ref: 068acec8fe917fe572cbf11d0732bb0359be0321
dir: /libfaad/specrec.c/
/* ** FAAD - Freeware Advanced Audio Decoder ** Copyright (C) 2002 M. Bakker ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** $Id: specrec.c,v 1.18 2002/12/22 19:58:31 menno Exp $ **/ /* Spectral reconstruction: - grouping/sectioning - inverse quantization - applying scalefactors */ #include "common.h" #include "structs.h" #include <string.h> #include "specrec.h" #include "syntax.h" #include "data.h" #include "iq_table.h" #define bit_set(A, B) ((A) & (1<<(B))) /* 4.5.2.3.4 */ /* - determine the number of windows in a window_sequence named num_windows - determine the number of window_groups named num_window_groups - determine the number of windows in each group named window_group_length[g] - determine the total number of scalefactor window bands named num_swb for the actual window type - determine swb_offset[swb], the offset of the first coefficient in scalefactor window band named swb of the window actually used - determine sect_sfb_offset[g][section],the offset of the first coefficient in section named section. This offset depends on window_sequence and scale_factor_grouping and is needed to decode the spectral_data(). */ uint8_t window_grouping_info(faacDecHandle hDecoder, ic_stream *ics) { uint8_t i, g; uint8_t sf_index = hDecoder->sf_index; switch (ics->window_sequence) { case ONLY_LONG_SEQUENCE: case LONG_START_SEQUENCE: case LONG_STOP_SEQUENCE: ics->num_windows = 1; ics->num_window_groups = 1; ics->window_group_length[ics->num_window_groups-1] = 1; #ifdef LD_DEC if (hDecoder->object_type == LD) { if (hDecoder->frameLength == 512) ics->num_swb = num_swb_512_window[sf_index]; else /* if (hDecoder->frameLength == 480) */ ics->num_swb = num_swb_480_window[sf_index]; } else { #endif if (hDecoder->frameLength == 1024) ics->num_swb = num_swb_1024_window[sf_index]; else /* if (hDecoder->frameLength == 960) */ ics->num_swb = num_swb_960_window[sf_index]; #ifdef LD_DEC } #endif /* preparation of sect_sfb_offset for long blocks */ /* also copy the last value! */ #ifdef LD_DEC if (hDecoder->object_type == LD) { if (hDecoder->frameLength == 512) { for (i = 0; i < ics->num_swb; i++) { ics->sect_sfb_offset[0][i] = swb_offset_512_window[sf_index][i]; ics->swb_offset[i] = swb_offset_512_window[sf_index][i]; } } else /* if (hDecoder->frameLength == 480) */ { for (i = 0; i < ics->num_swb; i++) { ics->sect_sfb_offset[0][i] = swb_offset_480_window[sf_index][i]; ics->swb_offset[i] = swb_offset_480_window[sf_index][i]; } } ics->sect_sfb_offset[0][ics->num_swb] = hDecoder->frameLength; ics->swb_offset[ics->num_swb] = hDecoder->frameLength; } else { #endif for (i = 0; i < ics->num_swb; i++) { ics->sect_sfb_offset[0][i] = swb_offset_1024_window[sf_index][i]; ics->swb_offset[i] = swb_offset_1024_window[sf_index][i]; } ics->sect_sfb_offset[0][ics->num_swb] = hDecoder->frameLength; ics->swb_offset[ics->num_swb] = hDecoder->frameLength; #ifdef LD_DEC } #endif return 0; case EIGHT_SHORT_SEQUENCE: ics->num_windows = 8; ics->num_window_groups = 