ref: 449969de3863a5d674815d24243c3cdb6b3f2073
dir: /libfaad/mdct.c/
/* ** FAAD - Freeware Advanced Audio Decoder ** Copyright (C) 2002 M. Bakker ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** $Id: mdct.c,v 1.15 2002/08/17 12:27:33 menno Exp $ **/ /* * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform) * and consists of three steps: pre-(I)FFT complex multiplication, complex * (I)FFT, post-(I)FFT complex multiplication, * * As described in: * P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the * Implementation of Filter Banks Based on 'Time Domain Aliasing * Cancellation�," IEEE Proc. on ICASSP�91, 1991, pp. 2209-2212. * * * As of April 6th 2002 completely rewritten. * Thanks to the FFTW library this (I)MDCT can now be used for any data * size n, where n is divisible by 8. * */ #include "common.h" #include <stdlib.h> #include <assert.h> #ifdef USE_FFTW /* uses fftw (http://www.fftw.org) for very fast arbitrary-n FFT and IFFT */ #include <fftw.h> #else #include "cfft.h" #endif #include "mdct.h" mdct_info *faad_mdct_init(uint16_t N) { uint16_t k; mdct_info *mdct = malloc(sizeof(mdct_info)); assert(N % 8 == 0); mdct->N = N; mdct->sincos = (faad_sincos*)malloc(N/4*sizeof(faad_sincos)); #ifdef USE_FFTW mdct->Z1 = (fftw_complex*)malloc(N/4*sizeof(fftw_complex)); mdct->Z2 = (fftw_complex*)malloc(N/4*sizeof(fftw_complex)); #else mdct->Z1 = (real_t*)malloc(N/2*sizeof(real_t)); mdct->Z2 = (faad_complex*)malloc(N/4*sizeof(faad_complex)); #endif for (k = 0; k < N/4; k++) { real_t angle = 2.0 * M_PI * ((real_t)k + 1.0/8.0)/(real_t)N; mdct->sincos[k].sin = REAL_CONST(-sin(angle)); mdct->sincos[k].cos = REAL_CONST(-cos(angle)); } #ifdef USE_FFTW mdct->plan_backward = fftw_create_plan(N/4, FFTW_BACKWARD, FFTW_ESTIMATE); #ifdef LTP_DEC mdct->plan_forward = fftw_create_plan(N/4, FFTW_FORWARD, FFTW_ESTIMATE); #endif #else /* own implementation */ mdct->cfft = cffti(N/4); #endif return mdct; } void faad_mdct_end(mdct_info *mdct) { #ifdef USE_FFTW fftw_destroy_plan(mdct->plan_backward); #ifdef LTP_DEC fftw_destroy_plan(mdct->plan_forward); #endif #else cfftu(mdct->cfft); #endif if (mdct->Z2) free(mdct->Z2); if (mdct->Z1) free(mdct->Z1); if (mdct->sincos) free(mdct->sincos); if (mdct) free(mdct); } void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; #ifdef USE_FFTW fftw_complex *Z1 = mdct->Z1; fftw_complex *Z2 = mdct->Z2; #else real_t *Z1 = mdct->Z1; faad_complex *Z2 = mdct->Z2; #endif faad_sincos *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; real_t fac = REAL_CONST(2.0/(real_t)N); /* pre-IFFT complex multiplication */ for (k = 0; k < N4; k++) { uint16_t n = k << 1; real_t x0 = X_in[ n]; real_t x1 = X_in[N2 - 1 - n]; #ifdef USE_FFTW Z1[k].re = MUL(fac, MUL(x1, sincos[k].cos) - MUL(x0, sincos[k].sin)); Z1[k].im = MUL(fac, MUL(x0, sincos[k].cos) + MUL(x1, sincos[k].sin)); #else Z1[n] = MUL(fac, MUL(x1, sincos[k].cos) - MUL(x0, sincos[k].sin)); Z1[n+1] = MUL(fac, MUL(x0, sincos[k].cos) + MUL(x1, sincos[k].sin)); #endif } /* complex IFFT */ #ifdef USE_FFTW fftw_one(mdct->plan_backward, Z1, Z2); #else cfftb(mdct->cfft, Z1); #endif /* post-IFFT complex multiplication */ for (k = 0; k < N4; k++) { #ifdef USE_FFTW real_t zr = Z2[k].re; real_t zi = Z2[k].im; #else uint16_t n = k << 1; real_t zr = Z1[n]; real_t zi = Z1[n+1]; #endif Z2[k].re = MUL(zr, sincos[k].cos) - MUL(zi, sincos[k].sin); Z2[k].im = MUL(zi, sincos[k].cos) + MUL(zr, sincos[k].sin); } /* reordering */ for (k = 0; k < N8; k++) { uint16_t n = k << 1; X_out[ n] = -Z2[N8 + k].im; X_out[ 1 + n] = Z2[N8 - 1 - k].re; X_out[N4 + n] = -Z2[ k].re; X_out[N4 + 1 + n] = Z2[N4 - 1 - k].im; X_out[N2 + n] = -Z2[N8 + k].re; X_out[N2 + 1 + n] = Z2[N8 - 1 - k].im; X_out[N2 + N4 + n] = Z2[ k].im; X_out[N2 + N4 + 1 + n] = -Z2[N4 - 1 - k].re; } } #ifdef LTP_DEC void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; #ifdef USE_FFTW fftw_complex *Z1 = mdct->Z1; fftw_complex *Z2 = mdct->Z2; #else real_t *Z1 = mdct->Z1; #endif faad_sincos *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; /* pre-FFT complex multiplication */ for (k = 0; k < N8; k++) { uint16_t n = k << 1; real_t zr = X_in[N - N4 - 1 - n] + X_in[N - N4 + n]; real_t zi = X_in[ N4 + n] - X_in[ N4 - 1 - n]; #ifdef USE_FFTW Z1[k ].re = -MUL(zr, sincos[k ].cos) - MUL(zi, sincos[k ].sin); Z1[k ].im = -MUL(zi, sincos[k ].cos) + MUL(zr, sincos[k ].sin); #else Z1[n ] = -MUL(zr, sincos[k ].cos) - MUL(zi, sincos[k ].sin); Z1[n+1 ] = -MUL(zi, sincos[k ].cos) + MUL(zr, sincos[k ].sin); #endif zr = X_in[ N2 - 1 - n] - X_in[ n]; zi = X_in[ N2 + n] + X_in[N - 1 - n]; #ifdef USE_FFTW Z1[k + N8].re = -MUL(zr, sincos[k + N8].cos) - MUL(zi, sincos[k + N8].sin); Z1[k + N8].im = -MUL(zi, sincos[k + N8].cos) + MUL(zr, sincos[k + N8].sin); #else Z1[n + N8] = -MUL(zr, sincos[k + N8].cos) - MUL(zi, sincos[k + N8].sin); Z1[n+1 + N8] = -MUL(zi, sincos[k + N8].cos) + MUL(zr, sincos[k + N8].sin); #endif } /* complex FFT */ #ifdef USE_FFTW fftw_one(mdct->plan_forward, Z1, Z2); #else cfftf(mdct->cfft, Z1); #endif /* post-FFT complex multiplication */ for (k = 0; k < N4; k++) { uint16_t n = k << 1; #ifdef USE_FFTW real_t zr = 2 * MUL(Z2[k].re, sincos[k].cos) + MUL(Z2[k].im, sincos[k].sin); real_t zi = 2 * MUL(Z2[k].im, sincos[k].cos) - MUL(Z2[k].re, sincos[k].sin); #else real_t zr = 2 * MUL(Z1[n], sincos[k].cos) + MUL(Z1[n+1], sincos[k].sin); real_t zi = 2 * MUL(Z1[n+1], sincos[k].cos) - MUL(Z1[n], sincos[k].sin); #endif X_out[ n] = -zr; X_out[N2 - 1 - n] = zi; X_out[N2 + n] = -zi; X_out[N - 1 - n] = zr; } } #endif