shithub: aacdec

ref: 528eeb796b548555b3d32119c4510f2cc277ad0f
dir: /libfaad/syntax.c/

View raw version
/*
** FAAD - Freeware Advanced Audio Decoder
** Copyright (C) 2002 M. Bakker
**  
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
** 
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
** 
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software 
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** $Id: syntax.c,v 1.29 2002/09/27 08:37:22 menno Exp $
**/

/*
   Reads the AAC bitstream as defined in 14496-3 (MPEG-4 Audio)

   (Note that there are some differences with 13818-7 (MPEG2), these
   are also read correctly when the MPEG ID is known (can be found in
   an ADTS header)).
*/

#include <stdlib.h>
#include <memory.h>
#include "common.h"
#include "decoder.h"
#include "syntax.h"
#include "specrec.h"
#include "huffman.h"
#include "bits.h"
#include "data.h"
#include "pulse.h"
#include "analysis.h"
#ifdef SBR
#include "sbr_syntax.h"
#endif
#ifdef ERROR_RESILIENCE
#include "rvlc_scale_factors.h"
#endif


/* Table 4.4.1 */
int8_t GASpecificConfig(bitfile *ld, uint8_t *channelConfiguration,
                        uint8_t object_type,
#ifdef ERROR_RESILIENCE
                        uint8_t *aacSectionDataResilienceFlag,
                        uint8_t *aacScalefactorDataResilienceFlag,
                        uint8_t *aacSpectralDataResilienceFlag,
#endif
                        uint8_t *frameLengthFlag)
{
    uint8_t dependsOnCoreCoder, extensionFlag;
    uint16_t coreCoderDelay;
    program_config pce;

    /* 1024 or 960 */
    *frameLengthFlag = faad_get1bit(ld
        DEBUGVAR(1,138,"GASpecificConfig(): FrameLengthFlag"));

    dependsOnCoreCoder = faad_get1bit(ld
        DEBUGVAR(1,139,"GASpecificConfig(): DependsOnCoreCoder"));
    if (dependsOnCoreCoder == 1)
    {
        coreCoderDelay = (uint16_t)faad_getbits(ld, 14
            DEBUGVAR(1,140,"GASpecificConfig(): CoreCoderDelay"));
    }

    extensionFlag = faad_get1bit(ld DEBUGVAR(1,141,"GASpecificConfig(): ExtensionFlag"));
    if (*channelConfiguration == 0)
    {
        program_config_element(&pce, ld);
        *channelConfiguration = pce.channels;

        if (pce.num_valid_cc_elements)
            return -3;
    }

#ifdef ERROR_RESILIENCE
    if (extensionFlag == 1)
    {
        /* Error resilience not supported yet */
        if (object_type >= ER_OBJECT_START)
        {
            *aacSectionDataResilienceFlag = faad_get1bit(ld
                DEBUGVAR(1,144,"GASpecificConfig(): aacSectionDataResilienceFlag"));
            *aacScalefactorDataResilienceFlag = faad_get1bit(ld
                DEBUGVAR(1,145,"GASpecificConfig(): aacScalefactorDataResilienceFlag"));
            *aacSpectralDataResilienceFlag = faad_get1bit(ld
                DEBUGVAR(1,146,"GASpecificConfig(): aacSpectralDataResilienceFlag"));

            /* 1 bit: extensionFlag3 */
        }
    }
#endif

    return 0;
}

/* Table 4.4.2 */
/* An MPEG-4 Audio decoder is only required to follow the Program
   Configuration Element in GASpecificConfig(). The decoder shall ignore
   any Program Configuration Elements that may occur in raw data blocks.
   PCEs transmitted in raw data blocks cannot be used to convey decoder
   configuration information.
*/
uint8_t program_config_element(program_config *pce, bitfile *ld)
{
    uint8_t i;

    pce->channels = 0;

    pce->element_instance_tag = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,10,"program_config_element(): element_instance_tag"));

    pce->object_type = (uint8_t)faad_getbits(ld, 2
        DEBUGVAR(1,11,"program_config_element(): object_type"));
    pce->sf_index = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,12,"program_config_element(): sf_index"));
    pce->num_front_channel_elements = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,13,"program_config_element(): num_front_channel_elements"));
    pce->num_side_channel_elements = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,14,"program_config_element(): num_side_channel_elements"));
    pce->num_back_channel_elements = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,15,"program_config_element(): num_back_channel_elements"));
    pce->num_lfe_channel_elements = (uint8_t)faad_getbits(ld, 2
        DEBUGVAR(1,16,"program_config_element(): num_lfe_channel_elements"));
    pce->num_assoc_data_elements = (uint8_t)faad_getbits(ld, 3
        DEBUGVAR(1,17,"program_config_element(): num_assoc_data_elements"));
    pce->num_valid_cc_elements = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,18,"program_config_element(): num_valid_cc_elements"));

    pce->mono_mixdown_present = faad_get1bit(ld
        DEBUGVAR(1,19,"program_config_element(): mono_mixdown_present"));
    if (pce->mono_mixdown_present == 1)
    {
        pce->mono_mixdown_element_number = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,20,"program_config_element(): mono_mixdown_element_number"));
    }

    pce->stereo_mixdown_present = faad_get1bit(ld
        DEBUGVAR(1,21,"program_config_element(): stereo_mixdown_present"));
    if (pce->stereo_mixdown_present == 1)
    {
        pce->stereo_mixdown_element_number = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,22,"program_config_element(): stereo_mixdown_element_number"));
    }

    pce->matrix_mixdown_idx_present = faad_get1bit(ld
        DEBUGVAR(1,23,"program_config_element(): matrix_mixdown_idx_present"));
    if (pce->matrix_mixdown_idx_present == 1)
    {
        pce->matrix_mixdown_idx = (uint8_t)faad_getbits(ld, 2
            DEBUGVAR(1,24,"program_config_element(): matrix_mixdown_idx"));
        pce->pseudo_surround_enable = faad_get1bit(ld
            DEBUGVAR(1,25,"program_config_element(): pseudo_surround_enable"));
    }

    for (i = 0; i < pce->num_front_channel_elements; i++)
    {
        if ((pce->front_element_is_cpe[i] = faad_get1bit(ld
            DEBUGVAR(1,26,"program_config_element(): front_element_is_cpe"))) & 1)
        {
            pce->channels += 2;
        } else {
            pce->channels++;
        }
        pce->front_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,27,"program_config_element(): front_element_tag_select"));
    }

    for (i = 0; i < pce->num_side_channel_elements; i++)
    {
        if ((pce->side_element_is_cpe[i] = faad_get1bit(ld
            DEBUGVAR(1,28,"program_config_element(): side_element_is_cpe"))) & 1)
        {
            pce->channels += 2;
        } else {
            pce->channels++;
        }
        pce->side_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,29,"program_config_element(): side_element_tag_select"));
    }