1; ics->window_group_length[ics->num_window_groups-1] = 1; ics->num_swb = num_swb_128_window[sf_index]; for (i = 0; i < ics->num_swb; i++) ics->swb_offset[i] = swb_offset_128_window[sf_index][i]; ics->swb_offset[ics->num_swb] = hDecoder->frameLength/8; for (i = 0; i < ics->num_windows-1; i++) { if (bit_set(ics->scale_factor_grouping, 6-i) == 0) { ics->num_window_groups += 1; ics->window_group_length[ics->num_window_groups-1] = 1; } else { ics->window_group_length[ics->num_window_groups-1] += 1; } } /* preparation of sect_sfb_offset for short blocks */ for (g = 0; g < ics->num_window_groups; g++) { uint16_t width; uint8_t sect_sfb = 0; uint16_t offset = 0; for (i = 0; i < ics->num_swb; i++) { if (i+1 == ics->num_swb) { width = (hDecoder->frameLength/8) - swb_offset_128_window[sf_index][i]; } else { width = swb_offset_128_window[sf_index][i+1] - swb_offset_128_window[sf_index][i]; } width *= ics->window_group_length[g]; ics->sect_sfb_offset[g][sect_sfb++] = offset; offset += width; } ics->sect_sfb_offset[g][sect_sfb] = offset; } return 0; default: return 1; } } /* For ONLY_LONG_SEQUENCE windows (num_window_groups = 1, window_group_length[0] = 1) the spectral data is in ascending spectral order. For the EIGHT_SHORT_SEQUENCE window, the spectral order depends on the grouping in the following manner: - Groups are ordered sequentially - Within a group, a scalefactor band consists of the spectral data of all grouped SHORT_WINDOWs for the associated scalefactor window band. To clarify via example, the length of a group is in the range of one to eight SHORT_WINDOWs. - If there are eight groups each with length one (num_window_groups = 8, window_group_length[0..7] = 1), the result is a sequence of eight spectra, each in ascending spectral order. - If there is only one group with length eight (num_window_groups = 1, window_group_length[0] = 8), the result is that spectral data of all eight SHORT_WINDOWs is interleaved by scalefactor window bands. - Within a scalefactor window band, the coefficients are in ascending spectral order. */ void quant_to_spec(ic_stream *ics, real_t *spec_data, uint16_t frame_len) { uint8_t g, sfb, win; uint16_t width, bin; real_t *start_inptr, *start_win_ptr, *win_ptr; real_t tmp_spec[1024]; real_t *tmp_spec_ptr, *spec_ptr; tmp_spec_ptr = tmp_spec; memset(tmp_spec_ptr, 0, frame_len*sizeof(real_t)); spec_ptr = spec_data; tmp_spec_ptr = tmp_spec; start_win_ptr = tmp_spec_ptr; for (g = 0; g < ics->num_window_groups; g++) { uint16_t j = 0; uint16_t win_inc = 0; start_inptr = spec_ptr; win_inc = ics->swb_offset[ics->num_swb]; for (sfb = 0; sfb < ics->num_swb; sfb++) { width = ics->swb_offset[sfb+1] - ics->swb_offset[sfb]; win_ptr = start_win_ptr; for (win = 0; win < ics->window_group_length[g]; win++) { tmp_spec_ptr = win_ptr + j; for (bin = 0; bin < width; bin += 4) { tmp_spec_ptr[0] = spec_ptr[0]; tmp_spec_ptr[1] = spec_ptr[1]; tmp_spec_ptr[2] = spec_ptr[2]; tmp_spec_ptr[3] = spec_ptr[3]; tmp_spec_ptr += 4; spec_ptr += 4; } win_ptr += win_inc; } j += width; } start_win_ptr += (spec_ptr - start_inptr); } spec_ptr = spec_data; tmp_spec_ptr = tmp_spec; memcpy(spec_ptr, tmp_spec_ptr, frame_len*sizeof(real_t)); } #ifndef FIXED_POINT void build_tables(real_t *pow2_table) { uint16_t i; /* build pow(2, 0.25*x) table for scalefactors */ for(i = 0; i < POW_TABLE_SIZE; i++) { pow2_table[i] = REAL_CONST(pow(2.0, 0.25 * (i-100))); } } #endif static INLINE real_t iquant(int16_t q) { if (q > 0) { if (q < IQ_TABLE_SIZE) return iq_table[q]; else return iq_table[q>>3] * 16; } else if (q < 0) { q = -q; if (q < IQ_TABLE_SIZE) return -iq_table[q]; else return -iq_table[q>>3] * 16; } else { return 0; } } void inverse_quantization(real_t *x_invquant, int16_t *x_quant, uint16_t frame_len) { int8_t i; int16_t *in_ptr = x_quant; real_t *out_ptr = x_invquant; for(i = frame_len/8-1; i >= 0; --i) { *out_ptr++ = iquant(*in_ptr++); *out_ptr++ = iquant(*in_ptr++); *out_ptr++ = iquant(*in_ptr++); *out_ptr++ = iquant(*in_ptr++); *out_ptr++ = iquant(*in_ptr++); *out_ptr++ = iquant(*in_ptr++); *out_ptr++ = iquant(*in_ptr++); *out_ptr++ = iquant(*in_ptr++); } } #ifndef FIXED_POINT static INLINE real_t get_scale_factor_gain(uint16_t scale_factor, real_t *pow2_table) { if (scale_factor < POW_TABLE_SIZE) return pow2_table[scale_factor]; else return REAL_CONST(pow(2.0, 0.25 * (scale_factor - 100))); } #else static real_t pow2_table[] = { COEF_CONST(0.59460355750136), COEF_CONST(0.70710678118655), COEF_CONST(0.84089641525371), COEF_CONST(1.0), COEF_CONST(1.18920711500272), COEF_CONST(1.41421356237310), COEF_CONST(1.68179283050743) }; #endif #ifdef FIXED_POINT void apply_scalefactors(ic_stream *ics, real_t *x_invquant, uint16_t frame_len) #else void apply_scalefactors(ic_stream *ics, real_t *x_invquant, real_t *pow2_table, uint16_t frame_len) #endif { uint8_t g, sfb; uint16_t top; real_t *fp; #ifndef FIXED_POINT real_t scale; #else int32_t exp, frac; #endif uint8_t groups = 0; uint16_t nshort = frame_len/8; for (g = 0; g < ics->num_window_groups; g++) { uint16_t k = 0; /* using this 128*groups doesn't hurt long blocks, because long blocks only have 1 group, so that means 'groups' is always 0 for long blocks */ fp = x_invquant + (groups*nshort); for (sfb = 0; sfb < ics->max_sfb; sfb++) { top = ics->sect_sfb_offset[g][sfb+1]; #ifndef FIXED_POINT scale = get_scale_factor_gain(ics->scale_factors[g][sfb], pow2_table); #else exp = (ics->scale_factors[g][sfb] - 100) / 4; frac = (ics->scale_factors[g][sfb] - 100) % 4; #endif /* minimum size of a sf band is 4 and always a multiple of 4 */ for ( ; k < top; k += 4) { #ifndef FIXED_POINT fp[0] = MUL(fp[0],scale); fp[1] = MUL(fp[1],scale); fp[2] = MUL(fp[2],scale); fp[3] = MUL(fp[3],scale); #else if (exp < 0) { fp[0] >>= -exp; fp[1] >>= -exp; fp[2] >>= -exp; fp[3] >>= -exp; } else { fp[0] <<= exp; fp[1] <<= exp; fp[2] <<= exp; fp[3] <<= exp; } if (frac) { fp[0] = MUL_R_C(fp[0],pow2_table[frac + 3]); fp[1] = MUL_R_C(fp[1],pow2_table[frac + 3]); fp[2] = MUL_R_C(fp[2],pow2_table[frac + 3]); fp[3] = MUL_R_C(fp[3],pow2_table[frac + 3]); } #endif fp += 4; } } groups += ics->window_group_length[g]; } }