ref: a2a56b3ea59188e2e2b60b69a0a8f77aa3093144
dir: /libfaad/pns.c/
/* ** FAAD - Freeware Advanced Audio Decoder ** Copyright (C) 2002 M. Bakker ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** $Id: pns.c,v 1.17 2002/09/13 13:08:45 menno Exp $ **/ #include "common.h" #include "pns.h" static const uint8_t Parity [256] = { // parity 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1, 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1, 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1, 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1, 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0 }; static int32_t __r1 = 1; static int32_t __r2 = 1; static INLINE int32_t random2() { int32_t t1, t2, t3, t4; t3 = t1 = __r1; t4 = t2 = __r2; // Parity calculation is done via table lookup, this is also available t1 &= 0xF5; t2 >>= 25; // on CPUs without parity, can be implemented in C and avoid unpredictable t1 = Parity [t1]; t2 &= 0x63; // jumps and slow rotate through the carry flag operations. t1 <<= 31; t2 = Parity [t2]; return (__r1 = (t3 >> 1) | t1 ) ^ (__r2 = (t4 + t4) | t2 ); } #ifdef FIXED_POINT #define DIV(A, B) (((int64_t)A << COEF_BITS)/B) #define step(shift) \ if ((0x40000000l >> shift) + root <= value) \ { \ value -= (0x40000000l >> shift) + root; \ root = (root >> 1) | (0x40000000l >> shift); \ } else { \ root = root >> 1; \ } /* fixed point square root approximation */ real_t fp_sqrt(real_t value) { real_t root = 0; step( 0); step( 2); step( 4); step( 6); step( 8); step(10); step(12); step(14); step(16); step(18); step(20); step(22); step(24); step(26); step(28); step(30); if (root < value) ++root; root <<= (COEF_BITS/2); return root; } static real_t pow2_table[] = { COEF_CONST(0.59460355750136), COEF_CONST(0.70710678118655), COEF_CONST(0.84089641525371), COEF_CONST(1.0), COEF_CONST(1.18920711500272), COEF_CONST(1.41421356237310), COEF_CONST(1.68179283050743) }; #endif /* The function gen_rand_vector(addr, size) generates a vector of length <size> with signed random values of average energy MEAN_NRG per random value. A suitable random number generator can be realized using one multiplication/accumulation per random value. */ static INLINE void gen_rand_vector(real_t *spec, int16_t scale_factor, uint16_t size) { #ifndef FIXED_POINT uint16_t i; real_t energy = 0.0; real_t scale = 1.0/(real_t)size * ISQRT_MEAN_NRG; for (i = 0; i < size; i++) { real_t tmp = scale*(real_t)random2(); spec[i] = tmp; energy += tmp*tmp; } scale = 1.0/(real_t)sqrt(energy); scale *= (real_t)pow(2.0, 0.25 * scale_factor); for (i = 0; i < size; i++) { spec[i] *= scale; } #else uint16_t i; real_t energy = 0, scale; int32_t exp, frac; for (i = 0; i < size; i++) { real_t tmp = ISQRT_MEAN_NRG * random2(); tmp = MUL_C_C(COEF_CONST(1)/size, tmp); energy += MUL_C_C(tmp,tmp); /* convert COEF to REAL */ spec[i] = (tmp >> -(REAL_BITS-COEF_BITS)); } energy = fp_sqrt(energy); if (energy > 0) { scale = DIV(COEF_CONST(1),energy); scale >>= -(REAL_BITS-COEF_BITS); exp = scale_factor / 4; frac = scale_factor % 4; if (exp < 0) scale >>= -exp; else scale <<= exp; if (frac) scale = MUL_R_C(scale, pow2_table[frac + 3]); for (i = 0; i < size; i++) { spec[i] = MUL(spec[i], scale); } } #endif } void pns_decode(ic_stream *ics_left, ic_stream *ics_right, real_t *spec_left, real_t *spec_right, uint16_t frame_len, uint8_t channel_pair) { uint8_t g, sfb, b; uint16_t size, offs; uint8_t group = 0; uint16_t nshort = frame_len >> 3; for (g = 0; g < ics_left->num_window_groups; g++) { /* Do perceptual noise substitution decoding */ for (b = 0; b < ics_left->window_group_length[g]; b++) { for (sfb = 0; sfb < ics_left->max_sfb; sfb++) { if (is_noise(ics_left, g, sfb)) { /* Simultaneous use of LTP and PNS is not prevented in the syntax. If both LTP, and PNS are enabled on the same scalefactor band, PNS takes precedence, and no prediction is applied to this band. */ ics_left->ltp.long_used[sfb] = 0; ics_left->ltp2.long_used[sfb] = 0; /* For scalefactor bands coded using PNS the corresponding predictors are switched to "off". */ ics_left->pred.prediction_used[sfb] = 0; offs = ics_left->swb_offset[sfb]; size = ics_left->swb_offset[sfb+1] - offs; /* Generate random vector */ gen_rand_vector(&spec_left[(group*nshort)+offs], ics_left->scale_factors[g][sfb], size); } /* From the spec: If the same scalefactor band and group is coded by perceptual noise substitution in both channels of a channel pair, the correlation of the noise signal can be controlled by means of the ms_used field: While the default noise generation process works independently for each channel (separate generation of random vectors), the same random vector is used for both channels if ms_used[] is set for a particular scalefactor band and group. In this case, no M/S stereo coding is carried out (because M/S stereo coding and noise substitution coding are mutually exclusive). If the same scalefactor band and group is coded by perceptual noise substitution in only one channel of a channel pair the setting of ms_used[] is not evaluated. */ if (channel_pair) { if (is_noise(ics_right, g, sfb)) { if (ics_left->ms_mask_present == 1) { if (ics_left->ms_used[g][sfb]) { uint16_t c; offs = ics_right->swb_offset[sfb]; size = ics_right->swb_offset[sfb+1] - offs; for (c = 0; c < size; c++) { spec_right[(group*nshort) + offs + c] = spec_left[(group*nshort) + offs + c]; } } } else if (ics_left->ms_mask_present == 2) { uint16_t c; offs = ics_right->swb_offset[sfb]; size = ics_right->swb_offset[sfb+1] - offs; for (c = 0; c < size; c++) { spec_right[(group*nshort) + offs + c] = spec_left[(group*nshort) + offs + c]; } } else /*if (ics_left->ms_mask_present == 0)*/ { ics_right->ltp.long_used[sfb] = 0; ics_right->ltp2.long_used[sfb] = 0; ics_right->pred.prediction_used[sfb] = 0; offs = ics_right->swb_offset[sfb]; size = ics_right->swb_offset[sfb+1] - offs; /* Generate random vector */ gen_rand_vector(&spec_right[(group*nshort)+offs], ics_right->scale_factors[g][sfb], size); } } } } /* sfb */ group++; } /* b */ } /* g */ }