ref: a952619a3ea1d1924ca7e8605ce495f0d121a167
dir: /libfaad/sbr_hfadj.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Software using this code must display the following message visibly in or ** on each copy of the software: ** "FAAD2 AAC/HE-AAC/HE-AACv2/DRM decoder (c) Nero AG, www.nero.com" ** in, for example, the about-box or help/startup screen. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Nero AG through [email protected]. ** ** $Id: sbr_hfadj.c,v 1.20 2006/05/07 18:09:01 menno Exp $ **/ /* High Frequency adjustment */ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include "sbr_syntax.h" #include "sbr_hfadj.h" #include "sbr_noise.h" /* static function declarations */ static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch); static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch); #ifdef SBR_LOW_POWER static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch); static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch); #endif static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch); uint8_t hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64] #ifdef SBR_LOW_POWER ,real_t *deg /* aliasing degree */ #endif ,uint8_t ch) { ALIGN sbr_hfadj_info adj = {{{0}}}; uint8_t ret = 0; if (sbr->bs_frame_class[ch] == FIXFIX) { sbr->l_A[ch] = -1; } else if (sbr->bs_frame_class[ch] == VARFIX) { if (sbr->bs_pointer[ch] > 1) sbr->l_A[ch] = -1; else sbr->l_A[ch] = sbr->bs_pointer[ch] - 1; } else { if (sbr->bs_pointer[ch] == 0) sbr->l_A[ch] = -1; else sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch]; } ret = estimate_current_envelope(sbr, &adj, Xsbr, ch); if (ret > 0) return 1; calculate_gain(sbr, &adj, ch); #ifdef SBR_LOW_POWER calc_gain_groups(sbr, &adj, deg, ch); aliasing_reduction(sbr, &adj, deg, ch); #endif hf_assembly(sbr, &adj, Xsbr, ch); return 0; } static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band) { if (sbr->f[ch][l] == HI_RES) { /* in case of using f_table_high we just have 1 to 1 mapping * from bs_add_harmonic[l][k] */ if ((l >= sbr->l_A[ch]) || (sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch])) { return sbr->bs_add_harmonic[ch][current_band]; } } else { uint8_t b, lb, ub; /* in case of f_table_low we check if any of the HI_RES bands * within this LO_RES band has bs_add_harmonic[l][k] turned on * (note that borders in the LO_RES table are also present in * the HI_RES table) */ /* find first HI_RES band in current LO_RES band */ lb = 2*current_band - ((sbr->N_high & 1) ? 1 : 0); /* find first HI_RES band in next LO_RES band */ ub = 2*(current_band+1) - ((sbr->N_high & 1) ? 1 : 0); /* check all HI_RES bands in current LO_RES band for sinusoid */ for (b = lb; b < ub; b++) { if ((l >= sbr->l_A[ch]) || (sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch])) { if (sbr->bs_add_harmonic[ch][b] == 1) return 1; } } } return 0; } static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch) { uint8_t m, l, j, k, k_l, k_h, p; real_t nrg, div; if (sbr->bs_interpol_freq == 1) { for (l = 0; l < sbr->L_E[ch]; l++) { uint8_t i, l_i, u_i; l_i = sbr->t_E[ch][l]; u_i = sbr->t_E[ch][l+1]; div = (real_t)(u_i - l_i); if (div == 0) div = 1; for (m = 0; m < sbr->M; m++) { nrg = 0; for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++) { #ifdef FIXED_POINT #ifdef SBR_LOW_POWER nrg += ((QMF_RE(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS); #else nrg += ((QMF_RE(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS) + ((QMF_IM(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_IM(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS); #endif #else nrg += MUL_R(QMF_RE(Xsbr[i][m + sbr->kx]), QMF_RE(Xsbr[i][m + sbr->kx])) #ifndef SBR_LOW_POWER + MUL_R(QMF_IM(Xsbr[i][m + sbr->kx]), QMF_IM(Xsbr[i][m + sbr->kx])) #endif ; #endif } sbr->E_curr[ch][m][l] = nrg / div; #ifdef SBR_LOW_POWER #ifdef FIXED_POINT sbr->E_curr[ch][m][l] <<= 1; #else sbr->E_curr[ch][m][l] *= 2; #endif #endif } } } else { for (l = 0; l < sbr->L_E[ch]; l++) { for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++) { k_l = sbr->f_table_res[sbr->f[ch][l]][p]; k_h = sbr->f_table_res[sbr->f[ch][l]][p+1]; for (k = k_l; k < k_h; k++) { uint8_t i, l_i, u_i; nrg = 0; l_i = sbr->t_E[ch][l]; u_i = sbr->t_E[ch][l+1]; div = (real_t)((u_i - l_i)*(k_h - k_l)); if (div == 0) div = 1; for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++) { for (j = k_l; j < k_h; j++) { #ifdef FIXED_POINT #ifdef SBR_LOW_POWER nrg += ((QMF_RE(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS); #else nrg += ((QMF_RE(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS) + ((QMF_IM(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_IM(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS); #endif #else nrg += MUL_R(QMF_RE(Xsbr[i][j]), QMF_RE(Xsbr[i][j])) #ifndef SBR_LOW_POWER + MUL_R(QMF_IM(Xsbr[i][j]), QMF_IM(Xsbr[i][j])) #endif ; #endif } } sbr->E_curr[ch][k - sbr->kx][l] = nrg / div; #ifdef SBR_LOW_POWER #ifdef FIXED_POINT sbr->E_curr[ch][k - sbr->kx][l] <<= 1; #else sbr->E_curr[ch][k - sbr->kx][l] *= 2; #endif #endif } } } } return 0; } #ifdef