ref: 65a708ac330ddc83d16ddaa5387d368276c888cb
dir: /libfaad/sbr_e_nf.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through [email protected]. ** ** $Id: sbr_e_nf.c,v 1.11 2004/01/05 14:05:12 menno Exp $ **/ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include <stdlib.h> #include "sbr_syntax.h" #include "sbr_e_nf.h" ALIGN static const real_t pow2deq[] = { REAL_CONST(2.9103830456733704E-011), REAL_CONST(5.8207660913467407E-011), REAL_CONST(1.1641532182693481E-010), REAL_CONST(2.3283064365386963E-010), REAL_CONST(4.6566128730773926E-010), REAL_CONST(9.3132257461547852E-010), REAL_CONST(1.862645149230957E-009), REAL_CONST(3.7252902984619141E-009), REAL_CONST(7.4505805969238281E-009), REAL_CONST(1.4901161193847656E-008), REAL_CONST(2.9802322387695313E-008), REAL_CONST(5.9604644775390625E-008), REAL_CONST(1.1920928955078125E-007), REAL_CONST(2.384185791015625E-007), REAL_CONST(4.76837158203125E-007), REAL_CONST(9.5367431640625E-007), REAL_CONST(1.9073486328125E-006), REAL_CONST(3.814697265625E-006), REAL_CONST(7.62939453125E-006), REAL_CONST(1.52587890625E-005), REAL_CONST(3.0517578125E-005), REAL_CONST(6.103515625E-005), REAL_CONST(0.0001220703125), REAL_CONST(0.000244140625), REAL_CONST(0.00048828125), REAL_CONST(0.0009765625), REAL_CONST(0.001953125), REAL_CONST(0.00390625), REAL_CONST(0.0078125), REAL_CONST(0.015625), REAL_CONST(0.03125), REAL_CONST(0.0625), REAL_CONST(0.125), REAL_CONST(0.25), REAL_CONST(0.5), REAL_CONST(1.0), REAL_CONST(2.0), REAL_CONST(4.0), REAL_CONST(8.0), REAL_CONST(16.0), REAL_CONST(32.0), REAL_CONST(64.0), REAL_CONST(128.0), REAL_CONST(256.0), REAL_CONST(512.0), REAL_CONST(1024.0), REAL_CONST(2048.0), REAL_CONST(4096.0), REAL_CONST(8192.0), REAL_CONST(16384.0), REAL_CONST(32768.0), REAL_CONST(65536.0), REAL_CONST(131072.0), REAL_CONST(262144.0), REAL_CONST(524288.0), REAL_CONST(1048576.0), REAL_CONST(2097152.0), REAL_CONST(4194304.0), REAL_CONST(8388608.0), REAL_CONST(16777216.0), REAL_CONST(33554432.0), REAL_CONST(67108864.0), REAL_CONST(134217728.0), REAL_CONST(268435456.0), REAL_CONST(536870912.0), REAL_CONST(1073741824.0), REAL_CONST(2147483648.0), REAL_CONST(4294967296.0), REAL_CONST(8589934592.0), REAL_CONST(17179869184.0), REAL_CONST(34359738368.0), REAL_CONST(68719476736.0), REAL_CONST(137438953472.0), REAL_CONST(274877906944.0), REAL_CONST(549755813888.0), REAL_CONST(1099511627776.0), REAL_CONST(2199023255552.0), REAL_CONST(4398046511104.0), REAL_CONST(8796093022208.0), REAL_CONST(17592186044416.0), REAL_CONST(35184372088832.0), REAL_CONST(70368744177664.0), REAL_CONST(140737488355328.0), REAL_CONST(281474976710656.0), REAL_CONST(562949953421312.0), REAL_CONST(1125899906842624.0), REAL_CONST(2251799813685248.0), REAL_CONST(4503599627370496.0), REAL_CONST(9007199254740992.0), REAL_CONST(18014398509481984.0), REAL_CONST(36028797018963968.0), REAL_CONST(72057594037927936.0), REAL_CONST(144115188075855870.0), REAL_CONST(288230376151711740.0), REAL_CONST(576460752303423490.0), REAL_CONST(1152921504606847000.0), REAL_CONST(2305843009213694000.0), REAL_CONST(4611686018427387900.0), REAL_CONST(9223372036854775800.0), REAL_CONST(1.8446744073709552E+019), REAL_CONST(3.6893488147419103E+019), REAL_CONST(7.3786976294838206E+019), REAL_CONST(1.4757395258967641E+020), REAL_CONST(2.9514