    for (i = 0; i < pce->num_back_channel_elements; i++)
    {
        if ((pce->back_element_is_cpe[i] = faad_get1bit(ld
            DEBUGVAR(1,30,"program_config_element(): back_element_is_cpe"))) & 1)
        {
            pce->channels += 2;
        } else {
            pce->channels++;
        }
        pce->back_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,31,"program_config_element(): back_element_tag_select"));
    }

    for (i = 0; i < pce->num_lfe_channel_elements; i++)
    {
        pce->channels++;
        pce->lfe_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,32,"program_config_element(): lfe_element_tag_select"));
    }

    for (i = 0; i < pce->num_assoc_data_elements; i++)
        pce->assoc_data_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,33,"program_config_element(): assoc_data_element_tag_select"));

    for (i = 0; i < pce->num_valid_cc_elements; i++)
    {
        /* have to count these as channels too?? (1 or 2) */
        pce->channels += 2;

        pce->cc_element_is_ind_sw[i] = faad_get1bit(ld
            DEBUGVAR(1,34,"program_config_element(): cc_element_is_ind_sw"));
        pce->valid_cc_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,35,"program_config_element(): valid_cc_element_tag_select"));
    }

    faad_byte_align(ld);

    pce->comment_field_bytes = (uint8_t)faad_getbits(ld, 8
        DEBUGVAR(1,36,"program_config_element(): comment_field_bytes"));

    for (i = 0; i < pce->comment_field_bytes; i++)
    {
        pce->comment_field_data[i] = (uint8_t)faad_getbits(ld, 8
            DEBUGVAR(1,37,"program_config_element(): comment_field_data"));
    }
    pce->comment_field_data[i] = 0;

    return 0;
}

element *decode_sce_lfe(faacDecHandle hDecoder,
                        faacDecFrameInfo *hInfo, bitfile *ld,
                        int16_t **spec_data, real_t **spec_coef,
                        uint8_t channels, uint8_t id_syn_ele)
{
    element *ele;

    spec_data[channels]   = (int16_t*)malloc(hDecoder->frameLength*sizeof(int16_t));
    spec_coef[channels]   = (real_t*)malloc(hDecoder->frameLength*sizeof(real_t));

    ele = (element*)malloc(sizeof(element));
    memset(ele, 0, sizeof(element));
    ele->ele_id  = id_syn_ele;
    ele->channel = channels;
    ele->paired_channel = -1;

    hInfo->error = single_lfe_channel_element(ele,
        ld, spec_data[channels], hDecoder->sf_index,
        hDecoder->object_type, hDecoder->frameLength
#ifdef ERROR_RESILIENCE
        ,hDecoder->aacSectionDataResilienceFlag,
        hDecoder->aacScalefactorDataResilienceFlag,
        hDecoder->aacSpectralDataResilienceFlag
#endif
        );

    return ele;
}

element *decode_cpe(faacDecHandle hDecoder,
                    faacDecFrameInfo *hInfo, bitfile *ld,
                    int16_t **spec_data, real_t **spec_coef,
                    uint8_t channels, uint8_t id_syn_ele)
{
    element *ele;

    spec_data[channels]   = (int16_t*)malloc(hDecoder->frameLength*sizeof(int16_t));
    spec_data[channels+1] = (int16_t*)malloc(hDecoder->frameLength*sizeof(int16_t));
    spec_coef[channels]   = (real_t*)malloc(hDecoder->frameLength*sizeof(real_t));
    spec_coef[channels+1] = (real_t*)malloc(hDecoder->frameLength*sizeof(real_t));

    ele = (element*)malloc(sizeof(element));
    memset(ele, 0, sizeof(element));
    ele->ele_id         = id_syn_ele;
    ele->channel        = channels;
    ele->paired_channel = channels+1;

    hInfo->error = channel_pair_element(ele,
        ld, spec_data[channels], spec_data[channels+1],
        hDecoder->sf_index, hDecoder->object_type,
        hDecoder->frameLength
#ifdef ERROR_RESILIENCE
        ,hDecoder->aacSectionDataResilienceFlag,
        hDecoder->aacScalefactorDataResilienceFlag,
        hDecoder->aacSpectralDataResilienceFlag
#endif
        );

    return ele;
}

element **raw_data_block(faacDecHandle hDecoder, faacDecFrameInfo *hInfo,
                         bitfile *ld, element **elements,
                         int16_t **spec_data, real_t **spec_coef,
                         uint8_t *out_ch_ele, uint8_t *out_channels,
                         program_config *pce, drc_info *drc)
{
    uint8_t id_syn_ele, ch_ele, channels;

    channels = 0;
    ch_ele = 0;

#ifdef ERROR_RESILIENCE
    if (hDecoder->object_type < ER_OBJECT_START)
    {
#endif
        /* Table 4.4.3: raw_data_block() */
        while ((id_syn_ele = (uint8_t)faad_getbits(ld, LEN_SE_ID
            DEBUGVAR(1,4,"faacDecDecode(): id_syn_ele"))) != ID_END)
        {
            switch (id_syn_ele) {
            case ID_SCE:
            case ID_LFE:
                elements[ch_ele] = decode_sce_lfe(hDecoder,
                    hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
                ch_ele++; channels++;
                if (hInfo->error > 0)
                    goto return_on_error;
                break;
            case ID_CPE:
                elements[ch_ele] = decode_cpe(hDecoder,
                    hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
                channels += 2; ch_ele++;
                if (hInfo->error > 0)
                    goto return_on_error;
                break;
            case ID_CCE: /* not implemented yet */
                hInfo->error = 6;
                goto return_on_error;
                break;
            case ID_DSE:
                data_stream_element(ld);
                break;
            case ID_PCE:
                if ((hInfo->error = program_config_element(pce, ld)) > 0)
                    goto return_on_error;
                break;
            case ID_FIL:
                if ((hInfo->error = fill_element(ld, drc)) > 0)
                    goto return_on_error;
                break;
            }
        }
#ifdef ERROR_RESILIENCE
    } else {
        /* Table 262: er_raw_data_block() */
        switch (hDecoder->channelConfiguration)
        {
        case 1:
            id_syn_ele = ID_SCE;
            elements[ch_ele] = decode_sce_lfe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            ch_ele++; channels++;
            if (hInfo->error > 0)
                goto return_on_error;
            break;
        case 2:
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            break;
        case 3:
            id_syn_ele = ID_SCE;
            elements[ch_ele] = decode_sce_lfe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            ch_ele++; channels++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            break;
        case 4:
            id_syn_ele = ID_SCE;
            elements[ch_ele] = decode_sce_lfe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            ch_ele++; channels++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_SCE;
            elements[ch_ele] = decode_sce_lfe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            ch_ele++; channels++;
            if (hInfo->error > 0)
                goto return_on_error;
            break;
        case 5:
            id_syn_ele = ID_SCE;
            elements[ch_ele] = decode_sce_lfe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            ch_ele++; channels++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            break;
        case 6:
            id_syn_ele = ID_SCE;
            elements[ch_ele] = decode_sce_lfe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            ch_ele++; channels++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_LFE;
            elements[ch_ele] = decode_sce_lfe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            ch_ele++; channels++;
            if (hInfo->error > 0)
                goto return_on_error;
            break;
        case 7:
            id_syn_ele = ID_SCE;
            elements[ch_ele] = decode_sce_lfe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            ch_ele++; channels++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_CPE;
            elements[ch_ele] = decode_cpe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            channels += 2; ch_ele++;
            if (hInfo->error > 0)
                goto return_on_error;
            id_syn_ele = ID_LFE;
            elements[ch_ele] = decode_sce_lfe(hDecoder,
                hInfo, ld, spec_data, spec_coef, channels, id_syn_ele);
            ch_ele++; channels++;
            if (hInfo->error > 0)
                goto return_on_error;
            break;
        default:
            hInfo->error = 7;
            goto return_on_error;
        }
#if 0
        cnt = bits_to_decode() / 8;
        while (cnt >= 1)
        {
            cnt -= extension_payload(cnt);
        }
#endif
    }
#endif

