ref: c8df480d2b56da715019481fc063b6dd9958f40a
dir: /libfaad/decoder.c/
/* ** FAAD - Freeware Advanced Audio Decoder ** Copyright (C) 2002 M. Bakker ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** $Id: decoder.c,v 1.6 2002/01/20 16:57:55 menno Exp $ **/ #include <stdlib.h> #include <memory.h> #include "decoder.h" #include "mp4.h" #include "syntax.h" #include "specrec.h" #include "data.h" #include "tns.h" #include "pns.h" #include "is.h" #include "ms.h" #include "ic_predict.h" #include "lt_predict.h" #include "drc.h" #include "error.h" #include "output.h" #ifdef ANALYSIS int dbg_count; #endif char* FAADAPI faacDecGetErrorMessage(int errcode) { return err_msg[errcode]; } faacDecHandle FAADAPI faacDecOpen() { int i; faacDecHandle hDecoder = NULL; if ((hDecoder = (faacDecHandle)malloc(sizeof(faacDecStruct))) == NULL) return NULL; memset(hDecoder, 0, sizeof(faacDecStruct)); hDecoder->config.outputFormat = FAAD_FMT_16BIT; hDecoder->config.defObjectType = MAIN; hDecoder->config.defSampleRate = 44100; /* Default: 44.1kHz */ hDecoder->adts_header_present = 0; hDecoder->adif_header_present = 0; hDecoder->frame = 0; hDecoder->sample_buffer = NULL; for (i = 0; i < MAX_CHANNELS; i++) { hDecoder->window_shape_prev[i] = 0; hDecoder->time_state[i] = NULL; hDecoder->time_out[i] = NULL; hDecoder->pred_stat[i] = NULL; hDecoder->lt_pred_stat[i] = NULL; } init_drc(&hDecoder->drc, 1.0f, 1.0f); filter_bank_init(&hDecoder->fb); #if IQ_TABLE_SIZE && POW_TABLE_SIZE build_tables(hDecoder->iq_table, hDecoder->pow2_table); #elif !IQ_TABLE_SIZE && POW_TABLE_SIZE build_tables(NULL, hDecoder->pow2_table); #elif IQ_TABLE_SIZE && !POW_TABLE_SIZE build_tables(hDecoder->iq_table, NULL); #endif return hDecoder; } faacDecConfigurationPtr FAADAPI faacDecGetCurrentConfiguration(faacDecHandle hDecoder) { faacDecConfigurationPtr config = &(hDecoder->config); return config; } int FAADAPI faacDecSetConfiguration(faacDecHandle hDecoder, faacDecConfigurationPtr config) { hDecoder->config.defObjectType = config->defObjectType; hDecoder->config.defSampleRate = config->defSampleRate; hDecoder->config.outputFormat = config->outputFormat; /* OK */ return 1; } /* Returns the sample rate index */ static int get_sr_index(unsigned long samplerate) { if (92017 <= samplerate) return 0; if (75132 <= samplerate) return 1; if (55426 <= samplerate) return 2; if (46009 <= samplerate) return 3; if (37566 <= samplerate) return 4; if (27713 <= samplerate) return 5; if (23004 <= samplerate) return 6; if (18783 <= samplerate) return 7; if (13856 <= samplerate) return 8; if (11502 <= samplerate) return 9; if (9391 <= samplerate) return 10; return 11; } int FAADAPI faacDecInit(faacDecHandle hDecoder, unsigned char *buffer, unsigned long *samplerate, unsigned long *channels) { bitfile ld; adif_header adif; adts_header adts; hDecoder->sf_index = get_sr_index(hDecoder->config.defSampleRate); hDecoder->object_type = hDecoder->config.defObjectType; if (buffer != NULL) { faad_initbits(&ld, buffer); /* Check if an ADIF header is present */ if ((buffer[0] == 'A') && (buffer[1] == 'D') && (buffer[2] == 'I') && (buffer[3] == 'F')) { hDecoder->adif_header_present = 