ref: 22b766c39a1af0a4a00452fb12fd98a140bc2ee0
dir: /src/helpers/resampler.c/
#include <stdlib.h> #include <string.h> #define _USE_MATH_DEFINES #include <math.h> #if (defined(_M_IX86) || defined(__i386__) || defined(_M_X64) || defined(__amd64__)) #include <xmmintrin.h> #define RESAMPLER_SSE #endif #ifdef __APPLE__ #include <TargetConditionals.h> #if TARGET_CPU_ARM || TARGET_CPU_ARM64 #define RESAMPLER_NEON #endif #elif (defined(__arm__) && defined(__ARM_NEON__)) #define RESAMPLER_NEON #endif #ifdef RESAMPLER_NEON #include <arm_neon.h> #endif #ifdef _MSC_VER #define ALIGNED _declspec(align(16)) #else #define ALIGNED __attribute__((aligned(16))) #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #include "internal/resampler.h" enum { RESAMPLER_SHIFT = 10 }; enum { RESAMPLER_SHIFT_EXTRA = 8 }; enum { RESAMPLER_RESOLUTION = 1 << RESAMPLER_SHIFT }; enum { RESAMPLER_RESOLUTION_EXTRA = 1 << (RESAMPLER_SHIFT + RESAMPLER_SHIFT_EXTRA) }; enum { SINC_WIDTH = 16 }; enum { SINC_SAMPLES = RESAMPLER_RESOLUTION * SINC_WIDTH }; enum { CUBIC_SAMPLES = RESAMPLER_RESOLUTION * 4 }; static const float RESAMPLER_BLEP_CUTOFF = 0.90f; static const float RESAMPLER_BLAM_CUTOFF = 0.93f; static const float RESAMPLER_SINC_CUTOFF = 0.999f; ALIGNED static float cubic_lut[CUBIC_SAMPLES]; static float sinc_lut[SINC_SAMPLES + 1]; static float window_lut[SINC_SAMPLES + 1]; enum { resampler_buffer_size = SINC_WIDTH * 4 }; static int fEqual(const float b, const float a) { return fabs(a - b) < 1.0e-6; } static float sinc(float x) { return fEqual(x, 0.0) ? 1.0 : sin(x * M_PI) / (x * M_PI); } #ifdef RESAMPLER_SSE #ifdef _MSC_VER #include <intrin.h> #elif defined(__clang__) || defined(__GNUC__) static inline void __cpuid(int *data, int selector) { #if defined(__PIC__) && defined(__i386__) asm("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi" : "=a" (data[0]), "=S" (data[1]), "=c" (data[2]), "=d" (data[3]) : "0" (selector)); #elif defined(__PIC__) && defined(__amd64__) asm("xchg{q} {%%}rbx, %q1; cpuid; xchg{q} {%%}rbx, %q1" : "=a" (data[0]), "=&r" (data[1]), "=c" (data[2]), "=d" (data[3]) : "0" (selector)); #else asm("cpuid" : "=a" (data[0]), "=b" (data[1]), "=c" (data[2]), "=d" (data[3]) : "0" (selector)); #endif } #else #define __cpuid(a,b) memset((a), 0, sizeof(int) * 4) #endif static int query_cpu_feature_sse() { int buffer[4]; __cpuid(buffer,1); if ((buffer[3]&(1<<25)) == 0) return 0; return 1; } static int resampler_has_sse = 0; #endif void resampler_init(void) { unsigned i; double dx = (float)(SINC_WIDTH) / SINC_SAMPLES, x = 0.0; for (i = 0; i < SINC_SAMPLES + 1; ++i, x += dx) { float y = x / SINC_WIDTH; #if 0 // Blackman float window = 0.42659 - 0.49656 * cos(M_PI + M_PI * y) + 0.076849 * cos(2.0 * M_PI * y); #elif 1 // Nuttal 3 term float window = 0.40897 + 0.5 * cos(M_PI * y) + 0.09103 * cos(2.0 * M_PI * y); #elif 0 // C.R.Helmrich's 2 term window float window = 0.79445 * cos(0.5 * M_PI * y) + 0.20555 * cos(1.5 * M_PI * y); #elif 0 // Lanczos float window = sinc(y); #endif sinc_lut[i] = fabs(x) < SINC_WIDTH ? sinc(x) : 0.0; window_lut[i] = window; } dx = 1.0 / (float)(RESAMPLER_RESOLUTION); x = 0.0; for (i = 0; i < RESAMPLER_RESOLUTION; ++i, x += dx) { cubic_lut[i*4] = (float)(-0.5 * x * x * x + x * x - 0.5 * x); cubic_lut[i*4+1] = (float)( 1.5 * x * x * x - 2.5 * x * x + 1.0); cubic_lut[i*4+2] = (float)(-1.5 * x * x * x + 2.0 * x * x + 0.5 * x); cubic_lut[i*4+3] = (float)( 0.5 * x * x * x - 0.5 * x * x); } #ifdef RESAMPLER_SSE resampler_has_sse = query_cpu_feature_sse(); #endif } typedef struct resampler { int write_pos, write_filled; int read_pos, read_filled; float phase; float phase_inc; float inv_phase; float inv_phase_inc; unsigned char quality; signed char delay_added; signed char delay_removed; float last_amp; float accumulator; float buffer_in[resampler_buffer_size * 2]; float buffer_out[resampler_buffer_size + SINC_WIDTH * 2 - 1]; } resampler; void * resampler_create(void) { resampler * r = ( resampler * ) malloc( sizeof(resampler) ); if ( !r ) return 0; r->write_pos = SINC_WIDTH - 1; r->write_filled = 0; r->read_pos = 0; r->read_filled = 0; r->phase = 0; r->phase_inc = 0; r->inv_phase = 0; r->inv_phase_inc = 0; r->quality = RESAMPLER_QUALITY_MAX; r->delay_added = -1; r->delay_removed = -1; r->last_amp = 0; r->accumulator = 0; memset( r->buffer_in, 0, sizeof(r->buffer_in) ); memset( r->buffer_out, 0, sizeof(r->buffer_out) ); return r; } void resampler_delete(void * _r) { free( _r ); } void * resampler_dup(const void * _r) { void * r_out = malloc( sizeof(resampler) ); if ( !r_out ) return 0; resampler_dup_inplace(r_out, _r); return r_out; } void resampler_dup_inplace(void *_d, const void *_s) { const resampler * r_in = ( const resampler * ) _s; resampler * r_out = ( resampler * ) _d; r_out->write_pos = r_in->write_pos; r_out->write_filled = r_in->write_filled; r_out->read_pos = r_in->read_pos; r_out->read_filled = r_in->read_filled; r_out->phase = r_in->phase; r_out->phase_inc = r_in->phase_inc; r_out->inv_phase = r_in->inv_phase; r_out->inv_phase_inc = r_in->inv_phase_inc; r_out->quality = r_in->quality; r_out->delay_added = r_in->delay_added; r_out->delay_removed = r_in->delay_removed; r_out->last_amp = r_in->last_amp; r_out->accumulator = r_in->accumulator; memcpy( r_out->buffer_in, r_in->buffer_in, sizeof(r_in->buffer_in) ); memcpy( r_out->buffer_out, r_in->buffer_out, sizeof(r_in->buffer_out) ); } void resampler_set_quality(void *_r, int quality) { resampler * r = ( resampler * ) _r; if (quality < RESAMPLER_QUALITY_MIN) quality = RESAMPLER_QUALITY_MIN; else if (quality > RESAMPLER_QUALITY_MAX) quality = RESAMPLER_QUALITY_MAX; if ( r->quality != quality ) { if ( quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLEP || quality == RESAMPLER_QUALITY_BLAM || r->quality == RESAMPLER_QUALITY_BLAM ) { r->read_pos = 0; r->read_filled = 0; r->last_amp = 0; r->accumulator = 0; memset( r->buffer_out, 0, sizeof(r->buffer_out) ); } r->delay_added = -1; r->delay_removed = -1; } r->quality = (unsigned char)quality; } int resampler_get_free_count(void *_r) { resampler * r = ( resampler * ) _r; return resampler_buffer_size - r->write_filled; } static int resampler_min_filled(resampler *r) { switch (r->quality) { default: case RESAMPLER_QUALITY_ZOH: case RESAMPLER_QUALITY_BLEP: return 1; case RESAMPLER_QUALITY_LINEAR: case RESAMPLER_QUALITY_BLAM: return 2; case RESAMPLER_QUALITY_CUBIC: return 4; case RESAMPLER_QUALITY_SINC: return SINC_WIDTH * 2; } } static int resampler_input_delay(resampler *r) { switch (r->quality) { default: case RESAMPLER_QUALITY_ZOH: case RESAMPLER_QUALITY_BLEP: case RESAMPLER_QUALITY_LINEAR: case RESAMPLER_QUALITY_BLAM: return 0; case RESAMPLER_QUALITY_CUBIC: return 1; case RESAMPLER_QUALITY_SINC: return SINC_WIDTH - 1; } } static int resampler_output_delay(resampler *r) { switch (r->quality) { default: case RESAMPLER_QUALITY_ZOH: case RESAMPLER_QUALITY_LINEAR: case RESAMPLER_QUALITY_CUBIC: case RESAMPLER_QUALITY_SINC: return 0; case RESAMPLER_QUALITY_BLEP: case RESAMPLER_QUALITY_BLAM: return SINC_WIDTH - 1; } } int resampler_ready(void *_r) { resampler * r = ( resampler * ) _r; return r->write_filled > resampler_min_filled(r); } void resampler_clear(void *_r) { resampler * r = ( resampler * ) _r; r->write_pos = SINC_WIDTH - 1; r->write_filled = 0; r->read_pos = 0; r->read_filled = 0; r->phase = 0; r->delay_added = -1; r->delay_removed = -1; memset(r->buffer_in, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0])); memset(r->buffer_in + resampler_buffer_size, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0])); if (r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM) { r->inv_phase = 0; r->last_amp = 0; r->accumulator = 0; memset(r->buffer_out, 0, sizeof(r->buffer_out)); } } void resampler_set_rate(void *_r, double new_factor) { resampler * r = ( resampler * ) _r; r->phase_inc = new_factor; new_factor = 1.0 / new_factor; r->inv_phase_inc = new_factor; } void resampler_write_sample(void *_r, short s) { resampler * r = ( resampler * ) _r; if ( r->delay_added < 0 ) { r->delay_added = 0; r->write_filled = resampler_input_delay( r ); } if ( r->write_filled < resampler_buffer_size ) { float s32 = s; s32 *= 256.0; r->buffer_in[ r->write_pos ] = s32; r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32; ++r->write_filled; r->write_pos = ( r->write_pos + 1 ) % resampler_buffer_size; } } void