ref: 6d586dd56c5ef71abdaf5ea5245d5e9a21749fd1
dir: /libfaad/sbr_qmf.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through [email protected]. ** ** $Id: sbr_qmf.c,v 1.19 2004/01/05 14:05:12 menno Exp $ **/ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include <stdlib.h> #include <string.h> #include "sbr_dct.h" #include "sbr_qmf.h" #include "sbr_qmf_c.h" #include "sbr_syntax.h" qmfa_info *qmfa_init(uint8_t channels) { qmfa_info *qmfa = (qmfa_info*)faad_malloc(sizeof(qmfa_info)); qmfa->x = (real_t*)faad_malloc(channels * 10 * sizeof(real_t)); memset(qmfa->x, 0, channels * 10 * sizeof(real_t)); qmfa->channels = channels; return qmfa; } void qmfa_end(qmfa_info *qmfa) { if (qmfa) { if (qmfa->x) faad_free(qmfa->x); faad_free(qmfa); } } void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input, qmf_t X[MAX_NTSRHFG][32], uint8_t offset, uint8_t kx) { ALIGN real_t u[64]; #ifndef SBR_LOW_POWER ALIGN real_t x[64], y[64]; #else ALIGN real_t y[32]; #endif uint16_t in = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { int16_t n; /* shift input buffer x */ memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t)); /* add new samples to input buffer x */ for (n = 32 - 1; n >= 0; n--) { #ifdef FIXED_POINT qmfa->x[n] = (input[in++]) >> 5; #else qmfa->x[n] = input[in++]; #endif } /* window and summation to create array u */ for (n = 0; n < 64; n++) { u[n] = MUL_F(qmfa->x[n], qmf_c[2*n]) + MUL_F(qmfa->x[n + 64], qmf_c[2*(n + 64)]) + MUL_F(qmfa->x[n + 128], qmf_c[2*(n + 128)]) + MUL_F(qmfa->x[n + 192], qmf_c[2*(n + 192)]) + MUL_F(qmfa->x[n + 256], qmf_c[2*(n + 256)]); } /* calculate 32 subband samples by introducing X */ #ifdef SBR_LOW_POWER y[0] = u[48]; for (n = 1; n < 16; n++) y[n] = u[n+48] + u[48-n]; for (n = 16; n < 32; n++) y[n] = -u[n-16] + u[48-n]; DCT3_32_unscaled(u, y); for (n = 0; n < 32; n++) { if (n < kx) { #ifdef FIXED_POINT QMF_RE(X[l + offset][n]) = u[n] << 1; #else QMF_RE(X[l + offset][n]) = 2. * u[n]; #endif } else { QMF_RE(X[l + offset][n]) = 0; } } #else x[0] = u[0]; for (n = 0; n < 31; n++) { x[2*n+1] = u[n+1] + u[63-n]; x[2*n+2] = u[n+1] - u[63-n]; } x[63] = u[32]; DCT4_64_kernel(y, x); for (n = 0; n < 32; n++) { if (n < kx) { #ifdef FIXED_POINT QMF_RE(X[l + offset][n]) = y[n] << 1; QMF_IM(X[l + offset][n]) = -y[63-n] << 1; #else QMF_RE(X[l + offset][n]) = 2. * y[n]; QMF_IM(X[l + offset][n]) = -2. * y[63-n]; #endif } else { QMF_RE(X[l + offset][n]) = 0; QMF_IM(X[l + offset][n]) = 0; } } #endif } } qmfs_info *qmfs_init(uint8_t channels) { qmfs_info *qmfs = (qmfs_info*)faad_malloc(sizeof(qmfs_info)); #ifndef SBR_LOW_POWER qmfs->v[0] = (real_t*)faad_malloc(channels * 10 * sizeof(real_t)); memset(qmfs->v[0], 0, channels * 10 * sizeof(real_t)); qmfs->v[1] = (real_t*)faad_malloc(channels * 10 * sizeof(real_t)); memset(qmfs->v[1], 0, channels * 10 * sizeof(real_t)); #else qmfs->v[0] = (real_t*)faad_malloc(channels * 20 * sizeof(real_t)); memset(qmfs->v[0], 