1; get_adif_header(&adif, &ld); hDecoder->sf_index = adif.pce.sf_index; hDecoder->object_type = adif.pce.object_type; *samplerate = sample_rates[hDecoder->sf_index]; *channels = adif.pce.channels; return bit2byte(faad_get_processed_bits(&ld)); /* Check if an ADTS header is present */ } else if (faad_showbits(&ld, 12) == 0xfff) { hDecoder->adts_header_present = 1; adts_frame(&adts, &ld); hDecoder->sf_index = adts.sf_index; hDecoder->object_type = adts.profile; *samplerate = sample_rates[hDecoder->sf_index]; *channels = (adts.channel_configuration > 6) ? 2 : adts.channel_configuration; return 0; } } *samplerate = sample_rates[hDecoder->sf_index]; *channels = 2; return 0; } /* Init the library using a DecoderSpecificInfo */ int FAADAPI faacDecInit2(faacDecHandle hDecoder, unsigned char *pBuffer, unsigned long SizeOfDecoderSpecificInfo, unsigned long *samplerate, unsigned long *channels) { int rc; hDecoder->adif_header_present = 0; hDecoder->adts_header_present = 0; if((hDecoder == NULL) || (pBuffer == NULL) || (SizeOfDecoderSpecificInfo < 2) || (samplerate == NULL) || (channels == NULL)) { return -1; } rc = AudioSpecificConfig(pBuffer, samplerate, channels, &hDecoder->sf_index, &hDecoder->object_type); hDecoder->object_type--; /* For AAC differs from MPEG-4 */ if (rc != 0) { return rc; } return 0; } void FAADAPI faacDecClose(faacDecHandle hDecoder) { int i; for (i = 0; i < MAX_CHANNELS; i++) { if (hDecoder->time_state[i]) free(hDecoder->time_state[i]); if (hDecoder->time_out[i]) free(hDecoder->time_out[i]); if (hDecoder->pred_stat[i]) free(hDecoder->pred_stat[i]); if (hDecoder->lt_pred_stat[i]) free(hDecoder->lt_pred_stat[i]); } filter_bank_end(&hDecoder->fb); if (hDecoder->sample_buffer) free(hDecoder->sample_buffer); if (hDecoder) free(hDecoder); } void* FAADAPI faacDecDecode(faacDecHandle hDecoder, faacDecFrameInfo *hInfo, unsigned char *buffer) { int id_syn_ele, ele, ch, i; adts_header adts; int channels, ch_ele; bitfile *ld = malloc(sizeof(bitfile)); /* local copys of globals */ int sf_index = hDecoder->sf_index; int object_type = hDecoder->object_type; pred_state **pred_stat = hDecoder->pred_stat; float **lt_pred_stat = hDecoder->lt_pred_stat; #if IQ_TABLE_SIZE float *iq_table = hDecoder->iq_table; #else float *iq_table = NULL; #endif #if POW_TABLE_SIZE float *pow2_table = hDecoder->pow2_table; #else float *pow2_table = NULL; #endif int *window_shape_prev = hDecoder->window_shape_prev; float **time_state = hDecoder->time_state; float **time_out = hDecoder->time_out; fb_info *fb = &hDecoder->fb; drc_info *drc = &hDecoder->drc; int outputFormat = hDecoder->config.outputFormat; program_config pce; element *syntax_elements[MAX_SYNTAX_ELEMENTS]; short *spec_data[MAX_CHANNELS]; float *spec_coef[MAX_CHANNELS]; void *sample_buffer; memset(hInfo, 0, sizeof(faacDecFrameInfo)); /* initialize the bitstream */ faad_initbits(ld, buffer); if (hDecoder->adts_header_present) { if ((hInfo->error = adts_frame(&adts, ld)) > 0) goto error; /* MPEG2 does byte_alignment() here, * but ADTS header is always multiple of 8 bits in MPEG2 * so not needed to actually do it. */ } ele = 0; channels = 0; ch_ele = 0; #ifdef ANALYSIS dbg_count = 0; #endif /* Table 