FIXED_POINT #define EPS (1) /* smallest number available in fixed point */ #else #define EPS (1e-12) #endif #ifdef FIXED_POINT /* log2 values of [0..63] */ static const real_t log2_int_tab[] = { LOG2_MIN_INF, REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156), REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604), REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297), REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519), REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585), REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013), REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468), REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875), REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966), REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248), REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098), REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637), REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495), REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660), REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842), REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916) }; static const real_t pan_log2_tab[] = { REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122), REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667) }; static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) { /* check for coupled energy/noise data */ if (sbr->bs_coupling == 1) { uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1; uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1; real_t tmp = (7 << REAL_BITS) + (sbr->E[0][k][l] << (REAL_BITS-amp0)); real_t pan; /* E[1] should always be even so shifting is OK */ uint8_t E = sbr->E[1][k][l] >> amp1; if (ch == 0) { if (E > 12) { /* negative */ pan = pan_log2_tab[-12 + E]; } else { /* positive */ pan = pan_log2_tab[12 - E] + ((12 - E)<<REAL_BITS); } } else { if (E < 12) { /* negative */ pan = pan_log2_tab[-E + 12]; } else { /* positive */ pan = pan_log2_tab[E - 12] + ((E - 12)<<REAL_BITS); } } /* tmp / pan in log2 */ return tmp - pan; } else { uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1; return (6 << REAL_BITS) + (sbr->E[ch][k][l] << (REAL_BITS-amp)); } } static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) { /* check for coupled energy/noise data */ if (sbr->bs_coupling == 1) { real_t tmp = (7 << REAL_BITS) - (sbr->Q[0][k][l] << REAL_BITS); real_t pan; uint8_t Q = sbr->Q[1][k][l]; if (ch == 0) { if (Q > 12) { /* negative */ pan = pan_log2_tab[-12 + Q]; } else { /* positive */ pan = pan_log2_tab[12 - Q] + ((12 - Q)<<REAL_BITS); } } else { if (Q < 12) { /* negative */ pan = pan_log2_tab[-Q + 12]; } else { /* positive */ pan = pan_log2_tab[Q - 12] + ((Q - 12)<<REAL_BITS); } } /* tmp / pan in log2 */ return tmp - pan; } else { return (6 << REAL_BITS) - (sbr->Q[ch][k][l] << REAL_BITS); } } static const real_t log_Qplus1_pan[31][13] = { { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) }, { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) }, { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) }, { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) }, { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) }, { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) }, { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) }, { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) }, { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) }, { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) }, { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) }, { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) }, { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) }, { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) }, { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) }, { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) }, { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) }, { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) }, { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) } }; static const real_t log_Qplus1[31] = { REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339), REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156), REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122), REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667), REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551), REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641), REAL_CONST(0.000000000000000) }; static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) { /* check for coupled energy/noise data */ if (sbr->bs_coupling == 1) { if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) && (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24)) { if (ch == 0) { return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]; } else { return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]; } } else { return 0; } } else { if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30) { return log_Qplus1[sbr->Q[ch][k][l]]; } else { return 