0, channels * 20 * sizeof(real_t)); qmfs->v[1] = NULL; #endif qmfs->v_index = 0; qmfs->channels = channels; #ifdef USE_SSE if (cpu_has_sse()) { qmfs->qmf_func = sbr_qmf_synthesis_64_sse; } else { qmfs->qmf_func = sbr_qmf_synthesis_64; } #endif return qmfs; } void qmfs_end(qmfs_info *qmfs) { if (qmfs) { if (qmfs->v[0]) faad_free(qmfs->v[0]); #ifndef SBR_LOW_POWER if (qmfs->v[1]) faad_free(qmfs->v[1]); #endif faad_free(qmfs); } } #ifdef SBR_LOW_POWER void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], real_t *output) { ALIGN real_t x[64]; ALIGN real_t y[64]; int16_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { //real_t *v0, *v1; /* shift buffers */ //memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t)); //memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t)); memmove(qmfs->v[0] + 128, qmfs->v[0], (1280-128)*sizeof(real_t)); //v0 = qmfs->v[qmfs->v_index]; //v1 = qmfs->v[(qmfs->v_index + 1) & 0x1]; //qmfs->v_index = (qmfs->v_index + 1) & 0x1; /* calculate 128 samples */ for (k = 0; k < 64; k++) { #ifdef FIXED_POINT x[k] = QMF_RE(X[l][k]); #else x[k] = QMF_RE(X[l][k]) / 32.; #endif } for (n = 0; n < 32; n++) { y[2*n] = -x[2*n]; y[2*n+1] = x[2*n+1]; } DCT2_64_unscaled(x, x); for (n = 0; n < 64; n++) { qmfs->v[0][n+32] = x[n]; } for (n = 0; n < 32; n++) { qmfs->v[0][31 - n] = x[n + 1]; } DST2_64_unscaled(x, y); qmfs->v[0][96] = 0; for (n = 1; n < 32; n++) { qmfs->v[0][n + 96] = x[n-1]; } /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { #if 1 output[out++] = MUL_F(qmfs->v[0][k], qmf_c[k]) + MUL_F(qmfs->v[0][192 + k], qmf_c[64 + k]) + MUL_F(qmfs->v[0][256 + k], qmf_c[128 + k]) + MUL_F(qmfs->v[0][256 + 192 + k], qmf_c[128 + 64 + k]) + MUL_F(qmfs->v[0][512 + k], qmf_c[256 + k]) + MUL_F(qmfs->v[0][512 + 192 + k], qmf_c[256 + 64 + k]) + MUL_F(qmfs->v[0][768 + k], qmf_c[384 + k]) + MUL_F(qmfs->v[0][768 + 192 + k], qmf_c[384 + 64 + k]) + MUL_F(qmfs->v[0][1024 + k], qmf_c[512 + k]) + MUL_F(qmfs->v[0][1024 + 192 + k], qmf_c[512 + 64 + k]); #else output[out++] = MUL_F(v0[k], qmf_c[k]) + MUL_F(v0[64 + k], qmf_c[64 + k]) + MUL_F(v0[128 + k], qmf_c[128 + k]) + MUL_F(v0[192 + k], qmf_c[192 + k]) + MUL_F(v0[256 + k], qmf_c[256 + k]) + MUL_F(v0[320 + k], qmf_c[320 + k]) + MUL_F(v0[384 + k], qmf_c[384 + k]) + MUL_F(v0[448 + k], qmf_c[448 + k]) + MUL_F(v0[512 + k], qmf_c[512 + k]) + MUL_F(v0[576 + k], qmf_c[576 + k]); #endif } } } void sbr_qmf_synthesis_64_sse(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], real_t *output) { ALIGN real_t x[64]; ALIGN real_t y[64]; ALIGN real_t y2[64]; int16_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { //real_t *v0, *v1; /* shift buffers */ //memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t)); //memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t)); memmove(qmfs->v[0] + 128, qmfs->v[0], (1280-128)*sizeof(real_t)); //v0 = qmfs->v[qmfs->v_index]; //v1 = qmfs->v[(qmfs->v_index + 1) & 