return_on_error:
    *out_ch_ele = ch_ele;
    *out_channels = channels;

    return elements;
}

/* Table 4.4.4 and */
/* Table 4.4.9 */
static uint8_t single_lfe_channel_element(element *sce, bitfile *ld,
                                          int16_t *spec_data,
                                          uint8_t sf_index, uint8_t object_type,
                                          uint16_t frame_len
#ifdef ERROR_RESILIENCE
                                          ,uint8_t aacSectionDataResilienceFlag,
                                          uint8_t aacScalefactorDataResilienceFlag,
                                          uint8_t aacSpectralDataResilienceFlag
#endif
                                          )
{
    ic_stream *ics = &(sce->ics1);

#ifdef DRM
    if (object_type != DRM_ER_LC)
#endif
    sce->element_instance_tag = (uint8_t)faad_getbits(ld, LEN_TAG
        DEBUGVAR(1,38,"single_lfe_channel_element(): element_instance_tag"));

    return individual_channel_stream(sce, ld, ics, 0, spec_data, sf_index,
        object_type, frame_len
#ifdef ERROR_RESILIENCE
        ,aacSectionDataResilienceFlag,
        aacScalefactorDataResilienceFlag,
        aacSpectralDataResilienceFlag
#endif
        );
}

/* Table 4.4.5 */
static uint8_t channel_pair_element(element *cpe, bitfile *ld, int16_t *spec_data1,
                                    int16_t *spec_data2, uint8_t sf_index, uint8_t object_type,
                                    uint16_t frame_len
#ifdef ERROR_RESILIENCE
                                    ,uint8_t aacSectionDataResilienceFlag,
                                    uint8_t aacScalefactorDataResilienceFlag,
                                    uint8_t aacSpectralDataResilienceFlag
#endif
                                    )
{
    uint8_t result;
    ic_stream *ics1 = &(cpe->ics1);
    ic_stream *ics2 = &(cpe->ics2);

#ifdef DRM
    if (object_type != DRM_ER_LC)
#endif
    cpe->element_instance_tag = (uint8_t)faad_getbits(ld, LEN_TAG
        DEBUGVAR(1,39,"channel_pair_element(): element_instance_tag"));

    if ((cpe->common_window = faad_get1bit(ld
        DEBUGVAR(1,40,"channel_pair_element(): common_window"))) & 1)
    {
        /* both channels have common ics information */
        if ((result = ics_info(ics1, ld, cpe->common_window, sf_index,
            object_type, frame_len)) > 0)
            return result;

        ics1->ms_mask_present = (uint8_t)faad_getbits(ld, 2
            DEBUGVAR(1,41,"channel_pair_element(): ms_mask_present"));
        if (ics1->ms_mask_present == 1)
        {
            uint8_t g, sfb;
            for (g = 0; g < ics1->num_window_groups; g++)
            {
                for (sfb = 0; sfb < ics1->max_sfb; sfb++)
                {
                    ics1->ms_used[g][sfb] = faad_get1bit(ld
                        DEBUGVAR(1,42,"channel_pair_element(): faad_get1bit"));
                }
            }
        }

#ifdef ERROR_RESILIENCE
        if ((object_type >= ER_OBJECT_START) && (ics1->predictor_data_present))
        {
            if ((ics1->ltp.data_present = faad_get1bit(ld
                DEBUGVAR(1,50,"channel_pair_element(): ltp.data_present"))) & 1)
            {
                ltp_data(ics1, &(ics1->ltp), ld, object_type);
            }
        }
#endif

        memcpy(ics2, ics1, sizeof(ic_stream));
    } else {
        ics1->ms_mask_present = 0;
    }

    if ((result = individual_channel_stream(cpe, ld, ics1, 0, spec_data1,
        sf_index, object_type, frame_len
#ifdef ERROR_RESILIENCE
        ,aacSectionDataResilienceFlag,
        aacScalefactorDataResilienceFlag,
        aacSpectralDataResilienceFlag
#endif
        )) > 0)
        return result;

#ifdef ERROR_RESILIENCE
    if (cpe->common_window && (object_type >= ER_OBJECT_START) &&
        (ics1->predictor_data_present))
    {
        if ((ics1->ltp2.data_present = faad_get1bit(ld
            DEBUGVAR(1,50,"channel_pair_element(): ltp.data_present"))) & 1)
        {
            ltp_data(ics1, &(ics1->ltp2), ld, object_type);
        }
    }
#endif

    if ((result = individual_channel_stream(cpe, ld, ics2, 0, spec_data2,
        sf_index, object_type, frame_len
#ifdef ERROR_RESILIENCE
        ,aacSectionDataResilienceFlag,
        aacScalefactorDataResilienceFlag,
        aacSpectralDataResilienceFlag
#endif
        )) > 0)
        return result;

    return 0;
}

/* Table 4.4.6 */
static uint8_t ics_info(ic_stream *ics, bitfile *ld, uint8_t common_window,
                    uint8_t sf_index, uint8_t object_type, uint16_t frame_len)
{
    /* ics->ics_reserved_bit = */ faad_get1bit(ld
        DEBUGVAR(1,43,"ics_info(): ics_reserved_bit"));
    ics->window_sequence = (uint8_t)faad_getbits(ld, 2
        DEBUGVAR(1,44,"ics_info(): window_sequence"));
    ics->window_shape = faad_get1bit(ld
        DEBUGVAR(1,45,"ics_info(): window_shape"));

    if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
    {
        ics->max_sfb = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,46,"ics_info(): max_sfb (short)"));
        ics->scale_factor_grouping = (uint8_t)faad_getbits(ld, 7
            DEBUGVAR(1,47,"ics_info(): scale_factor_grouping"));
    } else {
        ics->max_sfb = (uint8_t)faad_getbits(ld, 6
            DEBUGVAR(1,48,"ics_info(): max_sfb (long)"));

        if ((ics->predictor_data_present = faad_get1bit(ld
            DEBUGVAR(1,49,"ics_info(): predictor_data_present"))) & 1)
        {
            if (object_type == MAIN) /* MPEG2 style AAC predictor */
            {
                uint8_t sfb;

                ics->pred.limit = min(ics->max_sfb, pred_sfb_max[sf_index]);