0; } } } static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch) { /* log2 values of limiter gains */ static real_t limGain[] = { REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(33.219) }; uint8_t m, l, k; uint8_t current_t_noise_band = 0; uint8_t S_mapped; ALIGN real_t Q_M_lim[MAX_M]; ALIGN real_t G_lim[MAX_M]; ALIGN real_t G_boost; ALIGN real_t S_M[MAX_M]; for (l = 0; l < sbr->L_E[ch]; l++) { uint8_t current_f_noise_band = 0; uint8_t current_res_band = 0; uint8_t current_res_band2 = 0; uint8_t current_hi_res_band = 0; real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1; S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1]) { current_t_noise_band++; } for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++) { real_t Q_M = 0; real_t G_max; real_t den = 0; real_t acc1 = 0; real_t acc2 = 0; uint8_t current_res_band_size = 0; uint8_t Q_M_size = 0; uint8_t ml1, ml2; /* bounds of current limiter bands */ ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k]; ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; /* calculate the accumulated E_orig and E_curr over the limiter band */ for (m = ml1; m < ml2; m++) { if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1]) { current_res_band_size++; } else { acc1 += pow2_int(-REAL_CONST(10) + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)); current_res_band++; current_res_band_size = 1; } acc2 += sbr->E_curr[ch][m][l]; } acc1 += pow2_int(-REAL_CONST(10) + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)); if (acc1 == 0) acc1 = LOG2_MIN_INF; else acc1 = log2_int(acc1); /* calculate the maximum gain */ /* ratio of the energy of the original signal and the energy * of the HF generated signal */ G_max = acc1 - log2_int(acc2) + limGain[sbr->bs_limiter_gains]; G_max = min(G_max, limGain[3]); for (m = ml1; m < ml2; m++) { real_t G; real_t E_curr, E_orig; real_t Q_orig, Q_orig_plus1; uint8_t S_index_mapped; /* check if m is on a noise band border */ if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1]) { /* step to next noise band */ current_f_noise_band++; } /* check if m is on a resolution band border */ if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1]) { /* accumulate a whole range of equal Q_Ms */ if (Q_M_size > 0) den += pow2_int(log2_int_tab[Q_M_size] + Q_M); Q_M_size = 0; /* step to next resolution band */ current_res_band2++; /* if we move to a new resolution band, we should check if we are * going to add a sinusoid in this band */ S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); } /* check if m is on a HI_RES band border */ if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1]) { /* step to next HI_RES band */ current_hi_res_band++; } /* find S_index_mapped * S_index_mapped can only be 1 for the m in the middle of the * current HI_RES band */ S_index_mapped = 0; if ((l >= sbr->l_A[ch]) || (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch])) { /* find the middle subband of the HI_RES frequency band */ if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1) S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band]; } /* find bitstream parameters */ if (sbr->E_curr[ch][m][l] == 0) E_curr = LOG2_MIN_INF; else E_curr = log2_int(sbr->E_curr[ch][m][l]); E_orig = -REAL_CONST(10) + find_log2_E(sbr, current_res_band2, l, ch); Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch); Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch); /* Q_M only depends on E_orig and Q_div2: * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on * a change of current res band (HI or LO) */ Q_M = E_orig + Q_orig - Q_orig_plus1; /* S_M only depends on E_orig, Q_div and S_index_mapped: * S_index_mapped can only be non-zero once per HI_RES band */ if (S_index_mapped == 0) { S_M[m] = LOG2_MIN_INF; /* -inf */ } else { S_M[m] = E_orig - Q_orig_plus1; /* accumulate sinusoid part of the total energy */ den += pow2_int(S_M[m]); } /* calculate gain */ /* ratio of the energy of the original signal and the energy * of the HF generated signal */ /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */ /* scaled by -10 */ G = E_orig - max(-REAL_CONST(10), E_curr); if ((S_mapped == 0) && (delta == 1)) { /* G = G * 1/(1+Q) */ G -= Q_orig_plus1; } else if (S_mapped == 1) { /* G = G * Q/(1+Q) */ G += Q_orig - Q_orig_plus1; } /* limit the additional noise energy level */ /* and apply the limiter */ if (G_max > G) { Q_M_lim[m] = Q_M; G_lim[m] = G; if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) { Q_M_size++; } } else { /* G > G_max */ Q_M_lim[m] = Q_M + G_max - G; G_lim[m] = G_max; /* accumulate limited Q_M */ if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) { den += pow2_int(Q_M_lim[m]); } } /* accumulate the total energy */ /* E_curr changes for every m so we do need to accumulate every m */ den += pow2_int(E_curr + G_lim[m]); } /* accumulate last range of equal Q_Ms */ if (Q_M_size > 0) { den += pow2_int(log2_int_tab[Q_M_size] + Q_M); } /* calculate the final gain */ /* G_boost: [0..2.51188643] */ G_boost = acc1 - log2_int(den /*+ EPS*/); G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */); for (m = ml1; m < ml2; m++) { /* apply compensation to gain, noise floor sf's and sinusoid levels */ #ifndef SBR_LOW_POWER adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1); #else /* sqrt() will be done after the aliasing reduction to save a * few multiplies */ adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost); #endif adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1); if (S_M[m] != LOG2_MIN_INF) { adj->S_M_boost[l][m] = pow2_int((S_M[m] + G_boost) >> 1); } else { adj->S_M_boost[l][m] = 0; } } } } } #else //#define LOG2_TEST #ifdef LOG2_TEST #define LOG2_MIN_INF -100000 __inline float pow2(float val) { return pow(2.0, val); } __inline float log2(float val) { return log(val)/log(2.0); } #define RB 14 float QUANTISE2REAL(float val) { __int32 ival = (__int32)(val * (1<<RB)); return (float)ival / (float)((1<<RB)); } float QUANTISE2INT(float val) { return floor(val); } /* log2 values of [0..63] */ static const real_t log2_int_tab[] = { LOG2_MIN_INF, 0.000000000000000, 1.000000000000000, 1.584962500721156, 2.000000000000000, 2.321928094887362, 2.584962500721156, 2.807354922057604, 3.000000000000000, 3.169925001442313, 3.321928094887363, 3.459431618637297, 3.584962500721156, 3.700439718141092, 3.807354922057604, 3.906890595608519, 4.000000000000000, 4.087462841250339, 4.169925001442312, 4.247927513443585, 4.321928094887362, 4.392317422778761, 4.459431618637297, 4.523561956057013, 4.584962500721156, 4.643856189774724, 4.700439718141093, 4.754887502163468, 4.807354922057604, 4.857980995127572, 4.906890595608519, 4.954196310386875, 5.000000000000000, 5.044394119358453, 5.087462841250340, 5.129283016944966, 5.169925001442312, 5.209453365628949, 5.247927513443585, 5.285402218862248, 5.321928094887363, 5.357552004618084, 5.392317422778761, 5.426264754702098, 5.459431618637297, 5.491853096329675, 5.523561956057013, 5.554588851677637, 5.584962500721156, 5.614709844115208, 5.643856189774724, 5.672425341971495, 5.700439718141093, 5.727920454563200, 5.754887502163469, 5.781359713524660, 5.807354922057605, 5.832890014164742, 5.857980995127572, 5.882643049361842, 5.906890595608518, 5.930737337562887, 5.954196310386876, 5.977279923499916 }; static const real_t pan_log2_tab[] = { 1.000000000000000, 0.584962500721156, 0.321928094887362, 0.169925001442312, 0.087462841250339, 0.044394119358453, 0.022367813028455, 0.011227255423254, 0.005624549193878, 0.002815015607054, 0.001408194392808, 0.000704269011247, 0.000352177480301, 0.000176099486443, 0.000088052430122, 0.000044026886827, 0.000022013611360, 0.000011006847667 }; static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) { /* check for coupled energy/noise data */ if (sbr->bs_coupling == 1) { real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5; real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5; float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0); float pan; int E = (int)(sbr->E[1][k][l] * amp1); if (ch == 0) { if (E > 12) { /* negative */ pan = QUANTISE2REAL(pan_log2_tab[-12 + E]); } else { /* positive */ pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E)); } } else { if (E < 12) { /* negative */ pan = QUANTISE2REAL(pan_log2_tab[-E + 12]); } else { /* positive */ pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12)); } } /* tmp / pan in log2 */ return QUANTISE2REAL(tmp - pan); } else { real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5; return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp); } } static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) { /* check for coupled energy/noise data */ if (sbr->bs_coupling == 1) { float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]); float pan; int Q = (int)(sbr->Q[1][k][l]); if (ch == 0) { if (Q > 12) { /* negative */ pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]); } else { /* positive */ pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q)); } } else { if (Q < 12) { /* negative */ pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]); } else { /* positive */ pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12)); } } /* tmp / pan in log2 */ return QUANTISE2REAL(tmp - pan); } else { return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]); } } static const real_t log_Qplus1_pan[31][13] = { { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) }, { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) }, { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) }, { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) }, { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) }, { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) }, { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) }, { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) }, { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) }, { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) }, { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) }, { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) }, { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) }, { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) }, { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) }, { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) }, { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) }, { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) }, { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) }, { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) } }; static