790517935283E+020), REAL_CONST(5.9029581035870565E+020), REAL_CONST(1.1805916207174113E+021), REAL_CONST(2.3611832414348226E+021), REAL_CONST(4.7223664828696452E+021), REAL_CONST(9.4447329657392904E+021), REAL_CONST(1.8889465931478581E+022), REAL_CONST(3.7778931862957162E+022), REAL_CONST(7.5557863725914323E+022), REAL_CONST(1.5111572745182865E+023), REAL_CONST(3.0223145490365729E+023), REAL_CONST(6.0446290980731459E+023), REAL_CONST(1.2089258196146292E+024), REAL_CONST(2.4178516392292583E+024), REAL_CONST(4.8357032784585167E+024), REAL_CONST(9.6714065569170334E+024), REAL_CONST(1.9342813113834067E+025), REAL_CONST(3.8685626227668134E+025), REAL_CONST(7.7371252455336267E+025), REAL_CONST(1.5474250491067253E+026), REAL_CONST(3.0948500982134507E+026), REAL_CONST(6.1897001964269014E+026), REAL_CONST(1.2379400392853803E+027), REAL_CONST(2.4758800785707605E+027) }; /* 1.0 / (1.0 + pow(2.0, x - 12) */ ALIGN static const real_t pow2deq_rcp[] = { FRAC_CONST(0.99975591896509641), FRAC_CONST(0.99951195705222062), FRAC_CONST(0.99902439024390244), FRAC_CONST(0.99805068226120852), FRAC_CONST(0.99610894941634243), FRAC_CONST(0.99224806201550386), FRAC_CONST(0.98461538461538467), FRAC_CONST(0.96969696969696972), FRAC_CONST(0.94117647058823528), FRAC_CONST(0.88888888888888884), FRAC_CONST(0.80000000000000004), FRAC_CONST(0.66666666666666663), FRAC_CONST(0.5), FRAC_CONST(0.33333333333333331), FRAC_CONST(0.20000000000000001), FRAC_CONST(0.1111111111111111), FRAC_CONST(0.058823529411764705), FRAC_CONST(0.030303030303030304), FRAC_CONST(0.015384615384615385), FRAC_CONST(0.0077519379844961239), FRAC_CONST(0.0038910505836575876), FRAC_CONST(0.0019493177387914229), FRAC_CONST(0.00097560975609756097), FRAC_CONST(0.0004880429477794046), FRAC_CONST(0.00024408103490358799), FRAC_CONST(0.00012205541315757354), FRAC_CONST(6.1031431187061336E-005), FRAC_CONST(3.0516646830846227E-005), FRAC_CONST(1.5258556235409006E-005), FRAC_CONST(7.6293363240331724E-006), FRAC_CONST(3.8146827137652828E-006), FRAC_CONST(1.9073449948406318E-006), FRAC_CONST(9.5367340691241559E-007) }; void extract_envelope_data(sbr_info *sbr, uint8_t ch) { uint8_t l, k; for (l = 0; l < sbr->L_E[ch]; l++) { if (sbr->bs_df_env[ch][l] == 0) { for (k = 1; k < sbr->n[sbr->f[ch][l]]; k++) { sbr->E[ch][k][l] = sbr->E[ch][k - 1][l] + sbr->E[ch][k][l]; } } else { /* bs_df_env == 1 */ uint8_t g = (l == 0) ? sbr->f_prev[ch] : sbr->f[ch][l-1]; int16_t E_prev; if (sbr->f[ch][l] == g) { for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++) { if (l == 0) E_prev = sbr->E_prev[ch][k]; else E_prev = sbr->E[ch][k][l - 1]; sbr->E[ch][k][l] = E_prev + sbr->E[ch][k][l]; } } else if ((g == 1) && (sbr->f[ch][l] == 0)) { uint8_t i; for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++) { for (i = 0; i < sbr->N_high; i++) { if (sbr->f_table_res[HI_RES][i] == sbr->f_table_res[LO_RES][k]) { if (l == 0) E_prev = sbr->E_prev[ch][i]; else E_prev = sbr->E[ch][i][l - 1]; sbr->E[ch][k][l] = E_prev + sbr->E[ch][k][l]; } } } } else if ((g == 0) && (sbr->f[ch][l] == 1)) { uint8_t i; for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++) { for (i = 0; i < sbr->N_low; i++) { if ((sbr->f_table_res[LO_RES][i] <= sbr->f_table_res[HI_RES][k]) && (sbr->f_table_res[HI_RES][k] < sbr->f_table_res[LO_RES][i + 