                if ((ics->pred.predictor_reset = faad_get1bit(ld
                    DEBUGVAR(1,53,"ics_info(): pred.predictor_reset"))) & 1)
                {
                    ics->pred.predictor_reset_group_number = (uint8_t)faad_getbits(ld, 5
                        DEBUGVAR(1,54,"ics_info(): pred.predictor_reset_group_number"));
                }

                for (sfb = 0; sfb < ics->pred.limit; sfb++)
                {
                    ics->pred.prediction_used[sfb] = faad_get1bit(ld
                        DEBUGVAR(1,55,"ics_info(): pred.prediction_used"));
                }
            }
#ifdef LTP_DEC
            else { /* Long Term Prediction */
                if (object_type < ER_OBJECT_START)
                {
                    if ((ics->ltp.data_present = faad_get1bit(ld
                        DEBUGVAR(1,50,"ics_info(): ltp.data_present"))) & 1)
                    {
                        ltp_data(ics, &(ics->ltp), ld, object_type);
                    }
                    if (common_window)
                    {
                        if ((ics->ltp2.data_present = faad_get1bit(ld
                            DEBUGVAR(1,51,"ics_info(): ltp2.data_present"))) & 1)
                        {
                            ltp_data(ics, &(ics->ltp2), ld, object_type);
                        }
                    }
                }
#ifdef ERROR_RESILIENCE
                if (!common_window && (object_type >= ER_OBJECT_START))
                {
                    if ((ics->ltp.data_present = faad_get1bit(ld
                        DEBUGVAR(1,50,"ics_info(): ltp.data_present"))) & 1)
                    {
                        ltp_data(ics, &(ics->ltp), ld, object_type);
                    }
                }
#endif
            }
#endif
        }
    }

    /* get the grouping information */
    return window_grouping_info(ics, sf_index, object_type, frame_len);
}

/* Table 4.4.7 */
static void pulse_data(pulse_info *pul, bitfile *ld)
{
    uint8_t i;

    pul->number_pulse = (uint8_t)faad_getbits(ld, 2
        DEBUGVAR(1,56,"pulse_data(): number_pulse"));
    pul->pulse_start_sfb = (uint8_t)faad_getbits(ld, 6
        DEBUGVAR(1,57,"pulse_data(): pulse_start_sfb"));

    for (i = 0; i < pul->number_pulse+1; i++)
    {
        pul->pulse_offset[i] = (uint8_t)faad_getbits(ld, 5
            DEBUGVAR(1,58,"pulse_data(): pulse_offset"));
        pul->pulse_amp[i] = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,59,"pulse_data(): pulse_amp"));
    }
}

/* Table 4.4.10 */
static uint16_t data_stream_element(bitfile *ld)
{
    uint8_t byte_aligned;
    uint16_t i, count;

    /* element_instance_tag = */ faad_getbits(ld, LEN_TAG
        DEBUGVAR(1,60,"data_stream_element(): element_instance_tag"));
    byte_aligned = faad_get1bit(ld
        DEBUGVAR(1,61,"data_stream_element(): byte_aligned"));
    count = (uint16_t)faad_getbits(ld, 8
        DEBUGVAR(1,62,"data_stream_element(): count"));
    if (count == 255)
    {
        count += (uint16_t)faad_getbits(ld, 8
            DEBUGVAR(1,63,"data_stream_element(): extra count"));
    }
    if (byte_aligned)
        faad_byte_align(ld);

    for (i = 0; i < count; i++)
    {
        faad_getbits(ld, LEN_BYTE
            DEBUGVAR(1,64,"data_stream_element(): data_stream_byte"));
    }

    return count;
}

/* Table 4.4.11 */
static uint8_t fill_element(bitfile *ld, drc_info *drc
#ifdef SBR
                     ,uint8_t next_ele_id
#endif
                     )
{
    uint16_t count;
#ifdef SBR
    uint8_t bs_extension_type;
    uint32_t btot;
#endif

    count = (uint16_t)faad_getbits(ld, 4
        DEBUGVAR(1,65,"fill_element(): count"));
    if (count == 15)
    {
        count += (uint16_t)faad_getbits(ld, 8
            DEBUGVAR(1,66,"fill_element(): extra count")) - 1;
    }

#ifdef SBR
    bs_extension_type = (uint8_t)faad_showbits(ld, 4);

    if (bs_extension_type == SBR_HDR || bs_extension_type == SBR_STD)
    {
        uint16_t i;
        uint16_t bytes, bits;

        /* flush the extension type and the fill nibble */
        faad_flushbits(ld, 8);

        btot = faad_get_processed_bits(ld);

        /* SBR bitstream reading function */
        sbr_bitstream(next_ele_id, bs_extension_type);

        btot = faad_get_processed_bits(ld) - btot;

        /* there might still be some fill bits left to read */
        bits = (8*(count-1) - btot) % 8;
        bytes = ((8*(count-1) - btot) - bits) / 8;

        if (bits > 0)
            faad_flushbits(ld, bits);
        for (i = 0; i < bytes; i++)
        {
            faad_flushbits(ld, 8);
        }
    } else {
#endif
        while (count > 0)
        {
            count -= extension_payload(ld, drc, count);
        }
#ifdef SBR
    }
#endif

    return 0;
}

/* Table 4.4.12 */
static void gain_control_data(bitfile *ld, ic_stream *ics)
{
    uint8_t bd, wd, ad;
    uint8_t adjust_num[4][8];
    uint8_t alevcode[4][8][8];
    uint8_t aloccode[4][8][8];

    uint8_t max_band = (uint8_t)faad_getbits(ld, 2
        DEBUGVAR(1,1000,"gain_control_data(): max_band"));

    if (ics->window_sequence == ONLY_LONG_SEQUENCE)
    {
        for (bd = 1; bd <= max_band; bd++)
        {
            for (wd=0; wd<1; wd++)
            {
                adjust_num[bd][wd] = (uint8_t)faad_getbits(ld, 3
                    DEBUGVAR(1,1001,"gain_control_data(): adjust_num"));

                for (ad = 0; ad < adjust_num[bd][wd]; ad++)
                {
                    alevcode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
                        DEBUGVAR(1,1002,"gain_control_data(): alevcode"));
                    aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 5
                        DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
                }
            }
        }
    } else if (ics->window_sequence == LONG_START_SEQUENCE) {
        for (bd = 1; bd <= max_band; bd++)
        {
            for (wd = 0; wd < 2; wd++)
            {
                adjust_num[bd][wd] = (uint8_t)faad_getbits(ld, 3
                    DEBUGVAR(1,1001,"gain_control_data(): adjust_num"));

                for (ad = 0; ad < adjust_num[bd][wd]; ad++)
                {
                    alevcode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
                        DEBUGVAR(1,1002,"gain_control_data(): alevcode"));
                    if (wd == 0)
                    {
                        aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
                            DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
                    } else {
                        aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 2
                            DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
                    }
                }
            }
        }
    } else if (ics->window_sequence == EIGHT_SHORT_SEQUENCE) {
        for (bd = 1; bd <= max_band; bd++)
        {
            for(wd=0; wd<8; wd++)
            {
                adjust_num[bd][wd] = (uint8_t)faad_getbits(ld, 3
                    DEBUGVAR(1,1001,"gain_control_data(): adjust_num"));

