737, 0.634393284163645 }, { 0.195090322016128, 0.98078528040323 }, { 0.740951125354959, 0.671558954847018 }, { 0.0980171403295608, 0.995184726672197 }, { 0.707106781186548, 0.707106781186547 }, { 6.12303176911189e-17, 1 }, { 0.671558954847018, 0.740951125354959 }, { -0.0980171403295606, 0.995184726672197 }, { 0.634393284163645, 0.773010453362737 }, { -0.195090322016128, 0.98078528040323 }, { 0.595699304492433, 0.803207531480645 }, { -0.290284677254462, 0.956940335732209 }, { 0.555570233019602, 0.831469612302545 }, { -0.38268343236509, 0.923879532511287 }, { 0.514102744193222, 0.857728610000272 }, { -0.471396736825998, 0.881921264348355 }, { 0.471396736825998, 0.881921264348355 }, { -0.555570233019602, 0.831469612302545 }, { 0.427555093430282, 0.903989293123443 }, { -0.634393284163645, 0.773010453362737 }, { 0.38268343236509, 0.923879532511287 }, { -0.707106781186547, 0.707106781186548 }, { 0.33688985339222, 0.941544065183021 }, { -0.773010453362737, 0.634393284163645 }, { 0.290284677254462, 0.956940335732209 }, { -0.831469612302545, 0.555570233019602 }, { 0.242980179903264, 0.970031253194544 }, { -0.881921264348355, 0.471396736825998 }, { 0.195090322016128, 0.98078528040323 }, { -0.923879532511287, 0.38268343236509 }, { 0.146730474455362, 0.989176509964781 }, { -0.956940335732209, 0.290284677254462 }, { 0.0980171403295608, 0.995184726672197 }, { -0.98078528040323, 0.195090322016129 }, { 0.0490676743274181, 0.998795456205172 }, { -0.995184726672197, 0.0980171403295608 }, }; static fftw_complex PFFTW(W_256)[126] = { { 0.999698818696204, 0.0245412285229123 }, { 0.998795456205172, 0.049067674327418 }, { 0.998795456205172, 0.049067674327418 }, { 0.995184726672197, 0.0980171403295606 }, { 0.99729045667869, 0.0735645635996674 }, { 0.989176509964781, 0.146730474455362 }, { 0.995184726672197, 0.0980171403295606 }, { 0.98078528040323, 0.195090322016128 }, { 0.99247953459871, 0.122410675199216 }, { 0.970031253194544, 0.242980179903264 }, { 0.989176509964781, 0.146730474455362 }, { 0.956940335732209, 0.290284677254462 }, { 0.985277642388941, 0.170961888760301 }, { 0.941544065183021, 0.33688985339222 }, { 0.98078528040323, 0.195090322016128 }, { 0.923879532511287, 0.38268343236509 }, { 0.975702130038529, 0.21910124015687 }, { 0.903989293123443, 0.427555093430282 }, { 0.970031253194544, 0.242980179903264 }, { 0.881921264348355, 0.471396736825998 }, { 0.96377606579544, 0.266712757474898 }, { 0.857728610000272, 0.514102744193222 }, { 0.956940335732209, 0.290284677254462 }, { 0.831469612302545, 0.555570233019602 }, { 0.949528180593037, 0.313681740398892 }, { 0.803207531480645, 0.595699304492433 }, { 0.941544065183021, 0.33688985339222 }, { 0.773010453362737, 0.634393284163645 }, { 0.932992798834739, 0.359895036534988 }, { 0.740951125354959, 0.671558954847018 }, { 0.923879532511287, 0.38268343236509 }, { 0.707106781186548, 0.707106781186547 }, { 0.914209755703531, 0.40524131400499 }, { 0.671558954847018, 0.740951125354959 }, { 0.903989293123443, 0.427555093430282 }, { 0.634393284163645, 0.773010453362737 }, { 0.893224301195515, 0.449611329654607 }, { 0.595699304492433, 0.803207531480645 }, { 0.881921264348355, 0.471396736825998 }, { 0.555570233019602, 0.831469612302545 }, { 0.870086991108711, 0.492898192229784 }, { 0.514102744193222, 0.857728610000272 }, { 0.857728610000272, 0.514102744193222 }, { 0.471396736825998, 0.881921264348355 }, { 0.844853565249707, 0.534997619887097 }, { 0.427555093430282, 0.903989293123443 }, { 0.831469612302545, 0.555570233019602 }, { 0.38268343236509, 0.923879532511287 }, { 0.817584813151584, 0.575808191417845 }, { 0.33688985339222, 0.941544065183021 }, { 0.803207531480645, 0.595699304492433 }, { 0.290284677254462, 0.956940335732209 }, { 0.788346427626606, 0.615231590580627 }, { 0.242980179903264, 0.970031253194544 }, { 0.773010453362737, 0.634393284163645 }, { 0.195090322016128, 0.98078528040323 }, { 0.757208846506485, 0.653172842953777 }, { 0.146730474455362, 0.989176509964781 }, { 0.740951125354959, 0.671558954847018 }, { 0.0980171403295608, 0.995184726672197 }, { 0.724247082951467, 0.689540544737067 }, { 0.0490676743274181, 0.998795456205172 }, { 0.707106781186548, 0.707106781186547 }, { 6.12303176911189e-17, 1 }, { 0.689540544737067, 0.724247082951467 }, { -0.049067674327418, 0.998795456205172 }, { 0.671558954847018, 0.740951125354959 }, { -0.0980171403295606, 0.995184726672197 }, { 0.653172842953777, 0.757208846506484 }, { -0.146730474455362, 0.989176509964781 }, { 0.634393284163645, 0.773010453362737 }, { -0.195090322016128, 0.98078528040323 }, { 0.615231590580627, 0.788346427626606 }, { -0.242980179903264, 0.970031253194544 }, { 0.595699304492433, 0.803207531480645 }, { -0.290284677254462, 0.956940335732209 }, { 0.575808191417845, 0.817584813151584 }, { -0.33688985339222, 0.941544065183021 }, { 0.555570233019602, 0.831469612302545 }, { -0.38268343236509, 0.923879532511287 }, { 0.534997619887097, 0.844853565249707 }, { -0.427555093430282, 0.903989293123443 }, { 0.514102744193222, 0.857728610000272 }, { -0.471396736825998, 0.881921264348355 }, { 0.492898192229784, 0.870086991108711 }, { -0.514102744193222, 0.857728610000272 }, { 0.471396736825998, 0.881921264348355 }, { -0.555570233019602, 0.831469612302545 }, { 0.449611329654607, 0.893224301195515 }, { -0.595699304492433, 0.803207531480645 }, { 0.427555093430282, 0.903989293123443 }, { -0.634393284163645, 0.773010453362737 }, { 0.40524131400499, 0.914209755703531 }, { -0.671558954847018, 0.740951125354959 }, { 0.38268343236509, 0.923879532511287 }, { -0.707106781186547, 0.707106781186548 }, { 0.359895036534988, 0.932992798834739 }, { -0.740951125354959, 0.671558954847019 }, { 0.33688985339222, 0.941544065183021 }, { -0.773010453362737, 0.634393284163645 }, { 0.313681740398892, 0.949528180593037 }, { -0.803207531480645, 0.595699304492433 }, { 0.290284677254462, 0.956940335732209 }, { -0.831469612302545, 0.555570233019602 }, { 0.266712757474898, 0.96377606579544 }, { -0.857728610000272, 0.514102744193222 }, { 0.242980179903264, 0.970031253194544 }, { -0.881921264348355, 0.471396736825998 }, { 0.21910124015687, 0.975702130038529 }, { -0.903989293123443, 0.427555093430282 }, { 0.195090322016128, 0.98078528040323 }, { -0.923879532511287, 0.38268343236509 }, { 0.170961888760301, 0.985277642388941 }, { -0.941544065183021, 0.33688985339222 }, { 0.146730474455362, 0.989176509964781 }, { -0.956940335732209, 0.290284677254462 }, { 0.122410675199216, 0.99247953459871 }, { -0.970031253194544, 0.242980179903264 }, { 0.0980171403295608, 0.995184726672197 }, { -0.98078528040323, 0.195090322016129 }, { 0.0735645635996675, 0.99729045667869 }, { -0.989176509964781, 0.146730474455362 }, { 0.0490676743274181, 0.998795456205172 }, { -0.995184726672197, 0.0980171403295608 }, { 0.0245412285229123, 0.999698818696204 }, { -0.998795456205172, 0.049067674327418 }, }; static fftw_complex PFFTW(W_512)[254] = { { 0.999924701839145, 0.0122715382857199 }, { 0.999698818696204, 0.0245412285229123 }, { 0.999698818696204, 0.0245412285229123 }, { 0.998795456205172, 0.049067674327418 }, { 0.99932238458835, 0.0368072229413588 }, { 0.99729045667869, 0.0735645635996674 }, { 0.998795456205172, 0.049067674327418 }, { 0.995184726672197, 0.0980171403295606 }, { 0.998118112900149, 0.0613207363022086 }, { 0.99247953459871, 0.122410675199216 }, { 0.99729045667869, 0.0735645635996674 }, { 0.989176509964781, 0.146730474455362 }, { 0.996312612182778, 0.0857973123444399 }, { 0.985277642388941, 0.170961888760301 }, { 0.995184726672197, 0.0980171403295606 }, { 0.98078528040323, 0.195090322016128 }, { 0.993906970002356, 0.110222207293883 }, { 0.975702130038529, 0.21910124015687 }, { 0.99247953459871, 0.122410675199216 }, { 0.970031253194544, 0.242980179903264 }, { 0.99090263542778, 0.134580708507126 }, { 0.96377606579544, 0.266712757474898 }, { 0.989176509964781, 0.146730474455362 }, { 0.956940335732209, 0.290284677254462 }, { 0.987301418157858, 0.158858143333861 }, { 0.949528180593037, 0.313681740398892 }, { 0.985277642388941, 0.170961888760301 }, { 0.941544065183021, 0.33688985339222 }, { 0.983105487431216, 0.183039887955141 }, { 0.932992798834739, 0.359895036534988 }, { 0.98078528040323, 0.195090322016128 }, { 0.923879532511287, 0.38268343236509 }, { 0.978317370719628, 0.207111376192219 }, { 0.914209755703531, 0.40524131400499 }, { 0.975702130038529, 0.21910124015687 }, { 0.903989293123443, 0.427555093430282 }, { 0.97293995220556, 0.231058108280671 }, { 0.893224301195515, 0.449611329654607 }, { 0.970031253194544, 0.242980179903264 }, { 0.881921264348355, 0.471396736825998 }, { 0.966976471044852, 0.254865659604515 }, { 0.870086991108711, 0.492898192229784 }, { 0.96377606579544, 0.266712757474898 }, { 0.857728610000272, 0.514102744193222 }, { 0.960430519415566, 0.278519689385053 }, { 0.844853565249707, 