1])) { if (l == 0) E_prev = sbr->E_prev[ch][i]; else E_prev = sbr->E[ch][i][l - 1]; sbr->E[ch][k][l] = E_prev + sbr->E[ch][k][l]; } } } } } } } void extract_noise_floor_data(sbr_info *sbr, uint8_t ch) { uint8_t l, k; for (l = 0; l < sbr->L_Q[ch]; l++) { if (sbr->bs_df_noise[ch][l] == 0) { for (k = 1; k < sbr->N_Q; k++) { sbr->Q[ch][k][l] = sbr->Q[ch][k][l] + sbr->Q[ch][k-1][l]; } } else { if (l == 0) { for (k = 0; k < sbr->N_Q; k++) { sbr->Q[ch][k][l] = sbr->Q_prev[ch][k] + sbr->Q[ch][k][0]; } } else { for (k = 0; k < sbr->N_Q; k++) { sbr->Q[ch][k][l] = sbr->Q[ch][k][l - 1] + sbr->Q[ch][k][l]; } } } } } void envelope_noise_dequantisation(sbr_info *sbr, uint8_t ch) { if (sbr->bs_coupling == 0) { int16_t exp; uint8_t l, k; uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1; for (l = 0; l < sbr->L_E[ch]; l++) { for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++) { /* +6 for the *64 and -10 for the /32 in the synthesis QMF * since this is a energy value: (x/32)^2 = (x^2)/1024 */ exp = (sbr->E[ch][k][l] >> amp) + 6; if ((exp < -P2_TABLE_OFFSET) || (exp > P2_TABLE_MAX)) { sbr->E_orig[ch][k][l] = 0; } else { /* FIXED POINT TODO: E_orig: INTEGER!! */ sbr->E_orig[ch][k][l] = pow2deq[exp + P2_TABLE_OFFSET]; /* save half the table size at the cost of 1 multiply */ if (amp && (sbr->E[ch][k][l] & 1)) { sbr->E_orig[ch][k][l] = MUL_R(sbr->E_orig[ch][k][l], REAL_CONST(1.414213562)); } } } } for (l = 0; l < sbr->L_Q[ch]; l++) { for (k = 0; k < sbr->N_Q; k++) { if (sbr->Q[ch][k][l] < 0 || sbr->Q[ch][k][l] > 30) { sbr->Q_orig[ch][k][l] = 0; } else { exp = NOISE_FLOOR_OFFSET - sbr->Q[ch][k][l]; sbr->Q_orig[ch][k][l] = pow2deq[exp + P2_TABLE_OFFSET]; } } } } } void unmap_envelope_noise(sbr_info *sbr) { real_t tmp; int16_t exp0, exp1; uint8_t l, k; uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1; uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1; for (l = 0; l < sbr->L_E[0]; l++) { for (k = 0; k < sbr->n[sbr->f[0][l]]; k++) { /* +6: * 64 ; +1: * 2 ; -10: /1024 QMF */ exp0 = (sbr->E[0][k][l] >> amp0) + 7; /* UN_MAP removed: (x / 4096) same as (x >> 12) */ /* E[1] is always even so no need for compensating the divide by 2 with * an extra multiplication */ exp1 = (sbr->E[1][k][l] >> amp1) - 12; if ((exp0 < -P2_TABLE_OFFSET) || (exp0 > P2_TABLE_MAX) || (exp1 < -P2_TABLE_RCP_OFFSET) || (exp1 > P2_TABLE_RCP_MAX)) { sbr->E_orig[1][k][l] = 0; sbr->E_orig[0][k][l] = 0; } else { tmp = pow2deq[exp0 + P2_TABLE_OFFSET]; if (amp0 && (sbr->E[0][k][l] & 1)) tmp = MUL_R(tmp, REAL_CONST(1.414213562)); /* FIXED POINT TODO: E_orig: INTEGER!! */ sbr->E_orig[1][k][l] = MUL_F(tmp, pow2deq_rcp[exp1 + P2_TABLE_RCP_OFFSET]); sbr->E_orig[0][k][l] = MUL_R(sbr->E_orig[1][k][l], pow2deq[exp1 + P2_TABLE_OFFSET]); } } } for (l = 0; l < sbr->L_Q[0]; l++) { for (k = 0; k < sbr->N_Q; k++) { if ((sbr->Q[0][k][l] < 0 || sbr->Q[0][k][l] > 30) || (sbr->Q[1][k][l] < 0 || sbr->Q[1][k][l] > 24 /* 2*panOffset(1) */)) { sbr->Q_orig[0][k][l] = 0; sbr->Q_orig[1][k][l] = 0; } else { exp0 = NOISE_FLOOR_OFFSET - sbr->Q[0][k][l] + 1; exp1 = sbr->Q[1][k][l] - 12; sbr->Q_orig[1][k][l] = MUL_F(pow2deq[exp0 + P2_TABLE_OFFSET], pow2deq_rcp[exp1 + P2_TABLE_RCP_OFFSET]); sbr->Q_orig[0][k][l] = MUL_R(sbr->Q_orig[1][k][l], pow2deq[exp1 + P2_TABLE_OFFSET]); } } } } #endif