                for (ad = 0; ad < adjust_num[bd][wd]; ad++)
                {
                    alevcode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
                        DEBUGVAR(1,1002,"gain_control_data(): alevcode"));
                    aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 2
                        DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
                }
            }
        }
    } else if (ics->window_sequence == LONG_STOP_SEQUENCE) {
        for (bd = 1; bd <= max_band; bd++)
        {
            for (wd = 0; wd < 2; wd++)
            {
                adjust_num[bd][wd] = (uint8_t)faad_getbits(ld, 3
                    DEBUGVAR(1,1001,"gain_control_data(): adjust_num"));

                for (ad = 0; ad < adjust_num[bd][wd]; ad++)
                {
                    alevcode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
                        DEBUGVAR(1,1002,"gain_control_data(): alevcode"));

                    if (wd == 0)
                    {
                        aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
                            DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
                    } else {
                        aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 5
                            DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
                    }
                }
            }
        }
    }
}

/* Table 4.4.24 */
static uint8_t individual_channel_stream(element *ele, bitfile *ld,
                                     ic_stream *ics, uint8_t scal_flag,
                                     int16_t *spec_data, uint8_t sf_index,
                                     uint8_t object_type, uint16_t frame_len
#ifdef ERROR_RESILIENCE
                                     ,uint8_t aacSectionDataResilienceFlag,
                                     uint8_t aacScalefactorDataResilienceFlag,
                                     uint8_t aacSpectralDataResilienceFlag
#endif
                                     )
{
    uint8_t result;

    ics->global_gain = (uint8_t)faad_getbits(ld, 8
        DEBUGVAR(1,67,"individual_channel_stream(): global_gain"));

    if (!ele->common_window && !scal_flag)
    {
        if ((result = ics_info(ics, ld, ele->common_window, sf_index,
            object_type, frame_len)) > 0)
            return result;
    }
    section_data(ics, ld
#ifdef ERROR_RESILIENCE
        ,aacSectionDataResilienceFlag
#endif
        );
    if ((result = scale_factor_data(ics, ld
#ifdef ERROR_RESILIENCE
        ,aacScalefactorDataResilienceFlag
#endif
        )) > 0)
        return result;

    if (!scal_flag)
    {
        /**
         **  NOTE: It could be that pulse data is available in scalable AAC too,
         **        as said in Amendment 1, this could be only the case for ER AAC,
         **        though. (have to check this out later)
         **/
        /* get pulse data */
        if ((ics->pulse_data_present = faad_get1bit(ld
            DEBUGVAR(1,68,"individual_channel_stream(): pulse_data_present"))) & 1)
        {
            pulse_data(&(ics->pul), ld);
        }

        /* get tns data */
        if ((ics->tns_data_present = faad_get1bit(ld
            DEBUGVAR(1,69,"individual_channel_stream(): tns_data_present"))) & 1)
        {
#ifdef ERROR_RESILIENCE
            if (object_type < ER_OBJECT_START)
#endif
                tns_data(ics, &(ics->tns), ld);
        }

        /* get gain control data */
        if ((ics->gain_control_data_present = faad_get1bit(ld
            DEBUGVAR(1,70,"individual_channel_stream(): gain_control_data_present"))) & 1)
        {
#if 1
            return 1;
#else
            gain_control_data(ld, ics);
#endif
        }
    }

#ifdef ERROR_RESILIENCE
    if (aacSpectralDataResilienceFlag)
    {
        ics->length_of_reordered_spectral_data = (uint16_t)faad_getbits(ld, 14
            DEBUGVAR(1,147,"individual_channel_stream(): length_of_reordered_spectral_data"));
        /* TODO: test for >6144/12288, see page 143 */
        ics->length_of_longest_codeword = (uint8_t)faad_getbits(ld, 6
            DEBUGVAR(1,148,"individual_channel_stream(): length_of_longest_codeword"));
        if (ics->length_of_longest_codeword >= 49)
            ics->length_of_longest_codeword = 49;
    }

    /* RVLC spectral data is put here */
    if (aacScalefactorDataResilienceFlag)
    {
        if ((result = rvlc_decode_scale_factors(ics, ld)) > 0)
            return result;
    }

    if (object_type >= ER_OBJECT_START) 
    {
        if (ics->tns_data_present)
            tns_data(ics, &(ics->tns), ld);
    }

    if (aacSpectralDataResilienceFlag)
    {
        /* error resilient spectral data decoding */
        if ((result = reordered_spectral_data(ics, ld, spec_data, frame_len,
            aacSectionDataResilienceFlag)) > 0)
        {
            return result;
        }
    } else {
#endif
        /* decode the spectral data */
        if ((result = spectral_data(ics, ld, spec_data, frame_len)) > 0)
        {
            return result;
        }
#ifdef ERROR_RESILIENCE
    }
#endif

    /* pulse coding reconstruction */
    if (ics->pulse_data_present)
    {
        if (ics->window_sequence != EIGHT_SHORT_SEQUENCE)
            pulse_decode(ics, spec_data);
        else
            return 2; /* pulse coding not allowed for short blocks */
    }

    return 0;
}

/* Table 4.4.25 */
static void section_data(ic_stream *ics, bitfile *ld
#ifdef ERROR_RESILIENCE
                         ,uint8_t aacSectionDataResilienceFlag
#endif
                         )
{
    uint8_t g;
    uint8_t sect_esc_val, sect_bits;

    if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
        sect_bits = 3;
    else
        sect_bits = 5;
    sect_esc_val = (1<<sect_bits) - 1;

#if 0
    printf("\ntotal sfb %d\n", ics->max_sfb);
    printf("   sect    top     cb\n");
#endif

    for (g = 0; g < ics->num_window_groups; g++)
    {
        uint8_t k = 0;
        uint8_t i = 0;

        while (k < ics->max_sfb)
        {
#ifdef ERROR_RESILIENCE
            uint8_t vcb11 = 0;
#endif
            uint8_t sfb;
            uint8_t sect_len_incr;
            uint16_t sect_len = 0;
            uint8_t sect_cb_bits = 4;

#ifdef ERROR_RESILIENCE
            if (aacSectionDataResilienceFlag)
                sect_cb_bits = 5;
#endif

            ics->sect_cb[g][i] = (uint8_t)faad_getbits(ld, sect_cb_bits
                DEBUGVAR(1,71,"section_data(): sect_cb"));

            if (ics->sect_cb[g][i] == NOISE_HCB)
                ics->noise_used = 1;