0.534997619887097 }, { 0.956940335732209, 0.290284677254462 }, { 0.831469612302545, 0.555570233019602 }, { 0.953306040354194, 0.302005949319228 }, { 0.817584813151584, 0.575808191417845 }, { 0.949528180593037, 0.313681740398892 }, { 0.803207531480645, 0.595699304492433 }, { 0.945607325380521, 0.325310292162263 }, { 0.788346427626606, 0.615231590580627 }, { 0.941544065183021, 0.33688985339222 }, { 0.773010453362737, 0.634393284163645 }, { 0.937339011912575, 0.348418680249435 }, { 0.757208846506485, 0.653172842953777 }, { 0.932992798834739, 0.359895036534988 }, { 0.740951125354959, 0.671558954847018 }, { 0.928506080473216, 0.371317193951838 }, { 0.724247082951467, 0.689540544737067 }, { 0.923879532511287, 0.38268343236509 }, { 0.707106781186548, 0.707106781186547 }, { 0.919113851690058, 0.393992040061048 }, { 0.689540544737067, 0.724247082951467 }, { 0.914209755703531, 0.40524131400499 }, { 0.671558954847018, 0.740951125354959 }, { 0.909167983090522, 0.416429560097637 }, { 0.653172842953777, 0.757208846506484 }, { 0.903989293123443, 0.427555093430282 }, { 0.634393284163645, 0.773010453362737 }, { 0.898674465693954, 0.438616238538528 }, { 0.615231590580627, 0.788346427626606 }, { 0.893224301195515, 0.449611329654607 }, { 0.595699304492433, 0.803207531480645 }, { 0.887639620402854, 0.46053871095824 }, { 0.575808191417845, 0.817584813151584 }, { 0.881921264348355, 0.471396736825998 }, { 0.555570233019602, 0.831469612302545 }, { 0.876070094195407, 0.482183772079123 }, { 0.534997619887097, 0.844853565249707 }, { 0.870086991108711, 0.492898192229784 }, { 0.514102744193222, 0.857728610000272 }, { 0.863972856121587, 0.503538383725718 }, { 0.492898192229784, 0.870086991108711 }, { 0.857728610000272, 0.514102744193222 }, { 0.471396736825998, 0.881921264348355 }, { 0.851355193105265, 0.524589682678469 }, { 0.449611329654607, 0.893224301195515 }, { 0.844853565249707, 0.534997619887097 }, { 0.427555093430282, 0.903989293123443 }, { 0.838224705554838, 0.545324988422046 }, { 0.40524131400499, 0.914209755703531 }, { 0.831469612302545, 0.555570233019602 }, { 0.38268343236509, 0.923879532511287 }, { 0.824589302785025, 0.565731810783613 }, { 0.359895036534988, 0.932992798834739 }, { 0.817584813151584, 0.575808191417845 }, { 0.33688985339222, 0.941544065183021 }, { 0.810457198252595, 0.585797857456439 }, { 0.313681740398892, 0.949528180593037 }, { 0.803207531480645, 0.595699304492433 }, { 0.290284677254462, 0.956940335732209 }, { 0.795836904608884, 0.605511041404326 }, { 0.266712757474898, 0.96377606579544 }, { 0.788346427626606, 0.615231590580627 }, { 0.242980179903264, 0.970031253194544 }, { 0.780737228572094, 0.624859488142386 }, { 0.21910124015687, 0.975702130038529 }, { 0.773010453362737, 0.634393284163645 }, { 0.195090322016128, 0.98078528040323 }, { 0.765167265622459, 0.643831542889791 }, { 0.170961888760301, 0.985277642388941 }, { 0.757208846506485, 0.653172842953777 }, { 0.146730474455362, 0.989176509964781 }, { 0.749136394523459, 0.662415777590172 }, { 0.122410675199216, 0.99247953459871 }, { 0.740951125354959, 0.671558954847018 }, { 0.0980171403295608, 0.995184726672197 }, { 0.732654271672413, 0.680600997795453 }, { 0.0735645635996675, 0.99729045667869 }, { 0.724247082951467, 0.689540544737067 }, { 0.0490676743274181, 0.998795456205172 }, { 0.715730825283819, 0.698376249408973 }, { 0.0245412285229123, 0.999698818696204 }, { 0.707106781186548, 0.707106781186547 }, { 6.12303176911189e-17, 1 }, { 0.698376249408973, 0.715730825283819 }, { -0.0245412285229121, 0.999698818696204 }, { 0.689540544737067, 0.724247082951467 }, { -0.049067674327418, 0.998795456205172 }, { 0.680600997795453, 0.732654271672413 }, { -0.0735645635996673, 0.99729045667869 }, { 0.671558954847018, 0.740951125354959 }, { -0.0980171403295606, 0.995184726672197 }, { 0.662415777590172, 0.749136394523459 }, { -0.122410675199216, 0.99247953459871 }, { 0.653172842953777, 0.757208846506484 }, { -0.146730474455362, 0.989176509964781 }, { 0.643831542889791, 0.765167265622459 }, { -0.170961888760301, 0.985277642388941 }, { 0.634393284163645, 0.773010453362737 }, { -0.195090322016128, 0.98078528040323 }, { 0.624859488142386, 0.780737228572094 }, { -0.21910124015687, 0.975702130038529 }, { 0.615231590580627, 0.788346427626606 }, { -0.242980179903264, 0.970031253194544 }, { 0.605511041404326, 0.795836904608883 }, { -0.266712757474898, 0.96377606579544 }, { 0.595699304492433, 0.803207531480645 }, { -0.290284677254462, 0.956940335732209 }, { 0.585797857456439, 0.810457198252595 }, { -0.313681740398891, 0.949528180593037 }, { 0.575808191417845, 0.817584813151584 }, { -0.33688985339222, 0.941544065183021 }, { 0.565731810783613, 0.824589302785025 }, { -0.359895036534988, 0.932992798834739 }, { 0.555570233019602, 0.831469612302545 }, { -0.38268343236509, 0.923879532511287 }, { 0.545324988422046, 0.838224705554838 }, { -0.40524131400499, 0.914209755703531 }, { 0.534997619887097, 0.844853565249707 }, { -0.427555093430282, 0.903989293123443 }, { 0.524589682678469, 0.851355193105265 }, { -0.449611329654607, 0.893224301195515 }, { 0.514102744193222, 0.857728610000272 }, { -0.471396736825998, 0.881921264348355 }, { 0.503538383725718, 0.863972856121587 }, { -0.492898192229784, 0.870086991108711 }, { 0.492898192229784, 0.870086991108711 }, { -0.514102744193222, 0.857728610000272 }, { 0.482183772079123, 0.876070094195407 }, { -0.534997619887097, 0.844853565249707 }, { 0.471396736825998, 0.881921264348355 }, { -0.555570233019602, 0.831469612302545 }, { 0.46053871095824, 0.887639620402854 }, { -0.575808191417845, 0.817584813151584 }, { 0.449611329654607, 0.893224301195515 }, { -0.595699304492433, 0.803207531480645 }, { 0.438616238538528, 0.898674465693954 }, { -0.615231590580627, 0.788346427626606 }, { 0.427555093430282, 0.903989293123443 }, { -0.634393284163645, 0.773010453362737 }, { 0.416429560097637, 0.909167983090522 }, { -0.653172842953777, 0.757208846506485 }, { 0.40524131400499, 0.914209755703531 }, { -0.671558954847018, 0.740951125354959 }, { 0.393992040061048, 0.919113851690058 }, { -0.689540544737067, 0.724247082951467 }, { 0.38268343236509, 0.923879532511287 }, { -0.707106781186547, 0.707106781186548 }, { 0.371317193951838, 0.928506080473215 }, { -0.724247082951467, 0.689540544737067 }, { 0.359895036534988, 0.932992798834739 }, { -0.740951125354959, 0.671558954847019 }, { 0.348418680249435, 0.937339011912575 }, { -0.757208846506485, 0.653172842953777 }, { 0.33688985339222, 0.941544065183021 }, { -0.773010453362737, 0.634393284163645 }, { 0.325310292162263, 0.945607325380521 }, { -0.788346427626606, 0.615231590580627 }, { 0.313681740398892, 0.949528180593037 }, { -0.803207531480645, 0.595699304492433 }, { 0.302005949319228, 0.953306040354194 }, { -0.817584813151584, 0.575808191417845 }, { 0.290284677254462, 0.956940335732209 }, { -0.831469612302545, 0.555570233019602 }, { 0.278519689385053, 0.960430519415566 }, { -0.844853565249707, 0.534997619887097 }, { 0.266712757474898, 0.96377606579544 }, { -0.857728610000272, 0.514102744193222 }, { 0.254865659604515, 0.966976471044852 }, { -0.870086991108711, 0.492898192229784 }, { 0.242980179903264, 0.970031253194544 }, { -0.881921264348355, 0.471396736825998 }, { 0.231058108280671, 0.97293995220556 }, { -0.893224301195515, 0.449611329654607 }, { 0.21910124015687, 0.975702130038529 }, { -0.903989293123443, 0.427555093430282 }, { 0.207111376192219, 0.978317370719628 }, { -0.914209755703531, 0.40524131400499 }, { 0.195090322016128, 0.98078528040323 }, { -0.923879532511287, 0.38268343236509 }, { 0.183039887955141, 0.983105487431216 }, { -0.932992798834739, 0.359895036534988 }, { 0.170961888760301, 0.985277642388941 }, { -0.941544065183021, 0.33688985339222 }, { 0.158858143333861, 0.987301418157858 }, { -0.949528180593037, 0.313681740398891 }, { 0.146730474455362, 0.989176509964781 }, { -0.956940335732209, 0.290284677254462 }, { 0.134580708507126, 0.99090263542778 }, { -0.96377606579544, 0.266712757474898 }, { 0.122410675199216, 0.99247953459871 }, { -0.970031253194544, 0.242980179903264 }, { 0.110222207293883, 0.993906970002356 }, { -0.975702130038528, 0.21910124015687 }, { 0.0980171403295608, 0.995184726672197 }, { -0.98078528040323, 0.195090322016129 }, { 0.0857973123444399, 0.996312612182778 }, { -0.985277642388941, 0.170961888760301 }, { 0.0735645635996675, 0.99729045667869 }, { -0.989176509964781, 0.146730474455362 }, { 0.0613207363022086, 0.998118112900149 }, { -0.99247953459871, 0.122410675199216 }, { 0.0490676743274181, 0.998795456205172 }, { -0.995184726672197, 0.0980171403295608 }, { 0.036807222941359, 0.99932238458835 }, { -0.99729045667869, 0.0735645635996677 }, { 0.0245412285229123, 0.999698818696204 }, { -0.998795456205172, 0.049067674327418 }, { 0.0122715382857199, 0.999924701839145 }, { -0.999698818696204, 0.0245412285229123 }, }; static void