ref: ed5b482f2272e9f447fe7b9d188f0d5e4221899c
dir: /libfaad/sbr_qmf.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through [email protected]. ** ** $Id: sbr_qmf.c,v 1.17 2003/11/12 20:47:58 menno Exp $ **/ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include <stdlib.h> #include <string.h> #include "sbr_dct.h" #include "sbr_qmf.h" #include "sbr_qmf_c.h" #include "sbr_syntax.h" qmfa_info *qmfa_init(uint8_t channels) { qmfa_info *qmfa = (qmfa_info*)malloc(sizeof(qmfa_info)); qmfa->x = (real_t*)malloc(channels * 10 * sizeof(real_t)); memset(qmfa->x, 0, channels * 10 * sizeof(real_t)); qmfa->channels = channels; return qmfa; } void qmfa_end(qmfa_info *qmfa) { if (qmfa) { if (qmfa->x) free(qmfa->x); free(qmfa); } } void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input, qmf_t X[MAX_NTSRHFG][32], uint8_t offset, uint8_t kx) { real_t u[64]; #ifndef SBR_LOW_POWER real_t x[64], y[64]; #else real_t y[32]; #endif uint16_t in = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { int16_t n; /* shift input buffer x */ memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t)); /* add new samples to input buffer x */ for (n = 32 - 1; n >= 0; n--) { #ifdef FIXED_POINT qmfa->x[n] = (input[in++]) >> 5; #else qmfa->x[n] = input[in++]; #endif } /* window and summation to create array u */ for (n = 0; n < 64; n++) { u[n] = MUL_F(qmfa->x[n], qmf_c[2*n]) + MUL_F(qmfa->x[n + 64], qmf_c[2*(n + 64)]) + MUL_F(qmfa->x[n + 128], qmf_c[2*(n + 128)]) + MUL_F(qmfa->x[n + 192], qmf_c[2*(n + 192)]) + MUL_F(qmfa->x[n + 256], qmf_c[2*(n + 256)]); } /* calculate 32 subband samples by introducing X */ #ifdef SBR_LOW_POWER y[0] = u[48]; for (n = 1; n < 16; n++) y[n] = u[n+48] + u[48-n]; for (n = 16; n < 32; n++) y[n] = -u[n-16] + u[48-n]; DCT3_32_unscaled(u, y); for (n = 0; n < 32; n++) { if (n < kx) { #ifdef FIXED_POINT QMF_RE(X[l + offset][n]) = u[n] << 1; #else QMF_RE(X[l + offset][n]) = 2. * u[n]; #endif } else { QMF_RE(X[l + offset][n]) = 0; } } #else x[0] = u[0]; for (n = 0; n < 31; n++) { x[2*n+1] = u[n+1] + u[63-n]; x[2*n+2] = u[n+1] - u[63-n]; } x[63] = u[32]; DCT4_64_kernel(y, x); for (n = 0; n < 32; n++) { if (n < kx) { #ifdef FIXED_POINT QMF_RE(X[l + offset][n]) = y[n] << 1; QMF_IM(X[l + offset][n]) = -y[63-n] << 1; #else QMF_RE(X[l + offset][n]) = 2. * y[n]; QMF_IM(X[l + offset][n]) = -2. * y[63-n]; #endif } else { QMF_RE(X[l + offset][n]) = 0; QMF_IM(X[l + offset][n]) = 0; } } #endif } } qmfs_info *qmfs_init(uint8_t channels) { qmfs_info *qmfs = (qmfs_info*)malloc(sizeof(qmfs_info)); qmfs->v[0] = (real_t*)malloc(channels * 10 * sizeof(real_t)); memset(qmfs->v[0], 0, channels * 10 * sizeof(real_t)); qmfs->v[1] = (real_t*)malloc(channels * 10 * sizeof(real_t)); memset(qmfs->v[1], 0, channels * 10 * sizeof(real_t)); qmfs->v_index = 0; qmfs->channels = channels; return qmfs; } void qmfs_end(qmfs_info *qmfs) { if (qmfs) { if (qmfs->v[0]) free(qmfs->v[0]); if (qmfs->v[1]) free(qmfs->v[1]); free(qmfs); } } #ifdef SBR_LOW_POWER void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, const qmf_t X[MAX_NTSRHFG][64], real_t *output) { real_t x[64]; int16_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { real_t *v0, *v1; /* shift buffers */ memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t)); memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t)); v0 = qmfs->v[qmfs->v_index]; v1 = qmfs->v[(qmfs->v_index + 1) & 0x1]; qmfs->v_index = (qmfs->v_index + 1) & 0x1; /* calculate 128 samples */ for (k = 0; k < 64; k++) { #ifdef FIXED_POINT x[k] = QMF_RE(X[l][k]); #else x[k] = QMF_RE(X[l][k]) / 32.; #endif } DCT2_64_unscaled(x, x); for (n = 0; n < 32; n++) { v0[n+32] = x[n]; v1[n] = x[n+32]; } v0[0] = v1[0]; for (n = 1; n < 32; n++) { v0[32 - n] = v0[n + 32]; v1[n + 32] = -v1[32 - n]; } v1[32] = 0; /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { output[out++] = MUL_F(v0[k], qmf_c[k]) + MUL_F(v0[64 + k], qmf_c[64 + k]) + MUL_F(v0[128 + k], qmf_c[128 + k]) + MUL_F(v0[192 + k], qmf_c[192 + k]) + MUL_F(v0[256 + k], qmf_c[256 + k]) + MUL_F(v0[320 + k], qmf_c[320 + k]) + MUL_F(v0[384 + k], qmf_c[384 + k]) + MUL_F(v0[448 + k], qmf_c[448 + k]) + MUL_F(v0[512 + k], qmf_c[512 + k]) + MUL_F(v0[576 + k], qmf_c[576 + k]); } } } #else void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, const qmf_t X[MAX_NTSRHFG][64], real_t *output) { real_t x1[64], x2[64]; real_t scale = 1.f/64.f; int16_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { real_t *v0, *v1; /* shift buffers */ memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t)); memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t)); v0 = qmfs->v[qmfs->v_index]; v1 = qmfs->v[(qmfs->v_index + 1) & 0x1]; qmfs->v_index = (qmfs->v_index + 1) & 0x1; /* calculate 128 samples */ x1[0] = scale*QMF_RE(X[l][0]); x2[63] = scale*QMF_IM(X[l][0]); for (k = 0; k < 31; k++) { x1[2*k+1] = scale*(QMF_RE(X[l][2*k+1]) - QMF_RE(X[l][2*k+2])); x1[2*k+2] = scale*(QMF_RE(X[l][2*k+1]) + QMF_RE(X[l][2*k+2])); x2[61 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) - QMF_IM(X[l][2*k+1])); x2[62 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) + QMF_IM(X[l][2*k+1])); } x1[63] = scale*QMF_RE(X[l][63]); x2[0] = scale*QMF_IM(X[l][63]); DCT4_64_kernel(x1, x1); DCT4_64_kernel(x2, x2); for (n = 0; n < 32; n++) { v0[ 2*n] = x2[2*n] - x1[2*n]; v1[63-2*n] = x2[2*n] + x1[2*n]; v0[ 2*n+1] = -x2[2*n+1] - x1[2*n+1]; v1[62-2*n] = -x2[2*n+1] + x1[2*n+1]; } /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { output[out++] = MUL_F(v0[k], qmf_c[k]) + MUL_F(v0[64 + k], qmf_c[64 + k]) + MUL_F(v0[128 + k], qmf_c[128 + k]) + MUL_F(v0[192 + k], qmf_c[192 + k]) + MUL_F(v0[256 + k], qmf_c[256 + k]) + MUL_F(v0[320 + k], qmf_c[320 + k]) + MUL_F(v0[384 + k], qmf_c[384 + k]) + MUL_F(v0[448 + k], qmf_c[448 + k]) + MUL_F(v0[512 + k], qmf_c[512 + k]) + MUL_F(v0[576 + k], qmf_c[576 + k]); } } } #endif #endif