#ifdef ERROR_RESILIENCE
            if (aacSectionDataResilienceFlag)
            {
                if ((ics->sect_cb[g][i] == 11) ||
                    ((ics->sect_cb[g][i] >= 16) && (ics->sect_cb[g][i] <= 32)))
                {
                    vcb11 = 1;
                }
            }
            if (vcb11)
            {
                sect_len_incr = 1;
            } else {
#endif
                sect_len_incr = (uint8_t)faad_getbits(ld, sect_bits
                    DEBUGVAR(1,72,"section_data(): sect_len_incr"));
#ifdef ERROR_RESILIENCE
            }
#endif
            while ((sect_len_incr == sect_esc_val) /* &&
                (k+sect_len < ics->max_sfb)*/)
            {
                sect_len += sect_len_incr;
                sect_len_incr = (uint8_t)faad_getbits(ld, sect_bits
                    DEBUGVAR(1,72,"section_data(): sect_len_incr"));
            }

            sect_len += sect_len_incr;

            ics->sect_start[g][i] = k;
            ics->sect_end[g][i] = k + sect_len;

            for (sfb = k; sfb < k + sect_len; sfb++)
                ics->sfb_cb[g][sfb] = ics->sect_cb[g][i];

#if 0
            printf(" %6d %6d %6d\n",
                i,
                ics->sect_end[g][i],
                ics->sect_cb[g][i]);
#endif

            k += sect_len;
            i++;
        }
        ics->num_sec[g] = i;
    }

#if 0
    printf("\n");
#endif
}

/*
 *  decode_scale_factors()
 *   decodes the scalefactors from the bitstream
 */
/*
 * All scalefactors (and also the stereo positions and pns energies) are
 * transmitted using Huffman coded DPCM relative to the previous active
 * scalefactor (respectively previous stereo position or previous pns energy,
 * see subclause 4.6.2 and 4.6.3). The first active scalefactor is
 * differentially coded relative to the global gain.
 */
static uint8_t decode_scale_factors(ic_stream *ics, bitfile *ld)
{
    uint8_t g, sfb;
    int16_t t;
    int8_t noise_pcm_flag = 1;

    int16_t scale_factor = ics->global_gain;
    int16_t is_position = 0;
    int16_t noise_energy = ics->global_gain - 90;

    for (g = 0; g < ics->num_window_groups; g++)
    {
        for (sfb = 0; sfb < ics->max_sfb; sfb++)
        {
            switch (ics->sfb_cb[g][sfb])
            {
            case ZERO_HCB: /* zero book */
                ics->scale_factors[g][sfb] = 0;
                break;
            case INTENSITY_HCB: /* intensity books */
            case INTENSITY_HCB2:

                /* decode intensity position */
                t = huffman_scale_factor(ld);
                if (t < 0)
                    return 9;
                is_position += (t - 60);
                ics->scale_factors[g][sfb] = is_position;

                break;
            case NOISE_HCB: /* noise books */

                /* decode noise energy */
                if (noise_pcm_flag)
                {
                    noise_pcm_flag = 0;
                    t = (int16_t)faad_getbits(ld, 9
                        DEBUGVAR(1,73,"scale_factor_data(): first noise")) - 256;
                } else {
                    t = huffman_scale_factor(ld);
                    if (t < 0)
                        return 9;
                    t -= 60;
                }
                noise_energy += t;
                ics->scale_factors[g][sfb] = noise_energy;

                break;
            case BOOKSCL: /* invalid books */
                return 3;
            default: /* spectral books */

                /* decode scale factor */
                t = huffman_scale_factor(ld);
                if (t < 0)
                    return 9;
                scale_factor += (t - 60);
                if (scale_factor < 0)
                    return 4;
                ics->scale_factors[g][sfb] = scale_factor;

                break;
            }
        }
    }

    return 0;
}

/* Table 4.4.26 */
static uint8_t scale_factor_data(ic_stream *ics, bitfile *ld
#ifdef ERROR_RESILIENCE
                                 ,uint8_t aacScalefactorDataResilienceFlag
#endif
                                 )
{
#ifdef ERROR_RESILIENCE
    if (!aacScalefactorDataResilienceFlag)
    {
#endif
        return decode_scale_factors(ics, ld);
#ifdef ERROR_RESILIENCE
    } else {
        /* In ER AAC the parameters for RVLC are seperated from the actual
           data that holds the scale_factors.
           Strangely enough, 2 parameters for HCR are put inbetween them.
        */
        return rvlc_scale_factor_data(ics, ld);
    }
#endif
}

/* Table 4.4.27 */
static void tns_data(ic_stream *ics, tns_info *tns, bitfile *ld)
{
    uint8_t w, filt, i, start_coef_bits, coef_bits;
    uint8_t n_filt_bits = 2;
    uint8_t length_bits = 6;
    uint8_t order_bits = 5;

    if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
    {
        n_filt_bits = 1;
        length_bits = 4;
        order_bits = 3;
    }

    for (w = 0; w < ics->num_windows; w++)
    {
        tns->n_filt[w] = (uint8_t)faad_getbits(ld, n_filt_bits
            DEBUGVAR(1,74,"tns_data(): n_filt"));

        if (tns->n_filt[w])
        {
            if ((tns->coef_res[w] = faad_get1bit(ld
                DEBUGVAR(1,75,"tns_data(): coef_res"))) & 1)
            {
                start_coef_bits = 4;
            } else {
                start_coef_bits = 3;
            }
        }

        for (filt = 0; filt < tns->n_filt[w]; filt++)
        {
            tns->length[w][filt] = (uint8_t)faad_getbits(ld, length_bits
                DEBUGVAR(1,76,"tns_data(): length"));
            tns->order[w][filt]  = (uint8_t)faad_getbits(ld, order_bits
                DEBUGVAR(1,77,"tns_data(): order"));
            if (tns->order[w][filt])
            {
                tns->direction[w][filt] = faad_get1bit(ld
                    DEBUGVAR(1,78,"tns_data(): direction"));
                tns->coef_compress[w][filt] = faad_get1bit(ld
                    DEBUGVAR(1,79,"tns_data(): coef_compress"));

                coef_bits = start_coef_bits - tns->coef_compress[w][filt];
                for (i = 0; i < tns->order[w][filt]; i++)
                {
                    tns->coef[w][filt][i] = (uint8_t)faad_getbits(ld, coef_bits
                        DEBUGVAR(1,80,"tns_data(): coef"));
                }
            }
        }
    }
}

#ifdef LTP_DEC
/* Table 4.4.28 */
/*
   The limit MAX_LTP_SFB is not defined in 14496-3, this is a bug in the document
   and will be corrected in one of the corrigenda.
*/
static void ltp_data(ic_stream *ics, ltp_info *ltp, bitfile *ld,
                     uint8_t object_type)
{
    uint8_t sfb, w;