const real_t log_Qplus1[31] = { REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339), REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156), REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122), REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667), REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551), REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641), REAL_CONST(0.000000000000000) }; static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) { /* check for coupled energy/noise data */ if (sbr->bs_coupling == 1) { if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) && (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24)) { if (ch == 0) { return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]); } else { return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]); } } else { return 0; } } else { if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30) { return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]); } else { return 0; } } } static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch) { /* log2 values of limiter gains */ static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 }; uint8_t m, l, k; uint8_t current_t_noise_band = 0; uint8_t S_mapped; ALIGN real_t Q_M_lim[MAX_M]; ALIGN real_t G_lim[MAX_M]; ALIGN real_t G_boost; ALIGN real_t S_M[MAX_M]; for (l = 0; l < sbr->L_E[ch]; l++) { uint8_t current_f_noise_band = 0; uint8_t current_res_band = 0; uint8_t current_res_band2 = 0; uint8_t current_hi_res_band = 0; real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1; S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1]) { current_t_noise_band++; } for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++) { real_t Q_M = 0; real_t G_max; real_t den = 0; real_t acc1 = 0; real_t acc2 = 0; uint8_t current_res_band_size = 0; uint8_t Q_M_size = 0; uint8_t ml1, ml2; /* bounds of current limiter bands */ ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k]; ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; /* calculate the accumulated E_orig and E_curr over the limiter band */ for (m = ml1; m < ml2; m++) { if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1]) { current_res_band_size++; } else { acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch))); current_res_band++; current_res_band_size = 1; } acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0); } acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch))); acc1 = QUANTISE2REAL( log2(EPS + acc1) ); /* calculate the maximum gain */ /* ratio of the energy of the original signal and the energy * of the HF generated signal */ G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]); G_max = min(G_max, QUANTISE2REAL(limGain[3])); for (m = ml1; m < ml2; m++) { real_t G; real_t E_curr, E_orig; real_t Q_orig, Q_orig_plus1; uint8_t S_index_mapped; /* check if m is on a noise band border */ if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1]) { /* step to next noise band */ current_f_noise_band++; } /* check if m is on a resolution band border */ if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1]) { /* accumulate a whole range of equal Q_Ms */ if (Q_M_size > 0) den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M)); Q_M_size = 0; /* step to next resolution band */ current_res_band2++; /* if we move to a new resolution band, we should check if we are * going to add a sinusoid in this band */ S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); } /* check if m is on a HI_RES band border */ if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1]) { /* step to next HI_RES band */ current_hi_res_band++; } /* find S_index_mapped * S_index_mapped can only be 1 for the m in the middle of the * current HI_RES band */ S_index_mapped = 0; if ((l >= sbr->l_A[ch]) || (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch])) { /* find the middle subband of the HI_RES frequency band */ if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1) S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band]; } /* find bitstream parameters */ if (sbr->E_curr[ch][m][l] == 0) E_curr = LOG2_MIN_INF; else E_curr = -10 + log2(sbr->E_curr[ch][m][l]); E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch); Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch); Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch); /* Q_M only depends on E_orig and Q_div2: * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on * a change of current res band (HI or LO) */ Q_M = E_orig + Q_orig - Q_orig_plus1; /* S_M only depends on E_orig, Q_div and S_index_mapped: * S_index_mapped can only be non-zero once per HI_RES band */ if (S_index_mapped == 