4.4.3: raw_data_block() */ while ((id_syn_ele = faad_getbits(ld, LEN_SE_ID DEBUGVAR(1,4,"faacDecDecode(): id_syn_ele"))) != ID_END) { switch (id_syn_ele) { case ID_SCE: case ID_LFE: spec_data[channels] = (short*)malloc(1024*sizeof(short)); spec_coef[channels] = (float*)malloc(1024*sizeof(float)); syntax_elements[ch_ele] = (element*)malloc(sizeof(element)); memset(syntax_elements[ch_ele], 0, sizeof(element)); syntax_elements[ch_ele]->ele_id = id_syn_ele; syntax_elements[ch_ele]->channel = channels; if ((hInfo->error = single_lfe_channel_element(syntax_elements[ch_ele], ld, spec_data[channels], sf_index, object_type)) > 0) { /* to make sure everything gets deallocated */ channels++; ch_ele++; goto error; } channels++; ch_ele++; break; case ID_CPE: spec_data[channels] = (short*)malloc(1024*sizeof(short)); spec_data[channels+1] = (short*)malloc(1024*sizeof(short)); spec_coef[channels] = (float*)malloc(1024*sizeof(float)); spec_coef[channels+1] = (float*)malloc(1024*sizeof(float)); syntax_elements[ch_ele] = (element*)malloc(sizeof(element)); memset(syntax_elements[ch_ele], 0, sizeof(element)); syntax_elements[ch_ele]->ele_id = id_syn_ele; syntax_elements[ch_ele]->channel = channels; syntax_elements[ch_ele]->paired_channel = channels+1; if ((hInfo->error = channel_pair_element(syntax_elements[ch_ele], ld, spec_data[channels], spec_data[channels+1], sf_index, object_type)) > 0) { /* to make sure everything gets deallocated */ channels+=2; ch_ele++; goto error; } channels += 2; ch_ele++; break; case ID_CCE: /* not implemented yet */ hInfo->error = 6; goto error; break; case ID_DSE: data_stream_element(ld); break; case ID_PCE: if ((hInfo->error = program_config_element(&pce, ld)) > 0) goto error; break; case ID_FIL: if ((hInfo->error = fill_element(ld, drc)) > 0) goto error; break; } ele++; } /* no more bit reading after this */ faad_byte_align(ld); hInfo->bytesconsumed = bit2byte(faad_get_processed_bits(ld)); if (ld) free(ld); ld = NULL; /* number of samples in this frame */ hInfo->samples = 1024*channels; /* number of samples in this frame */ hInfo->channels = channels; if (hDecoder->sample_buffer == NULL) hDecoder->sample_buffer = malloc(1024*channels*sizeof(float)); sample_buffer = hDecoder->sample_buffer; /* noiseless coding is done, the rest of the tools come now */ for (ch = 0; ch < channels; ch++) { ic_stream *ics; /* find the syntax element to which this channel belongs */ for (i = 0; i < ch_ele; i++) { if (syntax_elements[i]->channel == ch) { ics = &syntax_elements[i]->ics1; break; } else if (syntax_elements[i]->paired_channel == ch) { ics = &syntax_elements[i]->ics2; break; } } /* inverse quantization */ inverse_quantization(spec_coef[ch], spec_data[ch], iq_table); /* apply scalefactors */ apply_scalefactors(ics, spec_coef[ch], pow2_table); /* deinterleave short block grouping */ if (ics->window_sequence == EIGHT_SHORT_SEQUENCE) quant_to_spec(ics, spec_coef[ch]); } /* Because for ms and is both channels spectral coefficients are needed we have to restart running through all channels here. */ for (ch = 0; ch < channels; ch++) { int pch = 0; int right_channel; ic_stream *ics, *icsr; ltp_info *ltp; /* find the