#ifdef LD_DEC
    if (object_type == LD)
    {
        ltp->lag_update = (uint8_t)faad_getbits(ld, 1
            DEBUGVAR(1,142,"ltp_data(): lag_update"));

        if (ltp->lag_update)
        {
            ltp->lag = (uint16_t)faad_getbits(ld, 10
                DEBUGVAR(1,81,"ltp_data(): lag"));
        }
    } else {
#endif
        ltp->lag = (uint16_t)faad_getbits(ld, 11
            DEBUGVAR(1,81,"ltp_data(): lag"));
#ifdef LD_DEC
    }
#endif
    ltp->coef = (uint8_t)faad_getbits(ld, 3
        DEBUGVAR(1,82,"ltp_data(): coef"));

    if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
    {
        for (w = 0; w < ics->num_windows; w++)
        {
            if ((ltp->short_used[w] = faad_get1bit(ld
                DEBUGVAR(1,83,"ltp_data(): short_used"))) & 1)
            {
                ltp->short_lag_present[w] = faad_get1bit(ld
                    DEBUGVAR(1,84,"ltp_data(): short_lag_present"));
                if (ltp->short_lag_present[w])
                {
                    ltp->short_lag[w] = (uint8_t)faad_getbits(ld, 4
                        DEBUGVAR(1,85,"ltp_data(): short_lag"));
                }
            }
        }
    } else {
        ltp->last_band = (ics->max_sfb < MAX_LTP_SFB ? ics->max_sfb : MAX_LTP_SFB);

        for (sfb = 0; sfb < ltp->last_band; sfb++)
        {
            ltp->long_used[sfb] = faad_get1bit(ld
                DEBUGVAR(1,86,"ltp_data(): long_used"));
        }
    }
}
#endif

/* Table 4.4.29 */
static uint8_t spectral_data(ic_stream *ics, bitfile *ld, int16_t *spectral_data,
                             uint16_t frame_len)
{
    int8_t i;
    uint8_t g;
    int16_t *sp;
    uint16_t k, p = 0;
    uint8_t groups = 0;
    uint8_t sect_cb;
    uint8_t result;
    uint16_t nshort = frame_len/8;

    sp = spectral_data;
    for (i = frame_len/16-1; i >= 0; --i)
    {
        *sp++ = 0; *sp++ = 0; *sp++ = 0; *sp++ = 0;
        *sp++ = 0; *sp++ = 0; *sp++ = 0; *sp++ = 0;
        *sp++ = 0; *sp++ = 0; *sp++ = 0; *sp++ = 0;
        *sp++ = 0; *sp++ = 0; *sp++ = 0; *sp++ = 0;
    }

    for(g = 0; g < ics->num_window_groups; g++)
    {
        p = groups*nshort;

        for (i = 0; i < ics->num_sec[g]; i++)
        {
            sect_cb = ics->sect_cb[g][i];

            switch (sect_cb)
            {
            case ZERO_HCB:
            case NOISE_HCB:
            case INTENSITY_HCB:
            case INTENSITY_HCB2:
                p += (ics->sect_sfb_offset[g][ics->sect_end[g][i]] -
                    ics->sect_sfb_offset[g][ics->sect_start[g][i]]);
                break;
            default:
                for (k = ics->sect_sfb_offset[g][ics->sect_start[g][i]];
                     k < ics->sect_sfb_offset[g][ics->sect_end[g][i]]; k += 4)
                {
                    sp = spectral_data + p;

                    if (sect_cb < FIRST_PAIR_HCB)
                    {
                        if ((result = huffman_spectral_data(sect_cb, ld, sp)) > 0)
                            return result;
                    } else {
                        if ((result = huffman_spectral_data(sect_cb, ld, sp)) > 0)
                            return result;
                        if ((result = huffman_spectral_data(sect_cb, ld, sp+2)) > 0)
                            return result;
                    }
                    p += 4;
                }
                break;
            }
        }
        groups += ics->window_group_length[g];
    }

    return 0;
}

/* Table 4.4.30 */
static uint16_t extension_payload(bitfile *ld, drc_info *drc, uint16_t count)
{
    uint16_t i, n;
    uint8_t extension_type = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,87,"extension_payload(): extension_type"));

    switch (extension_type)
    {
    case EXT_DYNAMIC_RANGE:
        drc->present = 1;
        n = dynamic_range_info(ld, drc);
        return n;
    case EXT_FILL_DATA:
        /* fill_nibble = */ faad_getbits(ld, 4
            DEBUGVAR(1,136,"extension_payload(): fill_nibble")); /* must be �0000� */
        for (i = 0; i < count-1; i++)
        {
            /* fill_byte[i] = */ faad_getbits(ld, 8
                DEBUGVAR(1,88,"extension_payload(): fill_byte")); /* must be �10100101� */
        }
        return count;
    default:
        faad_getbits(ld, 4
            DEBUGVAR(1,137,"extension_payload(): fill_nibble"));
        for (i = 0; i < count-1; i++)
        {
            /* other_bits[i] = */ faad_getbits(ld, 8
               DEBUGVAR(1,89,"extension_payload(): fill_byte"));
        }
        return count;
    }
}

/* Table 4.4.31 */
static uint8_t dynamic_range_info(bitfile *ld, drc_info *drc)
{
    uint8_t i, n = 1;
    uint8_t band_incr;

    drc->num_bands = 1;

    if (faad_get1bit(ld
        DEBUGVAR(1,90,"dynamic_range_info(): has instance_tag")) & 1)
    {
        drc->pce_instance_tag = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,91,"dynamic_range_info(): pce_instance_tag"));
        /* drc->drc_tag_reserved_bits = */ faad_getbits(ld, 4
            DEBUGVAR(1,92,"dynamic_range_info(): drc_tag_reserved_bits"));
        n++;
    }

    drc->excluded_chns_present = faad_get1bit(ld
        DEBUGVAR(1,93,"dynamic_range_info(): excluded_chns_present"));
    if (drc->excluded_chns_present == 1)
    {
        n += excluded_channels(ld, drc);
    }

    if (faad_get1bit(ld
        DEBUGVAR(1,94,"dynamic_range_info(): has bands data")) & 1)
    {
        band_incr = (uint8_t)faad_getbits(ld, 4
            DEBUGVAR(1,95,"dynamic_range_info(): band_incr"));
        /* drc->drc_bands_reserved_bits = */ faad_getbits(ld, 4
            DEBUGVAR(1,96,"dynamic_range_info(): drc_bands_reserved_bits"));
        n++;
        drc->num_bands += band_incr;

        for (i = 0; i < drc->num_bands; i++);
        {
            drc->band_top[i] = (uint8_t)faad_getbits(ld, 8
                DEBUGVAR(1,97,"dynamic_range_info(): band_top"));
            n++;
        }
    }

    if (faad_get1bit(ld
        DEBUGVAR(1,98,"dynamic_range_info(): has prog_ref_level")) & 1)
    {
        drc->prog_ref_level = (uint8_t)faad_getbits(ld, 7
            DEBUGVAR(1,99,"dynamic_range_info(): prog_ref_level"));
        /* drc->prog_ref_level_reserved_bits = */ faad_get1bit(ld
            DEBUGVAR(1,100,"dynamic_range_info(): prog_ref_level_reserved_bits"));
        n++;
    }