0x1]; //qmfs->v_index = (qmfs->v_index + 1) & 0x1; /* calculate 128 samples */ for (k = 0; k < 64; k++) { #ifdef FIXED_POINT x[k] = QMF_RE(X[l][k]); #else x[k] = QMF_RE(X[l][k]) / 32.; #endif } for (n = 0; n < 32; n++) { y[2*n] = -x[2*n]; y[2*n+1] = x[2*n+1]; } DCT2_64_unscaled(x, x); for (n = 0; n < 64; n++) { qmfs->v[0][n+32] = x[n]; } for (n = 0; n < 32; n++) { qmfs->v[0][31 - n] = x[n + 1]; } DST2_64_unscaled(x, y); qmfs->v[0][96] = 0; for (n = 1; n < 32; n++) { qmfs->v[0][n + 96] = x[n-1]; } /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { #if 1 output[out++] = MUL_F(qmfs->v[0][k], qmf_c[k]) + MUL_F(qmfs->v[0][192 + k], qmf_c[64 + k]) + MUL_F(qmfs->v[0][256 + k], qmf_c[128 + k]) + MUL_F(qmfs->v[0][256 + 192 + k], qmf_c[128 + 64 + k]) + MUL_F(qmfs->v[0][512 + k], qmf_c[256 + k]) + MUL_F(qmfs->v[0][512 + 192 + k], qmf_c[256 + 64 + k]) + MUL_F(qmfs->v[0][768 + k], qmf_c[384 + k]) + MUL_F(qmfs->v[0][768 + 192 + k], qmf_c[384 + 64 + k]) + MUL_F(qmfs->v[0][1024 + k], qmf_c[512 + k]) + MUL_F(qmfs->v[0][1024 + 192 + k], qmf_c[512 + 64 + k]); #else output[out++] = MUL_F(v0[k], qmf_c[k]) + MUL_F(v0[64 + k], qmf_c[64 + k]) + MUL_F(v0[128 + k], qmf_c[128 + k]) + MUL_F(v0[192 + k], qmf_c[192 + k]) + MUL_F(v0[256 + k], qmf_c[256 + k]) + MUL_F(v0[320 + k], qmf_c[320 + k]) + MUL_F(v0[384 + k], qmf_c[384 + k]) + MUL_F(v0[448 + k], qmf_c[448 + k]) + MUL_F(v0[512 + k], qmf_c[512 + k]) + MUL_F(v0[576 + k], qmf_c[576 + k]); #endif } } } #else void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], real_t *output) { ALIGN real_t x1[64], x2[64]; real_t scale = 1.f/64.f; int16_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { real_t *v0, *v1; /* shift buffers */ memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t)); memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t)); v0 = qmfs->v[qmfs->v_index]; v1 = qmfs->v[(qmfs->v_index + 1) & 0x1]; qmfs->v_index = (qmfs->v_index + 1) & 0x1; /* calculate 128 samples */ x1[0] = scale*QMF_RE(X[l][0]); x2[63] = scale*QMF_IM(X[l][0]); for (k = 0; k < 31; k++) { x1[2*k+1] = scale*(QMF_RE(X[l][2*k+1]) - QMF_RE(X[l][2*k+2])); x1[2*k+2] = scale*(QMF_RE(X[l][2*k+1]) + QMF_RE(X[l][2*k+2])); x2[61 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) - QMF_IM(X[l][2*k+1])); x2[62 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) + QMF_IM(X[l][2*k+1])); } x1[63] = scale*QMF_RE(X[l][63]); x2[0] = scale*QMF_IM(X[l][63]); DCT4_64_kernel(x1, x1); DCT4_64_kernel(x2, x2); for (n = 0; n < 32; n++) { v0[ 2*n] = x2[2*n] - x1[2*n]; v1[63-2*n] = x2[2*n] + x1[2*n]; v0[ 2*n+1] = -x2[2*n+1] - x1[2*n+1]; v1[62-2*n] = -x2[2*n+1] + x1[2*n+1]; } /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { output[out++] = MUL_F(v0[k], qmf_c[k]) + MUL_F(v0[64 + k], qmf_c[64 + k]) + MUL_F(v0[128 + k], qmf_c[128 + k]) + MUL_F(v0[192 + k], qmf_c[192 + k]) + MUL_F(v0[256 + k], qmf_c[256 + k]) + MUL_F(v0[320 + k], qmf_c[320 + k]) + MUL_F(v0[384 + k], qmf_c[384 + k]) + MUL_F(v0[448 + k], qmf_c[448 + k]) + MUL_F(v0[512 + k], qmf_c[512 + k]) + MUL_F(v0[576 + k], qmf_c[576 + k]); } } } #ifdef USE_SSE void memmove_sse_576(real_t *out, const real_t *in) { __m128 m[144]; uint16_t i; for (i = 0; i < 144; i++) { m[i] = _mm_load_ps(&in[i*4]); } for (i = 0; i < 144; i++) { _mm_store_ps(&out[i*4], m[i]); } } void sbr_qmf_synthesis_64_sse(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], real_t *output) { ALIGN real_t x1[64], x2[64]; real_t scale = 1.f/64.f; int16_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { real_t *v0, *v1; /* shift buffers */ memmove_sse_576(qmfs->v[0] + 64, qmfs->v[0]); memmove_sse_576(qmfs->v[1] + 64, qmfs->v[1]); v0 = qmfs->v[qmfs->v_index]; v1 = qmfs->v[(qmfs->v_index + 1) & 0x1]; qmfs->v_index = (qmfs->v_index + 1) & 0x1; /* calculate 128 samples */ x1[0] = scale*QMF_RE(X[l][0]); x2[63] = scale*QMF_IM(X[l][0]); for (k = 0; k < 31; k++) { x1[2*k+1] = scale*(QMF_RE(X[l][2*k+1]) - QMF_RE(X[l][2*k+2])); x1[2*k+2] = scale*(QMF_RE(X[l][2*k+1]) + QMF_RE(X[l][2*k+2])); x2[61 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) - QMF_IM(X[l][2*k+1])); x2[62 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) + QMF_IM(X[l][2*k+1])); } x1[63] = scale*QMF_RE(X[l][63]); x2[0] = scale*QMF_IM(X[l][63]); DCT4_64_kernel(x1, x1); DCT4_64_kernel(x2, x2); for (n = 0; n < 32; n++) { v0[ 2*n ] = x2[2*n] - x1[2*n]; v1[63- 2*n ] = x2[2*n] + x1[2*n]; v0[ 2*n+1 ] = -x2[2*n+1] - x1[2*n+1]; v1[63-(2*n+1)] = -x2[2*n+1] + x1[2*n+1]; } /* calculate 64 output samples and window */ for (k = 0; k < 64; k+=4) { __m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9; __m128 c0, c1, c2, c3, c4, c5, c6, c7, c8, c9; __m128 s1, s2, s3, s4, s5, s6, s7, s8, s9; m0 = _mm_load_ps(&v0[k]); m1 = _mm_load_ps(&v0[k + 64]); m2 = _mm_load_ps(&v0[k + 128]); m3 = _mm_load_ps(&v0[k + 192]); m4 = _mm_load_ps(&v0[k + 256]); c0 = _mm_load_ps(&qmf_c[k]); c1 = _mm_load_ps(&qmf_c[k + 64]); c2 = _mm_load_ps(&qmf_c[k + 128]); c3 = _mm_load_ps(&qmf_c[k + 192]); c4 = _mm_load_ps(&qmf_c[k + 256]); m0 = _mm_mul_ps(m0, c0); m1 = _mm_mul_ps(m1, c1); m2 = _mm_mul_ps(m2, c2); m3 = _mm_mul_ps(m3, c3); m4 = _mm_mul_ps(m4, c4); s1 = _mm_add_ps(m0, m1); s2 = _mm_add_ps(m2, m3); s6 = _mm_add_ps(s1, s2); m5 = _mm_load_ps(&v0[k + 320]); m6 = _mm_load_ps(&v0[k + 384]); m7 = _mm_load_ps(&v0[k + 448]); m8 = _mm_load_ps(&v0[k + 512]); m9 = _mm_load_ps(&v0[k + 576]); c5 = _mm_load_ps(&qmf_c[k + 320]); c6 = _mm_load_ps(&qmf_c[k + 384]); c7 = _mm_load_ps(&qmf_c[k + 448]); c8 = _mm_load_ps(&qmf_c[k + 512]); c9 = _mm_load_ps(&qmf_c[k + 576]); m5 = _mm_mul_ps(m5, c5); m6 = _mm_mul_ps(m6, c6); m7 = _mm_mul_ps(m7, c7); m8 = _mm_mul_ps(m8, c8); m9 = _mm_mul_ps(m9, c9); s3 = _mm_add_ps(m4, m5); s4 = _mm_add_ps(m6, m7); s5 = _mm_add_ps(m8, m9); s7 = _mm_add_ps(s3, s4); s8 = _mm_add_ps(s5, s6); s9 = _mm_add_ps(s7, s8); _mm_store_ps(&output[out], s9); out += 4; } } } #endif #endif #endif