syntax element to which this channel belongs */ for (i = 0; i < ch_ele; i++) { if (syntax_elements[i]->channel == ch) { ics = &syntax_elements[i]->ics1; icsr = &syntax_elements[i]->ics2; ltp = &(ics->ltp); pch = syntax_elements[i]->paired_channel; right_channel = 0; break; } else if (syntax_elements[i]->paired_channel == ch) { ics = &syntax_elements[i]->ics2; ltp = &(ics->ltp2); right_channel = 1; break; } } /* mid/side decoding */ if (!right_channel) ms_decode(ics, icsr, spec_coef[ch], spec_coef[pch]); /* pns decoding */ pns_decode(ics, spec_coef[ch]); /* intensity stereo decoding */ if (!right_channel) is_decode(ics, icsr, spec_coef[ch], spec_coef[pch]); /* MAIN object type prediction */ if (object_type == MAIN) { /* allocate the state only when needed */ if ((pred_stat[ch] == NULL) && ics->predictor_data_present) { pred_stat[ch] = malloc(1024 * sizeof(pred_state)); reset_all_predictors(pred_stat[ch]); } /* intra channel prediction */ if (pred_stat[ch] != NULL) { ic_prediction(ics, spec_coef[ch], pred_stat[ch]); /* In addition, for scalefactor bands coded by perceptual noise substitution the predictors belonging to the corresponding spectral coefficients are reset. */ pns_reset_pred_state(ics, pred_stat[ch]); } } else if (object_type == LTP) { /* allocate the state only when needed */ if ((lt_pred_stat[ch] == NULL) && ics->predictor_data_present) { lt_pred_stat[ch] = malloc(1024*3 * sizeof(float)); memset(lt_pred_stat[ch], 0, 1024*3 * sizeof(float)); } /* long term prediction */ if (lt_pred_stat[ch] != NULL) { lt_prediction(ics, ltp, spec_coef[ch], lt_pred_stat[ch], fb, ics->window_shape, window_shape_prev[ch], sf_index, object_type); } } /* tns decoding */ tns_decode_frame(ics, &ics->tns, sf_index, object_type, spec_coef[ch]); /* drc decoding */ if (drc->present) { if (!drc->exclude_mask[ch] || !drc->excluded_chns_present) drc_decode(drc, spec_coef[ch]); } if (time_state[ch] == NULL) { float *tp; time_state[ch] = malloc(1024*sizeof(float)); tp = time_state[ch]; for (i = 1024/16-1; i >= 0; --i) { *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; *tp++ = 0; } } if (time_out[ch] == NULL) { time_out[ch] = malloc(1024*2*sizeof(float)); } /* filter bank */ ifilter_bank(fb, ics->window_sequence, ics->window_shape, window_shape_prev[ch], spec_coef[ch], time_state[ch], time_out[ch]); /* save window shape for next frame */ window_shape_prev[ch] = ics->window_shape; if ((object_type == LTP) && (lt_pred_stat[ch] != NULL)) lt_update_state(lt_pred_stat[ch], time_out[ch], time_state[ch]); } sample_buffer = output_to_PCM(time_out, sample_buffer, channels, outputFormat); hDecoder->frame++; if (hDecoder->frame <= 1) hInfo->samples = 0; /* cleanup */ for (ch = 0; ch < channels; ch++) { free(spec_coef[ch]); free(spec_data[ch]); } for (i = 0; i < ch_ele; i++) { free(syntax_elements[i]); } #ifdef ANALYSIS fflush(stdout); #endif return sample_buffer; error: /* free all memory that could have been allocated */ if (ld) free(ld); /* cleanup */ for (ch = 0; ch < channels; ch++) { free(spec_coef[ch]); free(spec_data[ch]); } for (i = 0; i < ch_ele; i++) { free(syntax_elements[i]); } #ifdef ANALYSIS fflush(stdout); #endif return NULL; }