    for (i = 0; i < drc->num_bands; i++)
    {
        drc->dyn_rng_sgn[i] = faad_get1bit(ld
            DEBUGVAR(1,101,"dynamic_range_info(): dyn_rng_sgn"));
        drc->dyn_rng_ctl[i] = (uint8_t)faad_getbits(ld, 7
            DEBUGVAR(1,102,"dynamic_range_info(): dyn_rng_ctl"));
        n++;
    }

    return n;
}

/* Table 4.4.32 */
static uint8_t excluded_channels(bitfile *ld, drc_info *drc)
{
    uint8_t i, n = 0;
    uint8_t num_excl_chan = 7;

    for (i = 0; i < 7; i++)
    {
        drc->exclude_mask[i] = faad_get1bit(ld
            DEBUGVAR(1,103,"excluded_channels(): exclude_mask"));
    }
    n++;

    while ((drc->additional_excluded_chns[n-1] = faad_get1bit(ld
        DEBUGVAR(1,104,"excluded_channels(): additional_excluded_chns"))) == 1)
    {
        for (i = num_excl_chan; i < num_excl_chan+7; i++)
        {
            drc->exclude_mask[i] = faad_get1bit(ld
                DEBUGVAR(1,105,"excluded_channels(): exclude_mask"));
        }
        n++;
        num_excl_chan += 7;
    }

    return n;
}

/* Annex A: Audio Interchange Formats */

/* Table 1.A.2 */
void get_adif_header(adif_header *adif, bitfile *ld)
{
    uint8_t i;

    /* adif_id[0] = */ faad_getbits(ld, 8
        DEBUGVAR(1,106,"get_adif_header(): adif_id[0]"));
    /* adif_id[1] = */ faad_getbits(ld, 8
        DEBUGVAR(1,107,"get_adif_header(): adif_id[1]"));
    /* adif_id[2] = */ faad_getbits(ld, 8
        DEBUGVAR(1,108,"get_adif_header(): adif_id[2]"));
    /* adif_id[3] = */ faad_getbits(ld, 8
        DEBUGVAR(1,109,"get_adif_header(): adif_id[3]"));
    adif->copyright_id_present = faad_get1bit(ld
        DEBUGVAR(1,110,"get_adif_header(): copyright_id_present"));
    if(adif->copyright_id_present)
    {
        for (i = 0; i < 72/8; i++)
        {
            adif->copyright_id[i] = (int8_t)faad_getbits(ld, 8
                DEBUGVAR(1,111,"get_adif_header(): copyright_id"));
        }
        adif->copyright_id[i] = 0;
    }
    adif->original_copy  = faad_get1bit(ld
        DEBUGVAR(1,112,"get_adif_header(): original_copy"));
    adif->home = faad_get1bit(ld
        DEBUGVAR(1,113,"get_adif_header(): home"));
    adif->bitstream_type = faad_get1bit(ld
        DEBUGVAR(1,114,"get_adif_header(): bitstream_type"));
    adif->bitrate = faad_getbits(ld, 23
        DEBUGVAR(1,115,"get_adif_header(): bitrate"));
    adif->num_program_config_elements = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,116,"get_adif_header(): num_program_config_elements"));

    for (i = 0; i < adif->num_program_config_elements + 1; i++)
    {
        if(adif->bitstream_type == 0)
        {
            adif->adif_buffer_fullness = faad_getbits(ld, 20
                DEBUGVAR(1,117,"get_adif_header(): adif_buffer_fullness"));
        } else {
            adif->adif_buffer_fullness = 0;
        }

        program_config_element(&adif->pce, ld);
    }
}

/* Table 1.A.5 */
uint8_t adts_frame(adts_header *adts, bitfile *ld)
{
    /* faad_byte_align(ld); */
    if (adts_fixed_header(adts, ld))
        return 5;
    adts_variable_header(adts, ld);
    adts_error_check(adts, ld);

    return 0;
}

/* Table 1.A.6 */
static uint8_t adts_fixed_header(adts_header *adts, bitfile *ld)
{
    uint16_t i;
    uint8_t sync_err = 1;

    /* try to recover from sync errors */
    for (i = 0; i < 768; i++)
    {
        adts->syncword = (uint16_t)faad_showbits(ld, 12);
        if (adts->syncword != 0xFFF)
        {
            faad_getbits(ld, 8
                DEBUGVAR(0,0,""));
        } else {
            sync_err = 0;
            faad_getbits(ld, 12
                DEBUGVAR(1,118,"adts_fixed_header(): syncword"));
            break;
        }
    }
    if (sync_err)
        return 5;

    adts->id = faad_get1bit(ld
        DEBUGVAR(1,119,"adts_fixed_header(): id"));
    adts->layer = (uint8_t)faad_getbits(ld, 2
        DEBUGVAR(1,120,"adts_fixed_header(): layer"));
    adts->protection_absent = faad_get1bit(ld
        DEBUGVAR(1,121,"adts_fixed_header(): protection_absent"));
    adts->profile = (uint8_t)faad_getbits(ld, 2
        DEBUGVAR(1,122,"adts_fixed_header(): profile"));
    adts->sf_index = (uint8_t)faad_getbits(ld, 4
        DEBUGVAR(1,123,"adts_fixed_header(): sf_index"));
    adts->private_bit = faad_get1bit(ld
        DEBUGVAR(1,124,"adts_fixed_header(): private_bit"));
    adts->channel_configuration = (uint8_t)faad_getbits(ld, 3
        DEBUGVAR(1,125,"adts_fixed_header(): channel_configuration"));
    adts->original = faad_get1bit(ld
        DEBUGVAR(1,126,"adts_fixed_header(): original"));
    adts->home = faad_get1bit(ld
        DEBUGVAR(1,127,"adts_fixed_header(): home"));
    if (adts->id == 0)
    {
        adts->emphasis = (uint8_t)faad_getbits(ld, 2
            DEBUGVAR(1,128,"adts_fixed_header(): emphasis"));
    }

    return 0;
}

/* Table 1.A.7 */
static void adts_variable_header(adts_header *adts, bitfile *ld)
{
    adts->copyright_identification_bit = faad_get1bit(ld
        DEBUGVAR(1,129,"adts_variable_header(): copyright_identification_bit"));
    adts->copyright_identification_start = faad_get1bit(ld
        DEBUGVAR(1,130,"adts_variable_header(): copyright_identification_start"));
    adts->aac_frame_length = (uint16_t)faad_getbits(ld, 13
        DEBUGVAR(1,131,"adts_variable_header(): aac_frame_length"));
    adts->adts_buffer_fullness = (uint16_t)faad_getbits(ld, 11
        DEBUGVAR(1,132,"adts_variable_header(): adts_buffer_fullness"));
    adts->no_raw_data_blocks_in_frame = (uint8_t)faad_getbits(ld, 2
        DEBUGVAR(1,133,"adts_variable_header(): no_raw_data_blocks_in_frame"));
}

/* Table 1.A.8 */
static void adts_error_check(adts_header *adts, bitfile *ld)
{
    if (adts->protection_absent == 0)
    {
        adts->crc_check = (uint16_t)faad_getbits(ld, 16
            DEBUGVAR(1,134,"adts_error_check(): crc_check"));
    }
}