0) { S_M[m] = LOG2_MIN_INF; /* -inf */ } else { S_M[m] = E_orig - Q_orig_plus1; /* accumulate sinusoid part of the total energy */ den += pow2(S_M[m]); } /* calculate gain */ /* ratio of the energy of the original signal and the energy * of the HF generated signal */ /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */ /* scaled by -10 */ G = E_orig - max(-10, E_curr); if ((S_mapped == 0) && (delta == 1)) { /* G = G * 1/(1+Q) */ G -= Q_orig_plus1; } else if (S_mapped == 1) { /* G = G * Q/(1+Q) */ G += Q_orig - Q_orig_plus1; } /* limit the additional noise energy level */ /* and apply the limiter */ if (G_max > G) { Q_M_lim[m] = QUANTISE2REAL(Q_M); G_lim[m] = QUANTISE2REAL(G); if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) { Q_M_size++; } } else { /* G > G_max */ Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G); G_lim[m] = G_max; /* accumulate limited Q_M */ if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) { den += QUANTISE2INT(pow2(Q_M_lim[m])); } } /* accumulate the total energy */ /* E_curr changes for every m so we do need to accumulate every m */ den += QUANTISE2INT(pow2(E_curr + G_lim[m])); } /* accumulate last range of equal Q_Ms */ if (Q_M_size > 0) { den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M)); } /* calculate the final gain */ /* G_boost: [0..2.51188643] */ G_boost = acc1 - QUANTISE2REAL(log2(den + EPS)); G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */); for (m = ml1; m < ml2; m++) { /* apply compensation to gain, noise floor sf's and sinusoid levels */ #ifndef SBR_LOW_POWER adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0)); #else /* sqrt() will be done after the aliasing reduction to save a * few multiplies */ adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost)); #endif adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0)); if (S_M[m] != LOG2_MIN_INF) { adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0)); } else { adj->S_M_boost[l][m] = 0; } } } } } #else static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch) { static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 }; uint8_t m, l, k; uint8_t current_t_noise_band = 0; uint8_t S_mapped; ALIGN real_t Q_M_lim[MAX_M]; ALIGN real_t G_lim[MAX_M]; ALIGN real_t G_boost; ALIGN real_t S_M[MAX_M]; for (l = 0; l < sbr->L_E[ch]; l++) { uint8_t current_f_noise_band = 0; uint8_t current_res_band = 0; uint8_t current_res_band2 = 0; uint8_t current_hi_res_band = 0; real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1; S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1]) { current_t_noise_band++; } for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++) { real_t G_max; real_t den = 0; real_t acc1 = 0; real_t acc2 = 0; uint8_t current_res_band_size = 0; uint8_t ml1, ml2; ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k]; ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; /* calculate the accumulated E_orig and E_curr over the limiter band */ for (m = ml1; m < ml2; m++) { if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1]) { current_res_band++; } acc1 += sbr->E_orig[ch][current_res_band][l]; acc2 += sbr->E_curr[ch][m][l]; } /* calculate the maximum gain */ /* ratio of the energy of the original signal and the energy * of the HF generated signal */ G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains]; G_max = min(G_max, 1e10); for (m = ml1; m < ml2; m++) { real_t Q_M, G; real_t Q_div, Q_div2; uint8_t S_index_mapped; /* check if m is on a noise band border */ if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1]) { /* step to next noise band */ current_f_noise_band++; } /* check if m is on a resolution band border */ if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1]) { /* step to next resolution band */ current_res_band2++; /* if we move to a new resolution band, we should check if we are * going to add a sinusoid in this band */ S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); } /* check if m is on a HI_RES band border */ if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1]) { /* step to next HI_RES band */ current_hi_res_band++; } /* find S_index_mapped * S_index_mapped can only be 1 for the m in the middle of the * current HI_RES band */ S_index_mapped = 0; if ((l >= sbr->l_A[ch]) || (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch])) { /* find the middle subband of the HI_RES frequency band */ if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1) S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band]; } /* Q_div: [0..1] (1/(1+Q_mapped)) */ Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band]; /* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */ Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band]; /* Q_M only depends on E_orig and Q_div2: * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on * a change of current noise band */ Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2; /* S_M only depends on E_orig, Q_div and S_index_mapped: * S_index_mapped can only be non-zero once per HI_RES band */ if (S_index_mapped == 0) { S_M[m] = 0; } else { S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div; /* accumulate sinusoid part of the total energy */ den += S_M[m]; } /* calculate gain */ /* ratio of the energy of the original signal and the energy * of the HF generated signal */ G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]); if ((S_mapped == 0) && (delta == 1)) G *= Q_div; else if (S_mapped == 1) G *= Q_div2; /* limit the additional noise energy level */ /* and apply the limiter */ if (G_max > G) { Q_M_lim[m] = Q_M; G_lim[m] = G; } else { Q_M_lim[m] = Q_M * G_max / G; G_lim[m] = G_max; } /* accumulate the total energy */ den += sbr->E_curr[ch][m][l] * G_lim[m]; if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) den += Q_M_lim[m]; } /* G_boost: [0..2.51188643] */ G_boost = (acc1 + EPS) / (den + EPS); G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */); for (m = ml1; m < ml2; m++) { /* apply compensation to gain, noise floor sf's and sinusoid levels */ #ifndef SBR_LOW_POWER adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost); #else /* sqrt() will be done after the aliasing reduction to save a * few multiplies */ adj->G_lim_boost[l][m] = G_lim[m] * G_boost; #endif adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost); if (S_M[m] != 0) { adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost); } else { adj->S_M_boost[l][m] = 0; } } } } } #endif // log2_test #endif #ifdef SBR_LOW_POWER static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch) { uint8_t l, k, i; uint8_t grouping; uint8_t S_mapped; for (l = 0; l < sbr->L_E[ch]; l++) { uint8_t current_res_band = 0; i = 0; grouping = 0; S_mapped = get_S_mapped(sbr, ch, l, current_res_band); for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++) { if (k == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1]) { /* step to next resolution band */ current_res_band++; S_mapped = get_S_mapped(sbr, ch, l, current_res_band); } if (deg[k + 1] && S_mapped == 0) { if (grouping == 0) { sbr->f_group[l][i] = k; grouping = 1; i++; } } else { if (grouping) { if (S_mapped) { sbr->f_group[l][i] = k; } else { sbr->f_group[l][i] = k + 1; } grouping = 0; i++; } } } if (grouping) { sbr->f_group[l][i] = sbr->kx + sbr->M; i++; } sbr->N_G[l] = (uint8_t)(i >> 1); } } static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch) { uint8_t l, k, m; real_t E_total, E_total_est, G_target, acc; for (l = 0; l < sbr->L_E[ch]; l++) { for (k = 0; k < sbr->N_G[l]; k++) { E_total_est = E_total = 0; for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++) { /* E_curr: integer */ /* G_lim_boost: fixed point */ /* E_total_est: integer */ /* E_total: integer */ E_total_est += sbr->E_curr[ch][m-sbr->kx][l]; #ifdef FIXED_POINT E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]); #else E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx]; #endif } /* G_target: fixed point */ if ((E_total_est + EPS) == 0) { G_target = 0; } else { #ifdef FIXED_POINT G_target = (((int64_t)(E_total))<<Q2_BITS)/(E_total_est + EPS); #else G_target = E_total / (E_total_est + EPS); #endif } acc = 0; for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++) { real_t alpha; /* alpha: (COEF) fixed point */ if (m < sbr->kx + sbr->M - 1) { alpha = max(deg[m], deg[m + 1]); } else { alpha = deg[m]; } adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) + MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]); /* acc: integer */ #ifdef FIXED_POINT acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]); #else acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l]; #endif } /* acc: fixed point */ if (acc + EPS == 0) { acc = 0; } else { #ifdef FIXED_POINT acc = (((int64_t)(E_total))<<Q2_BITS)/(acc + EPS); #else acc = E_total / (acc + EPS); #endif } for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++) { #ifdef FIXED_POINT adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]); #else adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx]; #endif } } } for (l = 0; l < sbr->L_E[ch]; l++) { for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++) { for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k]; m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++) { #ifdef FIXED_POINT adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]); #else adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]); #endif } } } } #endif static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch) { static real_t h_smooth[] = { FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084), FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582), FRAC_CONST(0.33333333333333) }; static int8_t phi_re[] = { 1, 0, -1, 0 }; static int8_t phi_im[] = { 0, 1, 0, -1 }; uint8_t m, l, i, n; uint16_t fIndexNoise = 0; uint8_t fIndexSine = 0; uint8_t assembly_reset = 0; real_t G_filt, Q_filt; uint8_t h_SL; if (sbr->Reset == 1) { assembly_reset = 1; fIndexNoise = 0; } else { fIndexNoise = sbr->index_noise_prev[ch]; } fIndexSine = sbr->psi_is_prev[ch]; for (l = 0; l < sbr->L_E[ch]; l++) { uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0; #ifdef SBR_LOW_POWER h_SL = 0; #else h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4; h_SL = (no_noise ? 