PFFTW(16) (fftw_complex * input) { fftw_real tmp332; fftw_real tmp331; fftw_real tmp330; fftw_real tmp329; fftw_real tmp328; fftw_real tmp327; fftw_real tmp326; fftw_real tmp325; fftw_real tmp324; fftw_real tmp323; fftw_real tmp322; fftw_real tmp321; fftw_real tmp320; fftw_real tmp319; fftw_real tmp318; fftw_real tmp317; fftw_real tmp316; fftw_real tmp315; fftw_real tmp314; fftw_real tmp313; fftw_real tmp312; fftw_real tmp311; fftw_real tmp310; fftw_real tmp309; fftw_real tmp308; fftw_real tmp307; fftw_real tmp306; fftw_real tmp305; fftw_real tmp304; fftw_real tmp303; fftw_real tmp302; fftw_real tmp301; fftw_real st1; fftw_real st2; fftw_real st3; fftw_real st4; fftw_real st5; fftw_real st6; fftw_real st7; fftw_real st8; st8 = c_re(input[0]); st8 = st8 - c_re(input[8]); st7 = c_im(input[4]); st7 = st7 - c_im(input[12]); st6 = c_re(input[4]); st5 = st8 - st7; st8 = st8 + st7; st6 = st6 - c_re(input[12]); st4 = c_im(input[0]); st4 = st4 - c_im(input[8]); st3 = c_re(input[0]); st2 = st6 + st4; st4 = st4 - st6; st3 = st3 + c_re(input[8]); st1 = c_re(input[4]); st1 = st1 + c_re(input[12]); st7 = c_im(input[0]); st6 = st3 + st1; st3 = st3 - st1; st7 = st7 + c_im(input[8]); st1 = c_im(input[4]); st1 = st1 + c_im(input[12]); tmp301 = st4; st4 = c_re(input[2]); tmp302 = st8; st8 = st7 + st1; st7 = st7 - st1; st4 = st4 + c_re(input[10]); st1 = c_re(input[6]); st1 = st1 + c_re(input[14]); tmp303 = st2; st2 = c_im(input[2]); tmp304 = st5; st5 = st4 + st1; st4 = st4 - st1; st2 = st2 + c_im(input[10]); st1 = st6 + st5; st6 = st6 - st5; st5 = st4 + st7; st7 = st7 - st4; st4 = c_im(input[6]); st4 = st4 + c_im(input[14]); tmp305 = st5; st5 = c_re(input[6]); tmp306 = st7; st7 = st2 + st4; st2 = st2 - st4; st4 = st8 - st7; st8 = st8 + st7; st7 = st3 - st2; st3 = st3 + st2; st5 = st5 - c_re(input[14]); st2 = c_im(input[2]); st2 = st2 - c_im(input[10]); tmp307 = st3; st3 = c_re(input[2]); tmp308 = st6; st6 = st5 + st2; st2 = st2 - st5; st3 = st3 - c_re(input[10]); st5 = c_im(input[6]); st5 = st5 - c_im(input[14]); tmp309 = st7; st7 = c_re(input[5]); tmp310 = st8; st8 = st3 - st5; st3 = st3 + st5; st5 = st6 - st8; st6 = st6 + st8; st5 = st5 * K707106781[0]; st8 = st2 + st3; st6 = st6 * K707106781[0]; st2 = st2 - st3; st8 = st8 * K707106781[0]; st7 = st7 - c_re(input[13]); st2 = st2 * K707106781[0]; st3 = tmp304 + st5; tmp311 = st4; st4 = tmp303 + st6; st6 = tmp303 - st6; st5 = tmp304 - st5; tmp312 = st1; st1 = tmp302 - st8; st8 = tmp302 + st8; tmp313 = st8; st8 = tmp301 + st2; st2 = tmp301 - st2; tmp314 = st2; st2 = c_im(input[1]); st2 = st2 - c_im(input[9]); tmp315 = st8; st8 = c_re(input[1]); tmp316 = st1; st1 = st7 + st2; st2 = st2 - st7; st7 = st1 * K923879532[0]; st8 = st8 - c_re(input[9]); st1 = st1 * K382683432[0]; tmp317 = st5; st5 = c_im(input[5]); tmp318 = st6; st6 = st2 * K923879532[0]; st5 = st5 - c_im(input[13]); st2 = st2 * K382683432[0]; tmp319 = st4; st4 = st8 - st5; st8 = st8 + st5; st5 = st4 * K382683432[0]; tmp320 = st3; st3 = c_re(input[7]); st4 = st4 * K923879532[0]; st7 = st7 + st5; st5 = st8 * K382683432[0]; st1 = st1 - st4; st8 = st8 * K923879532[0]; st6 = st6 - st5; st2 = st2 + st8; st3 = st3 - c_re(input[15]); st4 = c_im(input[3]); st4 = st4 - c_im(input[11]); st5 = c_re(input[3]); st8 = st3 + st4; st4 = st4 - st3; st3 = st8 * K382683432[0]; st5 = st5 - c_re(input[11]); st8 = st8 * K923879532[0]; tmp321 = st2; st2 = c_im(input[7]); tmp322 = st6; st6 = st4 * K382683432[0]; st2 = st2 - c_im(input[15]); st4 = st4 * K923879532[0]; tmp323 = st1; st1 = st5 - st2; st5 = st5 + st2; st2 = st1 * K923879532[0]; tmp324 = st7; st7 = c_re(input[1]); st1 = st1 * K382683432[0]; st3 = st3 + st2; st2 = st5 * K923879532[0]; st1 = st1 - st8; st5 = st5 * K382683432[0]; st6 = st6 - st2; st4 = st4 + st5; st7 = st7 + c_re(input[9]); st8 = tmp324 - st3; st3 = tmp324 + st3; st2 = tmp320 - st8; st8 = tmp320 + st8; st5 = tmp319 - st3; st3 = tmp319 + st3; tmp325 = st3; st3 = tmp323 + st1; st1 = tmp323 - st1; tmp326 = st5; st5 = tmp318 - st3; st3 = tmp318 + st3; tmp327 = st5; st5 = tmp317 - st1; st1 = tmp317 + st1; tmp328 = st3; st3 = tmp322 - st6; tmp329 = st5; st5 = tmp321 + st4; tmp330 = st1; st1 = tmp316 - st3; st3 = tmp316 + st3; tmp331 = st2; st2 = tmp313 - st5; st5 = tmp313 + st5; st6 = tmp322 + st6; c_re(input[9]) = st2; c_re(input[1]) = st5; st2 = tmp315 - st6; st6 = tmp315 + st6; st4 = tmp321 - st4; st5 = c_re(input[5]); c_re(input[5]) = st3; st5 = st5 + c_re(input[13]); c_re(input[13]) = st1; st1 = st7 + st5; st7 = st7 - st5; st3 = tmp314 - st4; st4 = tmp314 + st4; st5 = c_im(input[1]); c_im(input[1]) = st6; st5 = st5 + c_im(input[9]); c_im(input[9]) = st2; st2 = c_im(input[5]); c_im(input[5]) = st3; st2 = st2 + c_im(input[13]); c_im(input[13]) = st4; st6 = st5 - st2; st5 = st5 + st2; st3 = c_re(input[3]); c_re(input[3]) = st8; st3 = st3 + c_re(input[11]); c_re(input[11]) = tmp331; st8 = c_re(input[7]); c_re(input[7]) = tmp330; st8 = st8 + c_re(input[15]); c_re(input[15]) = tmp329; st4 = st3 + st8; st3 = st3 - st8; st2 = st1 + st4; st1 = st1 - st4; st8 = st3 + st6; st6 = st6 - st3; st4 = tmp312 - st2; st2 = tmp312 + st2; st3 = tmp311 - st1; c_re(input[8]) = st4; c_re(input[0]) = st2; c_im(input[4]) = st3; st1 = st1 + tmp311; st4 = c_im(input[3]); c_im(input[3]) = tmp328; c_im(input[12]) = st1; st4 = st4 + c_im(input[11]); c_im(input[11]) = tmp327; st2 = c_im(input[7]); c_im(input[7]) = tmp326; st2 = st2 + c_im(input[15]); c_im(input[15]) = tmp325; st3 = st4 - st2; st4 = st4 + st2; st1 = st7 - st3; st2 = st5 - st4; tmp332 = st2; st2 = st8 - st1; st8 = st8 + st1; st2 = st2 * K707106781[0]; st5 = st5 + st4; st8 = st8 * K707106781[0]; st7 = st7 + st3; st3 = tmp310 + st5; st4 = st6 - st7; st6 = st6 + st7; c_im(input[0]) = st3; st4 = st4 * K707106781[0]; st5 = tmp310 - st5; st6 = st6 * K707106781[0]; st1 = tmp309 - st2; c_im(input[8]) = st5; c_re(input[14]) = st1; st2 = tmp309 + st2; st7 = tmp308 + tmp332; st3 = tmp308 - tmp332; c_re(input[6]) = st2; c_re(input[4]) = st7; c_re(input[12]) = st3; st5 = tmp306 - st4; st4 = tmp306 + st4; st1 = tmp307 - st6; c_im(input[10]) = st5; c_im(input[2]) = st4; c_re(input[10]) = st1; st6 = tmp307 + st6; st2 = tmp305 - st8; st8 = tmp305 + st8; c_re(input[2]) = st6; c_im(input[6]) = st2; c_im(input[14]) = st8; } static void PFFTW(32) (fftw_complex * input) { fftw_real tmp714; fftw_real tmp713; fftw_real tmp712; fftw_real tmp711; fftw_real tmp710; fftw_real tmp709; fftw_real tmp708; fftw_real tmp707; fftw_real tmp706; fftw_real tmp705; fftw_real tmp704; fftw_real tmp703; fftw_real tmp702; fftw_real tmp701; fftw_real tmp700; fftw_real tmp699; fftw_real tmp698; fftw_real tmp697; fftw_real tmp696; fftw_real tmp695; fftw_real tmp694; fftw_real tmp693; fftw_real tmp692; fftw_real tmp691; fftw_real tmp690; fftw_real tmp689; fftw_real tmp688; fftw_real tmp687; fftw_real tmp686; fftw_real tmp685; fftw_real tmp684; fftw_real tmp683; fftw_real tmp682; fftw_real tmp681; fftw_real tmp680; fftw_real tmp679; fftw_real tmp678; fftw_real tmp677; fftw_real tmp676; fftw_real tmp675; fftw_real tmp674; fftw_real tmp673; fftw_real tmp672; fftw_real tmp671; fftw_real tmp670; fftw_real tmp669; fftw_real tmp668; fftw_real tmp667; fftw_real tmp666; fftw_real tmp665; fftw_real tmp664; fftw_real tmp663; fftw_real tmp662; fftw_real tmp661; fftw_real tmp660; fftw_real tmp659; fftw_real tmp658; fftw_real tmp657; fftw_real tmp656; fftw_real tmp655; fftw_real tmp654; fftw_real tmp653; fftw_real tmp652; fftw_real tmp651; fftw_real tmp650; fftw_real tmp649; fftw_real tmp648; fftw_real tmp647; fftw_real tmp646; fftw_real tmp645; fftw_real tmp644; fftw_real tmp643; fftw_real tmp642; fftw_real tmp641; fftw_real tmp640; fftw_real tmp639; fftw_real tmp638; fftw_real tmp637; fftw_real tmp636; fftw_real tmp635; fftw_real tmp634; fftw_real tmp633; fftw_real tmp632; fftw_real tmp631; fftw_real tmp630; fftw_real tmp629; fftw_real tmp628; fftw_real tmp627; fftw_real tmp626; fftw_real tmp625; fftw_real tmp624; fftw_real tmp623; fftw_real tmp622; fftw_real tmp621; fftw_real st1; fftw_real st2; fftw_real st3; fftw_real st4; fftw_real st5; fftw_real st6; fftw_real st7; fftw_real st8; st8 = c_re(input[0]); st8 = st8 - c_re(input[16]); st7 = c_im(input[8]); st7 = st7 - c_im(input[24]); st6 = st8 - st7; st8 = st8 + st7; st5 = c_re(input[0]); st5 = st5 + c_re(input[16]); st4 = c_re(input[8]); st4 = st4 + c_re(input[24]); st3 = st5 + st4; st5 = st5 - st4; st2 = c_im(input[0]); st2 = st2 + c_im(input[16]); st1 = c_im(input[8]); st1 = st1 + c_im(input[24]); st7 = st2 + st1; st2 = st2 - st1; st4 = c_re(input[4]); st4 = st4 + c_re(input[20]); st1 = c_re(input[28]); st1 = st1 + c_re(input[12]); tmp621 = st6; st6 = st4 + st1; st1 = st1 - st4; st4 = st3 + st6; st3 = st3 - st6; st6 = st2 - st1; st1 = st1 + st2; st2 = c_im(input[4]); st2 = st2 + c_im(input[20]); tmp622 = st1; st1 = c_im(input[28]); st1 = st1 + c_im(input[12]); tmp623 = st6; st6 = st2 + st1; st2 = st2 - st1; st1 = st7 + st6; st7 = st7 - st6; st6 = st5 - st2; st5 = st5 + st2; st2 = c_re(input[8]); st2 = st2 - c_re(input[24]); tmp624 = st5; st5 = c_im(input[0]); st5 = st5 - c_im(input[16]); tmp625 = st6; st6 = st2 + st5; st5 = st5 - st2; st2 = c_im(input[4]); st2 = st2 - c_im(input[20]); tmp626 = st3; st3 = c_re(input[4]); st3 = st3 - c_re(input[20]); tmp627 = st1; st1 = st2 - st3; st3 = st3 + st2; st2 = c_re(input[28]); st2 = st2 - c_re(input[12]); tmp628 = st7; st7 = c_im(input[28]); st7 = st7 - c_im(input[12]); tmp629 = st4; st4 = st2 + st7; st2 = st2 - st7; st7 = st1 - st4; st7 = st7 * K707106781[0]; st1 = st1 + st4; st1 = st1 * K707106781[0]; st4 = st2 - st3; st4 = st4 * K707106781[0]; st3 = st3 + st2; st3 = st3 * K707106781[0]; st2 = st8 - st3; tmp630 = st2; st2 = st5 - st1; tmp631 = st2; st2 = tmp621 - st7; tmp632 = st2; st2 = st6 - st4; st7 = tmp621 + st7; st6 = st6 + st4; st8 = st8 + st3; st5 = st5 + st1; st1 = c_re(input[2]); st1 = st1 + c_re(input[18]); st4 = c_re(input[10]); st4 = st4 + c_re(input[26]); st3 = st1 + st4; st1 = st1 - st4; st4 = c_im(input[2]); st4 = st4 + c_im(input[18]); tmp633 = st5; st5 = c_im(input[10]); st5 = st5 + c_im(input[26]); tmp634 = st8; st8 = st4 + st5; st4 = st4 - st5; st5 = st1 + st4; st4 = st4 - st1; st1 = c_re(input[30]); st1 = st1 + c_re(input[14]); tmp635 = st6; st6 = c_re(input[6]); st6 = st6 + c_re(input[22]); tmp636 = st7; st7 = st1 + st6; st1 = st1 - st6; st6 = st3 + st7; st7 = st7 - st3; st3 = tmp629 + st6; st6 = tmp629 - st6; tmp637 = st6; st6 = st7 + tmp628; st7 = tmp628 - st7; tmp638 = st7; st7 = c_im(input[30]); st7 = st7 + c_im(input[14]); tmp639 = st6; st6 = c_im(input[6]); st6 = st6 + c_im(input[22]); tmp640 = st3; st3 = st7 + st6; st7 = st7 - st6; st6 = st8 + st3; st8 = st8 - st3; st3 = st1 - st7; tmp641 = st2; st2 = st3 - st5; st2 = st2 * K707106781[0]; st5 = st5 + st3; st5 = st5 * K707106781[0]; st1 = st1 + st7; st7 = st4 - st1; st7 = st7 * K707106781[0]; st4 = st4 + st1; st4 = st4 * K707106781[0]; st3 = tmp627 - st6; st6 = tmp627 + st6; st1 = tmp626 - st8; st8 = tmp626 + st8; tmp642 = st8; st8 = tmp625 + st7; st7 = tmp625 - st7; tmp643 = st7; st7 = tmp623 - st2; st2 = tmp623 + st2; tmp644 = st2; st2 = tmp624 + st5; st5 = tmp624 - st5; tmp645 = st5; st5 = tmp622 - st4; st4 = tmp622 + st4; tmp646 = st4; st4 = c_re(input[6]); st4 = st4 - c_re(input[22]); tmp647 = st5; st5 = c_im(input[30]); st5 = st5 - c_im(input[14]); tmp648 = st2; st2 = st4 + st5; tmp649 = st7; st7 = st2 * K382683432[0]; st5 = st5 - st4; st2 = st2 * K923879532[0]; st4 = c_re(input[30]); tmp650 = st8; st8 = st5 * K923879532[0]; st4 = st4 - c_re(input[14]); st5 = st5 * K382683432[0]; tmp651 = st1; st1 = c_im(input[6]); st1 = st1 - c_im(input[22]); tmp652 = st6; st6 = st4 - st1; tmp653 = st3; st3 = st6 * K923879532[0]; st4 = st4 + st1; st6 = st6 * K382683432[0]; st7 = st7 + st3; st1 = st4 * K382683432[0]; st6 = st6 - st2; st4 = st4 * K923879532[0]; st8 = st8 + st1; st4 = st4 - st5; st2 = c_re(input[10]); st2 = st2 - c_re(input[26]); st5 = c_im(input[2]); st5 = st5 - c_im(input[18]); st3 = st2 + st5; st1 = st3 * K382683432[0]; st5 = st5 - st2; st3 = st3 * K923879532[0]; st2 = c_re(input[2]); tmp654 = st6; st6 = st5 * K923879532[0]; st2 = st2 - c_re(input[18]); st5 = st5 * K382683432[0]; tmp655 = st7; st7 = c_im(input[10]); st7 = st7 - c_im(input[26]); tmp656 = st4; st4 = st2 - st7; tmp657 = st8; st8 = st4 * K923879532[0]; st2 = st2 + st7; st4 = st4 * K382683432[0]; st1 = st1 - st8; st7 = st2 * K382683432[0]; st3 = st3 + st4; st2 = st2 * K923879532[0]; st6 = st6 - st7; st5 = st5 + st2; st8 = st6 - tmp657; st4 = tmp630 + st8; st8 = tmp630 - st8; st7 = tmp656 - st5; st2 = tmp631 - st7; st7 = tmp631 + st7; tmp658 = st7; st7 = st1 - tmp655; tmp659 = st8; st8 = tmp632 + st7; st7 = tmp632 - st7; tmp660 = st7; st7 = tmp654 - st3; tmp661 = st8; st8 = tmp641 - st7; st7 = tmp641 + st7; st3 = st3 + tmp654; tmp662 = st7; st7 = tmp636 + st3; st3 = tmp636 - st3; st1 = st1 + tmp655; tmp663 = st3; st3 = tmp635 - st1; st1 = tmp635 + st1; st5 = st5 + tmp656; tmp664 = st1; st1 = tmp634 + st5; st5 = tmp634 - st5; st6 = st6 + tmp657; tmp665 = st5; st5 = tmp633 - st6; st6 = tmp633 + st6; tmp666 = st6; st6 = c_re(input[1]); st6 = st6 + c_re(input[17]); tmp667 = st5; st5 = c_re(input[9]); st5 = st5 + c_re(input[25]); tmp668 = st1; st1 = st6 + st5; st6 = st6 - st5; st5 = c_im(input[1]); st5 = st5 + c_im(input[17]); tmp669 = st3; st3 = c_im(input[9]); st3 = st3 + c_im(input[25]); tmp670 = st7; st7 = st5 - st3; st5 = st5 + st3; st3 = c_re(input[5]); st3 = st3 + c_re(input[21]); tmp671 = st8; st8 = c_re(input[29]); st8 = st8 + c_re(input[13]); tmp672 = st2; st2 = st3 + st8; st8 = st8 - st3; st3 = st1 + st2; st1 = st1 - st2; st2 = st8 + st7; tmp673 = st4; st4 = st2 * K382683432[0]; st7 = st7 - st8; st2 = st2 * K923879532[0]; st8 = c_im(input[5]); tmp674 = st3; st3 = st7 * K923879532[0]; st8 = st8 + c_im(input[21]); st7 = st7 * K382683432[0]; tmp675 = st4; st4 = c_im(input[29]); st4 = st4 + c_im(input[13]); tmp676 = st7; st7 = st8 - st4; st8 = st8 + st4; st4 = st5 + st8; st5 = st5 - st8; st8 = st1 + st5; st5 = st5 - st1; st1 = st6 + st7; tmp677 = st8; st8 = st1 * K923879532[0]; st6 = st6 - st7; st1 = st1 * K382683432[0]; st2 = st2 - st1; st7 = st6 * K382683432[0]; st3 = st3 + st7; st6 = st6 * K923879532[0]; st6 = tmp676 - st6; st8 = tmp675 + st8; st1 = c_re(input[31]); st1 = st1 + c_re(input[15]); st7 = c_re(input[7]); st7 = st7 + c_re(input[23]); tmp678 = st8; st8 = st1 + st7; st1 = st1 - st7; st7 = c_im(input[31]); st7 = st7 + c_im(input[15]); tmp679 = st2; st2 = c_im(input[7]); st2 = st2 + c_im(input[23]); tmp680 = st3; st3 = st7 - st2; st7 = st7 + st2; st2 = c_re(input[3]); st2 = st2 + c_re(input[19]); tmp681 = st6; st6 = c_re(input[27]); st6 = st6 + c_re(input[11]); tmp682 = st5; st5 = st2 + st6; st6 = st6 - st2; st2 = st8 + st5; st8 = st8 - st5; st5 = st6 + st3; tmp683 = st4; st4 = st5 * K382683432[0]; st3 = st3 - st6; st5 = st5 * K923879532[0]; st6 = tmp674 + st2; tmp684 = st4; st4 = st3 * K923879532[0]; tmp685 = st5; st5 = tmp640 - st6; st3 = st3 * K382683432[0]; st6 = tmp640 + st6; st2 = st2 - tmp674; c_re(input[16]) = st5; st5 = st2 + tmp653; st2 = tmp653 - st2; c_re(input[0]) = st6; st6 = c_im(input[3]); st6 = st6 + c_im(input[19]); c_im(input[8]) = st5; st5 = c_im(input[27]); st5 = st5 + c_im(input[11]); c_im(input[24]) = st2; st2 = st6 - st5; st6 = st6 + st5; st5 = st7 + st6; st7 = st7 - st6; st6 = st8 - st7; st8 = st8 + st7; st7 = st1 + st2; tmp686 = st4; st4 = st7 * K923879532[0]; st1 = st1 - st2; st7 = st7 * K382683432[0]; st2 = tmp683 + st5; tmp687 = st4; st4 = st1 * K382683432[0]; tmp688 = st7; st7 = tmp652 - st2; st1 = st1 * K923879532[0]; st2 = tmp652 + st2; st5 = tmp683 - st5; c_im(input[16]) = st7; st7 = tmp637 - st5; st5 = tmp637 + st5; c_im(input[0]) = st2; st2 = tmp682 + st8; st2 = st2 * K707106781[0]; c_re(input[24]) = st7; st7 = tmp639 - st2; st2 = tmp639 + st2; st8 = tmp682 - st8; st8 = st8 * K707106781[0]; c_re(input[8]) = st5; st5 = tmp651 - st8; st8 = tmp651 + st8; c_im(input[20]) = st7; st7 = tmp677 + st6; st7 = st7 * K707106781[0]; c_im(input[4]) = st2; st2 = tmp642 - st7; st7 = tmp642 + st7; st6 = st6 - tmp677; st6 = st6 * K707106781[0]; c_re(input[28]) = st5; st5 = tmp638 - st6; st6 = tmp638 + st6; st3 = st3 + st1; st1 = tmp681 - st3; st3 = tmp681 + st3; st4 = st4 - tmp686; c_re(input[12]) = st8; st8 = tmp680 + st4; st4 = st4 - tmp680; c_re(input[20]) = st2; st2 = tmp650 - st8; st8 = tmp650 + st8; c_re(input[4]) = st7; st7 = tmp649 - st4; st4 = tmp649 + st4; c_im(input[28]) = st5; st5 = tmp643 - st1; st1 = tmp643 + st1; c_im(input[12]) = st6; st6 = tmp644 - st3; st3 = tmp644 + st3; c_re(input[22]) = st2; st2 = tmp685 + tmp688; c_re(input[6]) = st8; st8 = tmp679 - st2; st2 = tmp679 + st2; c_im(input[30]) = st7; st7 = tmp687 - tmp684; c_im(input[14]) = st4; st4 = tmp678 + st7; st7 = st7 - tmp678; c_re(input[30]) = st5; st5 = tmp648 - st4; st4 = tmp648 + st4; c_re(input[14]) = st1; st1 = tmp647 - st7; st7 = tmp647 + st7; c_im(input[22]) = st6; st6 = tmp645 - st8; st8 = tmp645 + st8; c_im(input[6]) = st3; st3 = tmp646 - st2; st2 = tmp646 + st2; c_re(input[18]) = st5; st5 = c_re(input[31]); st5 = st5 - c_re(input[15]); c_re(input[2]) = st4; st4 = c_im(input[7]); st4 = st4 - c_im(input[23]); c_im(input[26]) = st1; st1 = st5 - st4; st5 = st5 + st4; c_im(input[10]) = st7; st7 = c_re(input[7]); st7 = st7 - c_re(input[23]); c_re(input[26]) = st6; st6 = c_im(input[31]); st6 = st6 - c_im(input[15]); c_re(input[10]) = st8; st8 = st7 + st6; st6 = st6 - st7; c_im(input[18]) = st3; st3 = c_im(input[3]); st3 = st3 - c_im(input[19]); c_im(input[2]) = st2; st2 = c_re(input[3]); st2 = st2 - c_re(input[19]); st4 = st3 - st2; st2 = st2 + st3; st7 = c_re(input[27]); st7 = st7 - c_re(input[11]); st3 = c_im(input[27]); st3 = st3 - c_im(input[11]); tmp689 = st5; st5 = st7 + st3; st7 = st7 - st3; st3 = st4 - st5; st3 = st3 * K707106781[0]; st4 = st4 + st5; st4 = st4 * K707106781[0]; st5 = st7 - st2; st5 = st5 * K707106781[0]; st2 = st2 + st7; st2 = st2 * K707106781[0]; st7 = st1 - st3; tmp690 = st2; st2 = st7 * K980785280[0]; st1 = st1 + st3; st7 = st7 * K195090322[0]; st3 = st6 - st4; tmp691 = st7; st7 = st3 * K555570233[0]; st6 = st6 + st4; st3 = st3 * K831469612[0]; st4 = st8 - st5; tmp692 = st6; st6 = st4 * K195090322[0]; st8 = st8 + st5; st4 = st4 * K980785280[0]; st5 = tmp689 - tmp690; tmp693 = st4; st4 = st5 * K831469612[0]; tmp694 = st2; st2 = tmp689 + tmp690; st5 = st5 * K555570233[0]; st4 = st4 + st7; st7 = st8 * K831469612[0]; st5 = st5 - st3; st3 = st1 * K555570233[0]; st6 = st6 + tmp694; st1 = st1 * K831469612[0]; tmp695 = st6; st6 = tmp691 - tmp693; st8 = st8 * K555570233[0]; st7 = st7 + st3; st3 = st2 * K195090322[0]; st1 = st1 - st8; st8 = tmp692 * K980785280[0]; st3 = st3 + st8; st2 = st2 * K980785280[0]; st8 = c_re(input[9]); tmp696 = st3; st3 = tmp692 * K195090322[0]; st8 = st8 - c_re(input[25]); st2 = st2 - st3; st3 = c_im(input[1]); st3 = st3 - c_im(input[17]); tmp697 = st2; st2 = st8 + st3; st3 = st3 - st8; st8 = c_re(input[1]); st8 = st8 - c_re(input[17]); tmp698 = st1; st1 = c_im(input[9]); st1 = st1 - c_im(input[25]); tmp699 = st7; st7 = st8 - st1; st8 = st8 + st1; st1 = c_re(input[29]); st1 = st1 - c_re(input[13]); tmp700 = st6; st6 = c_im(input[29]); st6 = st6 - c_im(input[13]); tmp701 = st5; st5 = st1 - st6; st1 = st1 + st6; st6 = c_re(input[5]); st6 = st6 - c_re(input[21]); tmp702 = st4; st4 = c_im(input[5]); st4 = st4 - c_im(input[21]); tmp703 = st8; st8 = st6 + st4; st4 = st4 - st6; st6 = st5 - st8; st6 = st6 * K707106781[0]; st8 = st8 + st5; st8 = st8 * K707106781[0]; st5 = st4 - st1; st5 = st5 * K707106781[0]; st4 = st4 + st1; st4 = st4 * K707106781[0]; st1 = st2 - st6; tmp704 = st8; st8 = st1 * K195090322[0]; st2 = st2 + st6; st1 = st1 * K980785280[0]; st6 = st3 - st4; tmp705 = st1; st1 = st6 * K555570233[0]; st3 = st3 + st4; st6 = st6 * K831469612[0]; st4 = st7 - st5; tmp706 = st8; st8 = st4 * K980785280[0]; st7 = st7 + st5; st4 = st4 * K195090322[0]; st5 = tmp703 - tmp704; tmp707 = st4; st4 = st5 * K831469612[0]; tmp708 = st8; st8 = tmp703 + tmp704; st5 = st5 * K555570233[0]; st1 = st1 - st4; st4 = st2 * K831469612[0]; tmp709 = st4; st4 = st1 - tmp702; tmp710 = st4; st4 = st7 * K555570233[0]; st1 = st1 + tmp702; st2 = st2 * K555570233[0]; st5 = st5 + st6; st7 = st7 * K831469612[0]; st6 = st5 + tmp701; tmp711 = st2; st2 = st3 * K980785280[0]; st5 = tmp701 - st5; tmp712 = st2; st2 = st8 * K195090322[0]; tmp713 = st2; st2 = tmp673 - st6; st8 = st8 * K980785280[0]; st3 = st3 * K195090322[0]; st6 = tmp673 + st6; c_re(input[21]) = st2; st2 = tmp672 - st5; st5 = tmp672 + st5; c_re(input[5]) = st6; st6 = tmp659 - tmp710; c_im(input[29]) = st2; st2 = tmp659 + tmp710; c_im(input[13]) = st5; st5 = tmp658 - st1; st1 = tmp658 + st1; c_re(input[29]) = st6; st6 = tmp706 - tmp708; c_re(input[13]) = st2; st2 = st6 - tmp695; st6 = st6 + tmp695; c_im(input[21]) = st5; st5 = tmp705 + tmp707; c_im(input[5]) = st1; st1 = st5 + tmp700; st5 = tmp700 - st5; tmp714 = st8; st8 = tmp661 - st1; st1 = tmp661 + st1; c_re(input[23]) = st8; st8 = tmp671 - st5; st5 = tmp671 + st5; c_re(input[7]) = st1; st1 = tmp660 - st2; st2 = tmp660 + st2; c_im(input[31]) = st8; st8 = tmp662 - st6; st6 = tmp662 + st6; st4 = tmp709 - st4; c_im(input[15]) = st5; st5 = st4 - tmp699; st4 = st4 + tmp699; st7 = tmp711 + st7; c_re(input[31]) = st1; st1 = st7 + tmp698; st7 = tmp698 - st7; c_re(input[15]) = st2; st2 = tmp670 - st1; st1 = tmp670 + st1; c_im(input[23]) = st8; st8 = tmp669 - st7; st7 = tmp669 + st7; c_im(input[7]) = st6; st6 = tmp663 - st5; st5 = tmp663 + st5; c_re(input[19]) = st2; st2 = tmp664 - st4; st4 = tmp664 + st4; c_re(input[3]) = st1; st1 = tmp712 - tmp713; c_im(input[27]) = st8; st8 = st1 - tmp696; st1 = st1 + tmp696; st3 = tmp714 + st3; c_im(input[11]) = st7; st7 = st3 + tmp697; st3 = tmp697 - st3; c_re(input[27]) = st6; st6 = tmp668 - st7; st7 = tmp668 + st7; c_re(input[11]) = st5; st5 = tmp667 - st3; st3 = tmp667 + st3; c_im(input[19]) = st2; st2 = tmp665 - st8; st8 = tmp665 + st8; c_im(input[3]) = st4; st4 = tmp666 - st1; st1 = tmp666 + st1; c_re(input[17]) = st6; c_re(input[1]) = st7; c_im(input[25]) = st5; c_im(input[9]) = st3; c_re(input[25]) = st2; c_re(input[9]) = st8; c_im(input[17]) = st4; c_im(input[1]) = st1; } static void PFFTW(64)(fftw_complex *input) { PFFTW(twiddle_4)(input, PFFTW(W_64), 16); PFFTW(16)(input + 16 * 0); PFFTW(16)(input + 16 * 1); PFFTW(16)(input + 16 * 2); PFFTW(16)(input + 16 * 3); } static void PFFTW(128)(fftw_complex *input) { PFFTW(twiddle_4)(input, PFFTW(W_128), 32); PFFTW(32)(input + 32 * 0); PFFTW(32)(input + 32 * 1); PFFTW(32)(input + 32 * 2); PFFTW(32)(input + 32 * 3); } static void PFFTW(256)(fftw_complex *input) { PFFTW(twiddle_4)(input, PFFTW(W_256), 64); PFFTW(64)(input + 64 * 0); PFFTW(64)(input + 64 * 1); PFFTW(64)(input + 64 * 2); PFFTW(64)(input + 64 * 3); } static void PFFTW(512)(fftw_complex *input) { PFFTW(twiddle_4)(input, PFFTW(W_512), 128); PFFTW(128)(input + 128 * 0); PFFTW(128)(input + 128 * 1); PFFTW(128)(input + 128 * 2); PFFTW(128)(input + 128 * 3); } static void PFFTWI(16) (fftw_complex * input) { fftw_real tmp333; fftw_real tmp332; fftw_real tmp331; fftw_real tmp330; fftw_real tmp329; fftw_real tmp328; fftw_real tmp327; fftw_real tmp326; fftw_real tmp325; fftw_real tmp324; fftw_real tmp323; fftw_real tmp322; fftw_real tmp321; fftw_real tmp320; fftw_real tmp319; fftw_real tmp318; fftw_real tmp317; fftw_real tmp316; fftw_real tmp315; fftw_real tmp314; fftw_real tmp313; fftw_real tmp312; fftw_real tmp311; fftw_real tmp310; fftw_real tmp309; fftw_real tmp308; fftw_real tmp307; fftw_real tmp306; fftw_real tmp305; fftw_real tmp304; fftw_real tmp303; fftw_real tmp302; fftw_real tmp301; fftw_real st1; fftw_real st2; fftw_real st3; fftw_real st4; fftw_real st5; fftw_real st6; fftw_real st7; fftw_real st8; st8 = c_re(input[4]); st8 = st8 - c_re(input[12]); st7 = c_im(input[0]); st7 = st7 - c_im(input[8]); st6 = c_re(input[0]); st6 = st6 - c_re(input[8]); st5 = st8 + st7; st7 = st7 - st8; st4 = c_im(input[4]); st4 = st4 - c_im(input[12]); st3 = c_re(input[0]); st3 = st3 + c_re(input[8]); st2 = st6 - st4; st6 = st6 + st4; st1 = c_re(input[4]); st1 = st1 + c_re(input[12]); st8 = c_im(input[0]); st8 = st8 + c_im(input[8]); st4 = st3 + st1; st3 = st3 - st1; st1 = c_im(input[4]); st1 = st1 + c_im(input[12]); tmp301 = st6; st6 = c_re(input[2]); st6 = st6 + c_re(input[10]); tmp302 = st7; st7 = st8 + st1; st8 = st8 - st1; st1 = c_re(input[6]); st1 = st1 + c_re(input[14]); tmp303 = st2; st2 = c_im(input[2]); st2 = st2 + c_im(input[10]); tmp304 = st5; st5 = st6 + st1; st6 = st6 - st1; st1 = c_im(input[6]); st1 = st1 + c_im(input[14]); tmp305 = st3; st3 = st4 + st5; st4 = st4 - st5; st5 = st2 + st1; st2 = st2 - st1; st1 = st6 + st8; tmp306 = st1; st1 = st7 - st5; st7 = st7 + st5; st5 = tmp305 - st2; st2 = tmp305 + st2; st8 = st8 - st6; st6 = c_re(input[6]); st6 = st6 - c_re(input[14]); tmp307 = st8; st8 = c_im(input[2]); st8 = st8 - c_im(input[10]); tmp308 = st2; st2 = c_re(input[2]); st2 = st2 - c_re(input[10]); tmp309 = st4; st4 = st6 + st8; st8 = st8 - st6; st6 = c_im(input[6]); st6 = st6 - c_im(input[14]); tmp310 = st5; st5 = c_re(input[1]); st5 = st5 - c_re(input[9]); tmp311 = st7; st7 = st2 - st6; st2 = st2 + st6; st6 = c_im(input[5]); tmp312 = st1; st1 = st4 + st7; st7 = st7 - st4; st4 = st2 - st8; st1 = st1 * K707106781[0]; st8 = st8 + st2; st7 = st7 * K707106781[0]; st6 = st6 - c_im(input[13]); st4 = st4 * K707106781[0]; st2 = tmp304 - st1; st8 = st8 * K707106781[0]; tmp313 = st3; st3 = st5 - st6; st5 = st5 + st6; st6 = tmp303 + st7; tmp314 = st6; st6 = st3 * K923879532[0]; st7 = tmp303 - st7; st3 = st3 * K382683432[0]; st1 = tmp304 + st1; tmp315 = st1; st1 = st5 * K382683432[0]; tmp316 = st7; st7 = tmp302 - st4; st5 = st5 * K923879532[0]; st4 = tmp302 + st4; tmp317 = st4; st4 = tmp301 - st8; st8 = tmp301 + st8; tmp318 = st8; st8 = c_re(input[5]); st8 = st8 - c_re(input[13]); tmp319 = st4; st4 = c_im(input[1]); st4 = st4 - c_im(input[9]); tmp320 = st7; st7 = c_re(input[3]); st7 = st7 - c_re(input[11]); tmp321 = st2; st2 = st8 + st4; st4 = st4 - st8; st8 = c_im(input[7]); tmp322 = st5; st5 = st2 * K382683432[0]; st8 = st8 - c_im(input[15]); st2 = st2 * K923879532[0]; st6 = st6 - st5; st5 = st4 * K923879532[0]; st2 = st2 + st3; st4 = st4 * K382683432[0]; st1 = st1 - st5; st3 = st7 - st8; st4 = st4 + tmp322; st7 = st7 + st8; st8 = st3 * K382683432[0]; st5 = c_re(input[7]); st3 = st3 * K923879532[0]; st5 = st5 - c_re(input[15]); tmp323 = st4; st4 = st7 * K923879532[0]; tmp324 = st1; st1 = c_im(input[3]); st7 = st7 * K382683432[0]; st1 = st1 - c_im(input[11]); tmp325 = st2; st2 = c_re(input[1]); st2 = st2 + c_re(input[9]); tmp326 = st6; st6 = st5 + st1; st1 = st1 - st5; st5 = c_re(input[5]); tmp327 = st7; st7 = st6 * K923879532[0]; st5 = st5 + c_re(input[13]); st6 = st6 * K382683432[0]; st8 = st8 - st7; st7 = st1 * K382683432[0]; st6 = st6 + st3; st1 = st1 * K923879532[0]; st7 = st7 - st4; st3 = st2 + st5; st1 = st1 + tmp327; st2 = st2 - st5; st4 = tmp326 - st8; st8 = tmp326 + st8; st5 = tmp325 - st6; tmp328 = st2; st2 = tmp321 - st4; st4 = tmp321 + st4; tmp329 = st3; st3 = tmp314 - st8; st8 = tmp314 + st8; tmp330 = st2; st2 = tmp316 - st5; st5 = tmp316 + st5; c_re(input[9]) = st3; c_re(input[1]) = st8; c_re(input[5]) = st2; c_re(input[13]) = st5; st6 = tmp325 + st6; st3 = tmp324 - st7; st8 = tmp323 - st1; st2 = tmp315 - st6; st6 = tmp315 + st6; st5 = tmp320 - st3; st3 = tmp320 + st3; tmp331 = st5; st5 = tmp317 - st8; st8 = tmp317 + st8; st7 = tmp324 + st7; st1 = tmp323 + st1; tmp332 = st3; st3 = c_im(input[1]); c_im(input[1]) = st6; st3 = st3 + c_im(input[9]); c_im(input[9]) = st2; st2 = tmp319 - st7; st7 = tmp319 + st7; st6 = tmp318 - st1; st1 = tmp318 + st1; tmp333 = st5; st5 = c_im(input[5]); c_im(input[5]) = st4; st5 = st5 + c_im(input[13]); c_im(input[13]) = tmp330; st4 = st3 - st5; st3 = st3 + st5; st5 = c_re(input[3]); c_re(input[3]) = st7; st5 = st5 + c_re(input[11]); c_re(input[11]) = st2; st2 = c_re(input[7]); c_re(input[7]) = st6; st2 = st2 + c_re(input[15]); c_re(input[15]) = st1; st7 = st5 + st2; st5 = st5 - st2; st6 = c_im(input[3]); c_im(input[3]) = st8; st6 = st6 + c_im(input[11]); c_im(input[11]) = tmp333; st8 = tmp329 + st7; st7 = tmp329 - st7; st1 = st5 + st4; st4 = st4 - st5; st2 = tmp313 - st8; st8 = tmp313 + st8; st5 = st7 + tmp312; st7 = tmp312 - st7; c_re(input[8]) = st2; c_re(input[0]) = st8; c_im(input[4]) = st5; c_im(input[12]) = st7; st2 = c_im(input[7]); c_im(input[7]) = tmp332; st2 = st2 + c_im(input[15]); c_im(input[15]) = tmp331; st8 = st6 - st2; st6 = st6 + st2; st5 = tmp328 - st8; st8 = tmp328 + st8; st7 = st3 - st6; st2 = st5 - st1; st1 = st1 + st5; st3 = st3 + st6; st2 = st2 * K707106781[0]; st6 = st4 + st8; st1 = st1 * K707106781[0]; st8 = st8 - st4; st6 = st6 * K707106781[0]; st4 = tmp311 + st3; st8 = st8 * K707106781[0]; st3 = tmp311 - st3; st5 = tmp310 - st2; c_im(input[0]) = st4; c_im(input[8]) = st3; c_re(input[10]) = st5; st2 = tmp310 + st2; st4 = tmp309 + st7; st7 = tmp309 - st7; st3 = tmp308 - st6; c_re(input[2]) = st2; c_re(input[12]) = st4; c_re(input[4]) = st7; c_re(input[6]) = st3; st6 = tmp308 + st6; st5 = tmp307 - st8; st8 = tmp307 + st8; st2 = tmp306 - st1; c_re(input[14]) = st6; c_im(input[14]) = st5; c_im(input[6]) = st8; c_im(input[10]) = st2; st1 = tmp306 + st1; c_im(input[2]) = st1; } static void PFFTWI(32) (fftw_complex * input) { fftw_real tmp714; fftw_real tmp713; fftw_real tmp712; fftw_real tmp711; fftw_real tmp710; fftw_real tmp709; fftw_real tmp708; fftw_real tmp707; fftw_real tmp706; fftw_real tmp705; fftw_real tmp704; fftw_real tmp703; fftw_real tmp702; fftw_real tmp701; fftw_real tmp700; fftw_real tmp699; fftw_real tmp698; fftw_real tmp697; fftw_real tmp696; fftw_real tmp695; fftw_real tmp694; fftw_real tmp693; fftw_real tmp692; fftw_real tmp691; fftw_real tmp690; fftw_real tmp689; fftw_real tmp688; fftw_real tmp687; fftw_real tmp686; fftw_real tmp685; fftw_real tmp684; fftw_real tmp683; fftw_real tmp682; fftw_real tmp681; fftw_real tmp680; fftw_real tmp679; fftw_real tmp678; fftw_real tmp677; fftw_real tmp676; fftw_real tmp675; fftw_real tmp674; fftw_real tmp673; fftw_real tmp672; fftw_real tmp671; fftw_real tmp670; fftw_real tmp669; fftw_real tmp668; fftw_real tmp667; fftw_real tmp666; fftw_real tmp665; fftw_real tmp664; fftw_real tmp663; fftw_real tmp662; fftw_real tmp661; fftw_real tmp660; fftw_real tmp659; fftw_real tmp658; fftw_real tmp657; fftw_real tmp656; fftw_real tmp655; fftw_real tmp654; fftw_real tmp653; fftw_real tmp652; fftw_real tmp651; fftw_real tmp650; fftw_real tmp649; fftw_real tmp648; fftw_real tmp647; fftw_real tmp646; fftw_real tmp645; fftw_real tmp644; fftw_real tmp643; fftw_real tmp642; fftw_real tmp641; fftw_real tmp640; fftw_real tmp639; fftw_real tmp638; fftw_real tmp637; fftw_real tmp636; fftw_real tmp635; fftw_real tmp634; fftw_real tmp633; fftw_real tmp632; fftw_real tmp631; fftw_real tmp630; fftw_real tmp629; fftw_real tmp628; fftw_real tmp627; fftw_real tmp626; fftw_real tmp625; fftw_real tmp624; fftw_real tmp623; fftw_real tmp622; fftw_real tmp621; fftw_real st1; fftw_real st2; fftw_real st3; fftw_real st4; fftw_real st5; fftw_real st6; fftw_real st7; fftw_real st8; st8 = c_re(input[8]); st8 = st8 - c_re(input[24]); st7 = c_im(input[0]); st7 = st7 - c_im(input[16]); st6 = st8 + st7; st7 = st7 - st8; st5 = c_re(input[0]); st5 = st5 + c_re(input[16]); st4 = c_re(input[8]); st4 = st4 + c_re(input[24]); st3 = st5 + st4; st5 = st5 - st4; st2 = c_im(input[0]); st2 = st2 + c_im(input[16]); st1 = c_im(input[8]); st1 = st1 + c_im(input[24]); st8 = st2 + st1; st2 = st2 - st1; st4 = c_re(input[4]); st4 = st4 + c_re(input[20]); st1 = c_re(input[28]); st1 = st1 + c_re(input[12]); tmp621 = st6; st6 = st4 + st1; st4 = st4 - st1; st1 = st3 + st6; st3 = st3 - st6; st6 = st2 - st4; st4 = st4 + st2; st2 = c_im(input[4]); st2 = st2 + c_im(input[20]); tmp622 = st4; st4 = c_im(input[28]); st4 = st4 + c_im(input[12]); tmp623 = st6; st6 = st2 + st4; st4 = st4 - st2; st2 = st8 + st6; st8 = st8 - st6; st6 = st5 - st4; st5 = st5 + st4; st4 = c_re(input[0]); st4 = st4 - c_re(input[16]); tmp624 = st5; st5 = c_im(input[8]); st5 = st5 - c_im(input[24]); tmp625 = st6; st6 = st4 - st5; st4 = st4 + st5; st5 = c_re(input[4]); st5 = st5 - c_re(input[20]); tmp626 = st3; st3 = c_im(input[4]); st3 = st3 - c_im(input[20]); tmp627 = st2; st2 = st5 + st3; st5 = st5 - st3; st3 = c_im(input[28]); st3 = st3 - c_im(input[12]); tmp628 = st8; st8 = c_re(input[28]); st8 = st8 - c_re(input[12]); tmp629 = st1; st1 = st3 - st8; st8 = st8 + st3; st3 = st2 + st1; st3 = st3 * K707106781[0]; st1 = st1 - st2; st1 = st1 * K707106781[0]; st2 = st5 + st8; st2 = st2 * K707106781[0]; st5 = st5 - st8; st5 = st5 * K707106781[0]; st8 = st7 - st5; tmp630 = st8; st8 = st4 - st1; tmp631 = st8; st8 = tmp621 - st3; tmp632 = st8; st8 = st6 - st2; st3 = tmp621 + st3; st6 = st6 + st2; st7 = st7 + st5; st4 = st4 + st1; st1 = c_re(input[2]); st1 = st1 + c_re(input[18]); st2 = c_re(input[10]); st2 = st2 + c_re(input[26]); st5 = st1 + st2; st1 = st1 - st2; st2 = c_im(input[2]); st2 = st2 + c_im(input[18]); tmp633 = st4; st4 = c_im(input[10]); st4 = st4 + c_im(input[26]); tmp634 = st7; st7 = st2 + st4; st2 = st2 - st4; st4 = st1 + st2; st1 = st1 - st2; st2 = c_re(input[30]); st2 = st2 + c_re(input[14]); tmp635 = st6; st6 = c_re(input[6]); st6 = st6 + c_re(input[22]); tmp636 = st3; st3 = st2 + st6; st2 = st2 - st6; st6 = st5 + st3; st5 = st5 - st3; st3 = tmp629 + st6; st6 = tmp629 - st6; tmp637 = st6; st6 = tmp628 - st5; st5 = st5 + tmp628; tmp638 = st5; st5 = c_im(input[30]); st5 = st5 + c_im(input[14]); tmp639 = st6; st6 = c_im(input[6]); st6 = st6 + c_im(input[22]); tmp640 = st3; st3 = st5 + st6; st5 = st5 - st6; st6 = st7 + st3; st3 = st3 - st7; st7 = st5 - st2; tmp641 = st8; st8 = st7 - st4; st8 = st8 * K707106781[0]; st4 = st4 + st7; st4 = st4 * K707106781[0]; st2 = st2 + st5; st5 = st1 - st2; st5 = st5 * K707106781[0]; st1 = st1 + st2; st1 = st1 * K707106781[0]; st7 = tmp627 - st6; st6 = tmp627 + st6; st2 = tmp626 + st3; st3 = tmp626 - st3; tmp642 = st3; st3 = tmp623 + st5; st5 = tmp623 - st5; tmp643 = st5; st5 = tmp625 - st8; st8 = tmp625 + st8; tmp644 = st8; st8 = tmp622 + st4; st4 = tmp622 - st4; tmp645 = st4; st4 = tmp624 - st1; st1 = tmp624 + st1; tmp646 = st1; st1 = c_re(input[6]); st1 = st1 - c_re(input[22]); tmp647 = st4; st4 = c_im(input[30]); st4 = st4 - c_im(input[14]); tmp648 = st8; st8 = st1 + st4; tmp649 = st5; st5 = st8 * K382683432[0]; st4 = st4 - st1; st8 = st8 * K923879532[0]; st1 = c_re(input[30]); tmp650 = st3; st3 = st4 * K923879532[0]; st1 = st1 - c_re(input[14]); st4 = st4 * K382683432[0]; tmp651 = st2; st2 = c_im(input[6]); st2 = st2 - c_im(input[22]); tmp652 = st6; st6 = st1 - st2; tmp653 = st7; st7 = st6 * K923879532[0]; st1 = st1 + st2; st6 = st6 * K382683432[0]; st5 = st5 + st7; st2 = st1 * K382683432[0]; st8 = st8 - st6; st1 = st1 * K923879532[0]; st3 = st3 + st2; st4 = st4 - st1; st7 = c_re(input[2]); st7 = st7 - c_re(input[18]); st6 = c_im(input[10]); st6 = st6 - c_im(input[26]); st2 = st7 - st6; st1 = st2 * K923879532[0]; st7 = st7 + st6; st2 = st2 * K382683432[0]; st6 = c_re(input[10]); tmp654 = st8; st8 = st7 * K382683432[0]; st6 = st6 - c_re(input[26]); st7 = st7 * K923879532[0]; tmp655 = st5; st5 = c_im(input[2]); st5 = st5 - c_im(input[18]); tmp656 = st4; st4 = st6 + st5; tmp657 = st3; st3 = st4 * K382683432[0]; st5 = st5 - st6; st4 = st4 * K923879532[0]; st1 = st1 - st3; st6 = st5 * K923879532[0]; st4 = st4 + st2; st5 = st5 * K382683432[0]; st8 = st8 - st6; st5 = st5 + st7; st2 = st8 - tmp657; st7 = tmp630 + st2; st2 = tmp630 - st2; st3 = tmp656 - st5; st6 = tmp631 - st3; st3 = tmp631 + st3; tmp658 = st3; st3 = st1 - tmp655; tmp659 = st2; st2 = tmp632 - st3; st3 = tmp632 + st3; tmp660 = st3; st3 = tmp654 - st4; tmp661 = st2; st2 = tmp641 + st3; st3 = tmp641 - st3; st4 = st4 + tmp654; tmp662 = st3; st3 = tmp636 - st4; st4 = tmp636 + st4; st1 = st1 + tmp655; tmp663 = st4; st4 = tmp635 + st1; st1 = tmp635 - st1; st5 = st5 + tmp656; tmp664 = st1; st1 = tmp634 + st5; st5 = tmp634 - st5; st8 = st8 + tmp657; tmp665 = st5; st5 = tmp633 - st8; st8 = tmp633 + st8; tmp666 = st8; st8 = c_re(input[1]); st8 = st8 + c_re(input[17]); tmp667 = st5; st5 = c_re(input[9]); st5 = st5 + c_re(input[25]); tmp668 = st1; st1 = st8 + st5; st8 = st8 - st5; st5 = c_im(input[1]); st5 = st5 + c_im(input[17]); tmp669 = st4; st4 = c_im(input[9]); st4 = st4 + c_im(input[25]); tmp670 = st3; st3 = st5 + st4; st5 = st5 - st4; st4 = c_re(input[5]); st4 = st4 + c_re(input[21]); tmp671 = st2; st2 = c_re(input[29]); st2 = st2 + c_re(input[13]); tmp672 = st6; st6 = st4 + st2; st4 = st4 - st2; st2 = st1 + st6; st1 = st1 - st6; st6 = st4 + st5; tmp673 = st7; st7 = st6 * K923879532[0]; st5 = st5 - st4; st6 = st6 * K382683432[0]; st4 = c_im(input[5]); tmp674 = st2; st2 = st5 * K382683432[0]; st4 = st4 + c_im(input[21]); st5 = st5 * K923879532[0]; tmp675 = st7; st7 = c_im(input[29]); st7 = st7 + c_im(input[13]); tmp676 = st5; st5 = st4 + st7; st7 = st7 - st4; st4 = st3 + st5; st3 = st3 - st5; st5 = st1 - st3; st1 = st1 + st3; st3 = st8 + st7; tmp677 = st1; st1 = st3 * K382683432[0]; st8 = st8 - st7; st3 = st3 * K923879532[0]; st3 = st3 - st6; st6 = st8 * K923879532[0]; st2 = st2 + st6; st8 = st8 * K382683432[0]; st8 = st8 - tmp676; st1 = tmp675 + st1; st7 = c_re(input[31]); st7 = st7 + c_re(input[15]); st6 = c_re(input[7]); st6 = st6 + c_re(input[23]); tmp678 = st1; st1 = st7 + st6; st7 = st7 - st6; st6 = c_im(input[31]); st6 = st6 + c_im(input[15]); tmp679 = st3; st3 = c_im(input[7]); st3 = st3 + c_im(input[23]); tmp680 = st2; st2 = st6 + st3; st6 = st6 - st3; st3 = c_re(input[3]); st3 = st3 + c_re(input[19]); tmp681 = st8; st8 = c_re(input[27]); st8 = st8 + c_re(input[11]); tmp682 = st5; st5 = st3 + st8; st3 = st3 - st8; st8 = st1 + st5; st1 = st1 - st5; st5 = st3 + st6; tmp683 = st4; st4 = st5 * K923879532[0]; st6 = st6 - st3; st5 = st5 * K382683432[0]; st3 = tmp674 + st8; tmp684 = st4; st4 = st6 * K382683432[0]; tmp685 = st5; st5 = tmp640 - st3; st6 = st6 * K923879532[0]; st3 = tmp640 + st3; st8 = tmp674 - st8; c_re(input[16]) = st5; st5 = st8 + tmp653; st8 = tmp653 - st8; c_re(input[0]) = st3; st3 = c_im(input[3]); st3 = st3 + c_im(input[19]); c_im(input[8]) = st5; st5 = c_im(input[27]); st5 = st5 + c_im(input[11]); c_im(input[24]) = st8; st8 = st3 + st5; st5 = st5 - st3; st3 = st2 + st8; st2 = st2 - st8; st8 = st1 + st2; st2 = st2 - st1; st1 = st7 + st5; tmp686 = st4; st4 = st1 * K382683432[0]; st7 = st7 - st5; st1 = st1 * K923879532[0]; st5 = tmp683 + st3; tmp687 = st4; st4 = st7 * K923879532[0]; tmp688 = st1; st1 = tmp652 - st5; st7 = st7 * K382683432[0]; st5 = tmp652 + st5; st3 = st3 - tmp683; c_im(input[16]) = st1; st1 = tmp637 - st3; st3 = tmp637 + st3; c_im(input[0]) = st5; st5 = tmp682 - st8; st5 = st5 * K707106781[0]; c_re(input[24]) = st1; st1 = tmp639 - st5; st5 = tmp639 + st5; st8 = tmp682 + st8; st8 = st8 * K707106781[0]; c_re(input[8]) = st3; st3 = tmp651 - st8; st8 = tmp651 + st8; c_im(input[28]) = st1; st1 = st2 - tmp677; st1 = st1 * K707106781[0]; c_im(input[12]) = st5; st5 = tmp642 - st1; st1 = tmp642 + st1; st2 = tmp677 + st2; st2 = st2 * K707106781[0]; c_re(input[20]) = st3; st3 = tmp638 - st2; st2 = tmp638 + st2; st6 = st6 + st7; st7 = tmp681 - st6; st6 = tmp681 + st6; st4 = tmp686 - st4; c_re(input[4]) = st8; st8 = tmp680 + st4; st4 = st4 - tmp680; c_re(input[28]) = st5; st5 = tmp650 - st8; st8 = tmp650 + st8; c_re(input[12]) = st1; st1 = tmp649 - st4; st4 = tmp649 + st4; c_im(input[20]) = st3; st3 = tmp643 - st7; st7 = tmp643 + st7; c_im(input[4]) = st2; st2 = tmp644 - st6; st6 = tmp644 + st6; c_im(input[22]) = st5; st5 = tmp685 + tmp688; c_im(input[6]) = st8; st8 = tmp679 - st5; st5 = tmp679 + st5; c_re(input[30]) = st1; st1 = tmp684 - tmp687; c_re(input[14]) = st4; st4 = tmp678 + st1; st1 = st1 - tmp678; c_im(input[30]) = st3; st3 = tmp648 - st4; st4 = tmp648 + st4; c_im(input[14]) = st7; st7 = tmp647 - st1; st1 = tmp647 + st1; c_re(input[22]) = st2; st2 = tmp645 - st8; st8 = tmp645 + st8; c_re(input[6]) = st6; st6 = tmp646 - st5; st5 = tmp646 + st5; c_im(input[18]) = st3; st3 = c_re(input[31]); st3 = st3 - c_re(input[15]); c_im(input[2]) = st4; st4 = c_im(input[7]); st4 = st4 - c_im(input[23]); c_re(input[26]) = st7; st7 = st3 - st4; st3 = st3 + st4; c_re(input[10]) = st1; st1 = c_re(input[7]); st1 = st1 - c_re(input[23]); c_im(input[26]) = st2; st2 = c_im(input[31]); st2 = st2 - c_im(input[15]); c_im(input[10]) = st8; st8 = st1 + st2; st2 = st2 - st1; c_re(input[18]) = st6; st6 = c_re(input[3]); st6 = st6 - c_re(input[19]); c_re(input[2]) = st5; st5 = c_im(input[3]); st5 = st5 - c_im(input[19]); st4 = st6 - st5; st6 = st6 + st5; st1 = c_re(input[27]); st1 = st1 - c_re(input[11]); st5 = c_im(input[27]); st5 = st5 - c_im(input[11]); tmp689 = st2; st2 = st1 + st5; st5 = st5 - st1; st1 = st4 + st2; st1 = st1 * K707106781[0]; st4 = st4 - st2; st4 = st4 * K707106781[0]; st2 = st6 + st5; st2 = st2 * K707106781[0]; st5 = st5 - st6; st5 = st5 * K707106781[0]; st6 = st7 - st1; tmp690 = st4; st4 = st6 * K831469612[0]; st7 = st7 + st1; st6 = st6 * K555570233[0]; st1 = st3 - st5; tmp691 = st6; st6 = st1 * K195090322[0]; st3 = st3 + st5; st1 = st1 * K980785280[0]; st5 = st8 - st2; tmp692 = st3; st3 = st5 * K555570233[0]; st8 = st8 + st2; st5 = st5 * K831469612[0]; st2 = tmp689 - tmp690; tmp693 = st5; st5 = st2 * K980785280[0]; tmp694 = st4; st4 = tmp689 + tmp690; st2 = st2 * K195090322[0]; st5 = st5 + st6; st6 = st8 * K980785280[0]; st2 = st2 - st1; st1 = st7 * K195090322[0]; st3 = st3 - tmp694; st7 = st7 * K980785280[0]; tmp695 = st3; st3 = tmp691 + tmp693; st8 = st8 * K195090322[0]; st6 = st6 - st1; st1 = st4 * K555570233[0]; st7 = st7 + st8; st8 = tmp692 * K831469612[0]; st1 = st1 + st8; st4 = st4 * K831469612[0]; st8 = c_re(input[1]); tmp696 = st1; st1 = tmp692 * K555570233[0]; st8 = st8 - c_re(input[17]); st4 = st4 - st1; st1 = c_im(input[9]); st1 = st1 - c_im(input[25]); tmp697 = st4; st4 = st8 - st1; st8 = st8 + st1; st1 = c_re(input[9]); st1 = st1 - c_re(input[25]); tmp698 = st7; st7 = c_im(input[1]); st7 = st7 - c_im(input[17]); tmp699 = st6; st6 = st1 + st7; st7 = st7 - st1; st1 = c_re(input[5]); st1 = st1 - c_re(input[21]); tmp700 = st3; st3 = c_im(input[5]); st3 = st3 - c_im(input[21]); tmp701 = st2; st2 = st1 - st3; st1 = st1 + st3; st3 = c_re(input[29]); st3 = st3 - c_re(input[13]); tmp702 = st5; st5 = c_im(input[29]); st5 = st5 - c_im(input[13]); tmp703 = st7; st7 = st3 + st5; st5 = st5 - st3; st3 = st2 + st7; st3 = st3 * K707106781[0]; st2 = st2 - st7; st2 = st2 * K707106781[0]; st7 = st1 + st5; st7 = st7 * K707106781[0]; st5 = st5 - st1; st5 = st5 * K707106781[0]; st1 = st4 - st3; tmp704 = st2; st2 = st1 * K831469612[0]; st4 = st4 + st3; st1 = st1 * K555570233[0]; st3 = st8 - st5; tmp705 = st1; st1 = st3 * K195090322[0]; st8 = st8 + st5; st3 = st3 * K980785280[0]; st5 = st6 - st7; tmp706 = st2; st2 = st5 * K555570233[0]; st6 = st6 + st7; st5 = st5 * K831469612[0]; st7 = tmp703 - tmp704; tmp707 = st5; st5 = st7 * K980785280[0]; tmp708 = st2; st2 = tmp703 + tmp704; st7 = st7 * K195090322[0]; st1 = st1 - st5; st5 = st4 * K195090322[0]; tmp709 = st5; st5 = st1 - tmp702; tmp710 = st5; st5 = st6 * K980785280[0]; st1 = st1 + tmp702; st4 = st4 * K980785280[0]; st7 = st7 + st3; st6 = st6 * K195090322[0]; st3 = st7 + tmp701; tmp711 = st4; st4 = st8 * K831469612[0]; st7 = tmp701 - st7; tmp712 = st4; st4 = st2 * K555570233[0]; tmp713 = st4; st4 = tmp673 - st3; st2 = st2 * K831469612[0]; st8 = st8 * K555570233[0]; st3 = tmp673 + st3; c_im(input[23]) = st4; st4 = tmp672 - st7; st7 = tmp672 + st7; c_im(input[7]) = st3; st3 = tmp659 - tmp710; c_re(input[31]) = st4; st4 = tmp659 + tmp710; c_re(input[15]) = st7; st7 = tmp658 - st1; st1 = tmp658 + st1; c_im(input[31]) = st3; st3 = tmp706 + tmp708; c_im(input[15]) = st4; st4 = st3 + tmp695; st3 = tmp695 - st3; c_re(input[23]) = st7; st7 = tmp705 - tmp707; c_re(input[7]) = st1; st1 = st7 - tmp700; st7 = st7 + tmp700; tmp714 = st2; st2 = tmp661 - st1; st1 = tmp661 + st1; c_im(input[29]) = st2; st2 = tmp671 - st7; st7 = tmp671 + st7; c_im(input[13]) = st1; st1 = tmp660 - st4; st4 = tmp660 + st4; c_re(input[21]) = st2; st2 = tmp662 - st3; st3 = tmp662 + st3; st5 = tmp709 + st5; c_re(input[5]) = st7; st7 = st5 + tmp699; st5 = tmp699 - st5; st6 = tmp711 - st6; c_im(input[21]) = st1; st1 = st6 - tmp698; st6 = st6 + tmp698; c_im(input[5]) = st4; st4 = tmp670 - st1; st1 = tmp670 + st1; c_re(input[29]) = st2; st2 = tmp669 - st6; st6 = tmp669 + st6; c_re(input[13]) = st3; st3 = tmp663 - st7; st7 = tmp663 + st7; c_im(input[25]) = st4; st4 = tmp664 - st5; st5 = tmp664 + st5; c_im(input[9]) = st1; st1 = tmp712 - tmp713; c_re(input[17]) = st2; st2 = st1 - tmp696; st1 = st1 + tmp696; st8 = tmp714 + st8; c_re(input[1]) = st6; st6 = st8 + tmp697; st8 = tmp697 - st8; c_im(input[17]) = st3; st3 = tmp668 - st6; st6 = tmp668 + st6; c_im(input[1]) = st7; st7 = tmp667 - st8; st8 = tmp667 + st8; c_re(input[25]) = st4; st4 = tmp665 - st2; st2 = tmp665 + st2; c_re(input[9]) = st5; st5 = tmp666 - st1; st1 = tmp666 + st1; c_im(input[19]) = st3; c_im(input[3]) = st6; c_re(input[27]) = st7; c_re(input[11]) = st8; c_im(input[27]) = st4; c_im(input[11]) = st2; c_re(input[19]) = st5; c_re(input[3]) = st1; } static void PFFTWI(64)(fftw_complex *input) { PFFTWI(16)(input + 16 * 0); PFFTWI(16)(input + 16 * 1); PFFTWI(16)(input + 16 * 2); PFFTWI(16)(input + 16 * 3); PFFTWI(twiddle_4)(input, PFFTW(W_64), 16); } static void PFFTWI(128)(fftw_complex *input) { PFFTWI(32)(input + 32 * 0); PFFTWI(32)(input + 32 * 1); PFFTWI(32)(input + 32 * 2); PFFTWI(32)(input + 32 * 3); PFFTWI(twiddle_4)(input, PFFTW(W_128), 32); } static void PFFTWI(256)(fftw_complex *input) { PFFTWI(64)(input + 64 * 0); PFFTWI(64)(input + 64 * 1); PFFTWI(64)(input + 64 * 2); PFFTWI(64)(input + 64 * 3); PFFTWI(twiddle_4)(input, PFFTW(W_256), 64); } static void PFFTWI(512)(fftw_complex *input) { PFFTWI(128)(input + 128 * 0); PFFTWI(128)(input + 128 * 1); PFFTWI(128)(input + 128 * 2); PFFTWI(128)(input + 128 * 3); PFFTWI(twiddle_4)(input, PFFTW(W_512), 128); } static void PFFTW(twiddle_4) (fftw_complex * A, const fftw_complex * W, uint16_t iostride) { uint16_t i; fftw_complex *inout; inout = A; { fftw_real st1; fftw_real st2; fftw_real st3; fftw_real st4; fftw_real st5; fftw_real st6; fftw_real st7; fftw_real st8; st8 = c_re(inout[0]); st8 = st8 + c_re(inout[2 * iostride]); st7 = c_re(inout[iostride]); st7 = st7 + c_re(inout[3 * iostride]); st6 = st8 - st7; st8 = st8 + st7; st5 = c_im(inout[0]); st5 = st5 + c_im(inout[2 * iostride]); st4 = c_im(inout[iostride]); st4 = st4 + c_im(inout[3 * iostride]); st3 = st5 - st4; st5 = st5 + st4; st2 = c_im(inout[0]); st2 = st2 - c_im(inout[2 * iostride]); st1 = c_re(inout[iostride]); st1 = st1 - c_re(inout[3 * iostride]); st7 = st2 - st1; st1 = st1 + st2; st4 = c_re(inout[0]); st4 = st4 - c_re(inout[2 * iostride]); c_re(inout[2 * iostride]) = st6; st6 = c_im(inout[iostride]); st6 = st6 - c_im(inout[3 * iostride]); c_re(inout[0]) = st8; st8 = st4 - st6; st4 = st4 + st6; c_im(inout[0]) = st5; c_im(inout[2 * iostride]) = st3; c_im(inout[iostride]) = st7; c_im(inout[3 * iostride]) = st1; c_re(inout[3 * iostride]) = st8; c_re(inout[iostride]) = st4; } inout = inout + 1; i = iostride - 1; do { { fftw_real st1; fftw_real st2; fftw_real st3; fftw_real st4; fftw_real st5; fftw_real st6; fftw_real st7; fftw_real st8; st8 = c_re(inout[0]); st8 = st8 + c_re(inout[2 * iostride]); st7 = c_re(inout[iostride]); st7 = st7 + c_re(inout[3 * iostride]); st6 = st8 - st7; st5 = st6 * c_im(W[1]); st8 = st8 + st7; st6 = st6 * c_re(W[1]); st4 = c_im(inout[0]); st4 = st4 + c_im(inout[2 * iostride]); st3 = c_im(inout[iostride]); st3 = st3 + c_im(inout[3 * iostride]); st2 = st4 - st3; st1 = st2 * c_im(W[1]); st4 = st4 + st3; st2 = st2 * c_re(W[1]); st2 = st2 - st5; st6 = st6 + st1; st7 = c_re(inout[0]); st7 = st7 - c_re(inout[2 * iostride]); st5 = c_im(inout[iostride]); st5 = st5 - c_im(inout[3 * iostride]); c_re(inout[0]) = st8; st8 = st7 - st5; st3 = st8 * c_re(W[0]); st7 = st7 + st5; st8 = st8 * c_im(W[0]); st1 = c_re(inout[iostride]); c_re(inout[2 * iostride]) = st6; st6 = st7 * c_im(W[0]); st1 = st1 - c_re(inout[3 * iostride]); st7 = st7 * c_re(W[0]); st5 = c_im(inout[0]); st5 = st5 - c_im(inout[2 * iostride]); c_im(inout[0]) = st4; st4 = st1 + st5; c_im(inout[2 * iostride]) = st2; st2 = st4 * c_im(W[0]); st5 = st5 - st1; st4 = st4 * c_re(W[0]); st3 = st3 - st2; st1 = st5 * c_re(W[0]); st5 = st5 * c_im(W[0]); st4 = st4 + st8; st5 = st5 + st7; st1 = st1 - st6; c_re(inout[3 * iostride]) = st3; c_im(inout[3 * iostride]) = st4; c_re(inout[iostride]) = st5; c_im(inout[iostride]) = st1; } i = i - 1, inout = inout + 1, W = W + 2; } while (i > 0); } static void PFFTWI(twiddle_4) (fftw_complex * A, const fftw_complex * W, uint16_t iostride) { uint16_t i; fftw_complex *inout; inout = A; { fftw_real st1; fftw_real st2; fftw_real st3; fftw_real st4; fftw_real st5; fftw_real st6; fftw_real st7; fftw_real st8; st8 = c_re(inout[0]); st8 = st8 + c_re(inout[2 * iostride]); st7 = c_re(inout[iostride]); st7 = st7 + c_re(inout[3 * iostride]); st6 = st8 - st7; st8 = st8 + st7; st5 = c_im(inout[0]); st5 = st5 + c_im(inout[2 * iostride]); st4 = c_im(inout[iostride]); st4 = st4 + c_im(inout[3 * iostride]); st3 = st5 - st4; st5 = st5 + st4; st2 = c_re(inout[iostride]); st2 = st2 - c_re(inout[3 * iostride]); st1 = c_im(inout[0]); st1 = st1 - c_im(inout[2 * iostride]); st7 = st2 + st1; st1 = st1 - st2; st4 = c_re(inout[0]); st4 = st4 - c_re(inout[2 * iostride]); c_re(inout[2 * iostride]) = st6; st6 = c_im(inout[iostride]); st6 = st6 - c_im(inout[3 * iostride]); c_re(inout[0]) = st8; st8 = st4 - st6; st4 = st4 + st6; c_im(inout[0]) = st5; c_im(inout[2 * iostride]) = st3; c_im(inout[iostride]) = st7; c_im(inout[3 * iostride]) = st1; c_re(inout[iostride]) = st8; c_re(inout[3 * iostride]) = st4; } inout = inout + 1; i = iostride - 1; do { { fftw_real st1; fftw_real st2; fftw_real st3; fftw_real st4; fftw_real st5; fftw_real st6; fftw_real st7; fftw_real st8; st8 = c_re(inout[2 * iostride]); st8 = st8 * c_re(W[1]); st7 = c_im(inout[2 * iostride]); st7 = st7 * c_im(W[1]); st8 = st8 - st7; st6 = st8 + c_re(inout[0]); st8 = c_re(inout[0]) - st8; st5 = c_re(inout[2 * iostride]); st5 = st5 * c_im(W[1]); st4 = c_im(inout[2 * iostride]); st4 = st4 * c_re(W[1]); st5 = st5 + st4; st3 = st5 + c_im(inout[0]); st5 = c_im(inout[0]) - st5; st2 = c_re(inout[iostride]); st2 = st2 * c_re(W[0]); st1 = c_im(inout[iostride]); st1 = st1 * c_im(W[0]); st2 = st2 - st1; st7 = c_re(inout[3 * iostride]); st7 = st7 * c_re(W[0]); st4 = c_im(inout[3 * iostride]); st4 = st4 * c_im(W[0]); st7 = st7 + st4; st1 = st2 + st7; st2 = st2 - st7; st4 = st6 - st1; st6 = st6 + st1; st7 = st2 + st5; st5 = st5 - st2; st1 = c_re(inout[iostride]); st1 = st1 * c_im(W[0]); st2 = c_im(inout[iostride]); st2 = st2 * c_re(W[0]); st1 = st1 + st2; c_re(inout[2 * iostride]) = st4; st4 = c_im(inout[3 * iostride]); st4 = st4 * c_re(W[0]); c_re(inout[0]) = st6; st6 = c_re(inout[3 * iostride]); st6 = st6 * c_im(W[0]); st4 = st4 - st6; c_im(inout[iostride]) = st7; st7 = st1 - st4; st1 = st1 + st4; c_im(inout[3 * iostride]) = st5; st5 = st8 - st7; st8 = st8 + st7; st2 = st1 + st3; st3 = st3 - st1; c_re(inout[iostride]) = st5; c_re(inout[3 * iostride]) = st8; c_im(inout[0]) = st2; c_im(inout[2 * iostride]) = st3; } i = i - 1, inout = inout + 1, W = W + 2; } while (i > 0); } uint16_t PFFTW(permutation_16) (uint16_t i) { return i; } uint16_t PFFTW(permutation_32) (uint16_t i) { return i; } static uint16_t PFFTW(permutation_64)(uint16_t i) { uint16_t i1 = i % 4; uint16_t i2 = i / 4; if (i1 <= (4 / 2)) return (i1 * 16 + PFFTW(permutation_16)(i2)); else return (i1 * 16 + PFFTW(permutation_16)((i2 + 1) % 16)); } static uint16_t PFFTW(permutation_128)(uint16_t i) { uint16_t i1 = i % 4; uint16_t i2 = i / 4; if (i1 <= (4 / 2)) return (i1 * 32 + PFFTW(permutation_32)(i2)); else return (i1 * 32 + PFFTW(permutation_32)((i2 + 1) % 32)); } static uint16_t PFFTW(permutation_256)(uint16_t i) { uint16_t i1 = i % 4; uint16_t i2 = i / 4; if (i1 <= (4 / 2)) return (i1 * 64 + PFFTW(permutation_64)(i2)); else return (i1 * 64 + PFFTW(permutation_64)((i2 + 1) % 64)); } static uint16_t PFFTW(permutation_512)(uint16_t i) { uint16_t i1 = i % 4; uint16_t i2 = i / 4; if (i1 <= (4 / 2)) return (i1 * 128 + PFFTW(permutation_128)(i2)); else return (i1 * 128 + PFFTW(permutation_128)((i2 + 1) % 128)); } static void make_fft_order(uint16_t *unscrambled, uint16_t len) { uint16_t i; switch (len) { case 64: for (i = 0; i < len; i++) unscrambled[i] = PFFTW(permutation_64)(i); break; case 256: for (i = 0; i < len; i++) unscrambled[i] = PFFTW(permutation_256)(i); break; case 512: for (i = 0; i < len; i++) unscrambled[i] = PFFTW(permutation_512)(i); break; } }