0 : h_SL); #endif if (assembly_reset) { for (n = 0; n < 4; n++) { memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t)); memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t)); } /* reset ringbuffer index */ sbr->GQ_ringbuf_index[ch] = 4; assembly_reset = 0; } for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++) { #ifdef SBR_LOW_POWER uint8_t i_min1, i_plus1; uint8_t sinusoids = 0; #endif /* load new values into ringbuffer */ memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t)); memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t)); for (m = 0; m < sbr->M; m++) { qmf_t psi; G_filt = 0; Q_filt = 0; #ifndef SBR_LOW_POWER if (h_SL != 0) { uint8_t ri = sbr->GQ_ringbuf_index[ch]; for (n = 0; n <= 4; n++) { real_t curr_h_smooth = h_smooth[n]; ri++; if (ri >= 5) ri -= 5; G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth); Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth); } } else { #endif G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m]; Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m]; #ifndef SBR_LOW_POWER } #endif Q_filt = (adj->S_M_boost[l][m] != 0 || no_noise) ? 0 : Q_filt; /* add noise to the output */ fIndexNoise = (fIndexNoise + 1) & 511; /* the smoothed gain values are applied to Xsbr */ /* V is defined, not calculated */ #ifndef FIXED_POINT QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = G_filt * QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) + MUL_F(Q_filt, RE(V[fIndexNoise])); #else //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) // + MUL_F(Q_filt, RE(V[fIndexNoise])); QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) + MUL_F(Q_filt, RE(V[fIndexNoise])); #endif if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42) QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320; #ifndef SBR_LOW_POWER #ifndef FIXED_POINT QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = G_filt * QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) + MUL_F(Q_filt, IM(V[fIndexNoise])); #else //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) // + MUL_F(Q_filt, IM(V[fIndexNoise])); QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) + MUL_F(Q_filt, IM(V[fIndexNoise])); #endif #endif { int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1); QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine]; #ifdef FIXED_POINT QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += (QMF_RE(psi) << REAL_BITS); #else QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi); #endif #ifndef SBR_LOW_POWER QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine]; #ifdef FIXED_POINT QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += (QMF_IM(psi) << REAL_BITS); #else QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi); #endif #else i_min1 = (fIndexSine - 1) & 3; i_plus1 = (fIndexSine + 1) & 3; #ifndef FIXED_POINT if ((m == 0) && (phi_re[i_plus1] != 0)) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) += (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815))); if (sbr->M != 0) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815))); } } if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815))); } if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0)) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815))); } if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) { if (m > 0) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815))); } if (m + sbr->kx < 64) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) += (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815))); } } #else if ((m == 0) && (phi_re[i_plus1] != 0)) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) += (rev*phi_re[i_plus1] * MUL_F((adj->S_M_boost[l][0]<<REAL_BITS), FRAC_CONST(0.00815))); if (sbr->M != 0) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev*phi_re[i_plus1] * MUL_F((adj->S_M_boost[l][1]<<REAL_BITS), FRAC_CONST(0.00815))); } } if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev*phi_re[i_min1] * MUL_F((adj->S_M_boost[l][m - 1]<<REAL_BITS), FRAC_CONST(0.00815))); } if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0)) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev*phi_re[i_plus1] * MUL_F((adj->S_M_boost[l][m + 1]<<REAL_BITS), FRAC_CONST(0.00815))); } if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) { if (m > 0) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev*phi_re[i_min1] * MUL_F((adj->S_M_boost[l][m - 1]<<REAL_BITS), FRAC_CONST(0.00815))); } if (m + sbr->kx < 64) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) += (rev*phi_re[i_min1] * MUL_F((adj->S_M_boost[l][m]<<REAL_BITS), FRAC_CONST(0.00815))); } } #endif if (adj->S_M_boost[l][m] != 0) sinusoids++; #endif } } fIndexSine = (fIndexSine + 1) & 3; /* update the ringbuffer index used for filtering G and Q with h_smooth */ sbr->GQ_ringbuf_index[ch]++; if (sbr->GQ_ringbuf_index[ch] >= 5) sbr->GQ_ringbuf_index[ch] = 0; } } sbr->index_noise_prev[ch] = fIndexNoise; sbr->psi_is_prev[ch] = fIndexSine; } #endif