resampler_write_sample_fixed(void *_r, int s, unsigned char depth) { resampler * r = ( resampler * ) _r; if ( r->delay_added < 0 ) { r->delay_added = 0; r->write_filled = resampler_input_delay( r ); } if ( r->write_filled < resampler_buffer_size ) { float s32 = s; s32 /= (double)(1 << (depth - 1)); r->buffer_in[ r->write_pos ] = s32; r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32; ++r->write_filled; r->write_pos = ( r->write_pos + 1 ) % resampler_buffer_size; } } static int resampler_run_zoh(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 1; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float phase = r->phase; float phase_inc = r->phase_inc; do { float sample; if ( out >= out_end ) break; sample = *in; *out++ = sample; phase += phase_inc; in += (int)phase; phase = fmod(phase, 1.0f); } while ( in < in_end ); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #ifndef RESAMPLER_NEON static int resampler_run_blep(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 1; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float last_amp = r->last_amp; float inv_phase = r->inv_phase; float inv_phase_inc = r->inv_phase_inc; const int step = RESAMPLER_BLEP_CUTOFF * RESAMPLER_RESOLUTION; const int window_step = RESAMPLER_RESOLUTION; do { float sample; if ( out + SINC_WIDTH * 2 > out_end ) break; sample = *in++ - last_amp; if (sample) { float kernel[SINC_WIDTH * 2], kernel_sum = 0.0f; int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION); int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION; int i = SINC_WIDTH; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)]; } last_amp += sample; sample /= kernel_sum; for (i = 0; i < SINC_WIDTH * 2; ++i) out[i] += sample * kernel[i]; } inv_phase += inv_phase_inc; out += (int)inv_phase; inv_phase = fmod(inv_phase, 1.0f); } while ( in < in_end ); r->inv_phase = inv_phase; r->last_amp = last_amp; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifdef RESAMPLER_SSE static int resampler_run_blep_sse(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 1; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float last_amp = r->last_amp; float inv_phase = r->inv_phase; float inv_phase_inc = r->inv_phase_inc; const int step = RESAMPLER_BLEP_CUTOFF * RESAMPLER_RESOLUTION; const int window_step = RESAMPLER_RESOLUTION; do { float sample; if ( out + SINC_WIDTH * 2 > out_end ) break; sample = *in++ - last_amp; if (sample) { float kernel_sum = 0.0f; __m128 kernel[SINC_WIDTH / 2]; __m128 temp1, temp2; __m128 samplex; float *kernelf = (float*)(&kernel); int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION); int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION; int i = SINC_WIDTH; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)]; } last_amp += sample; sample /= kernel_sum; samplex = _mm_set1_ps( sample ); for (i = 0; i < SINC_WIDTH / 2; ++i) { temp1 = _mm_load_ps( (const float *)( kernel + i ) ); temp1 = _mm_mul_ps( temp1, samplex ); temp2 = _mm_loadu_ps( (const float *) out + i * 4 ); temp1 = _mm_add_ps( temp1, temp2 ); _mm_storeu_ps( (float *) out + i * 4, temp1 ); } } inv_phase += inv_phase_inc; out += (int)inv_phase; inv_phase = fmod(inv_phase, 1.0f); } while ( in < in_end ); r->inv_phase = inv_phase; r->last_amp = last_amp; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifdef RESAMPLER_NEON static int resampler_run_blep(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 1; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float last_amp = r->last_amp; float inv_phase = r->inv_phase; float inv_phase_inc = r->inv_phase_inc; const int step = RESAMPLER_BLEP_CUTOFF * RESAMPLER_RESOLUTION; const int window_step = RESAMPLER_RESOLUTION; do { float sample; if ( out + SINC_WIDTH * 2 > out_end ) break; sample = *in++ - last_amp; if (sample) { float kernel_sum = 0.0f; float32x4_t kernel[SINC_WIDTH / 2]; float32x4_t temp1, temp2; float32x4_t samplex; float *kernelf = (float*)(&kernel); int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION); int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION; int i = SINC_WIDTH; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)]; } last_amp += sample; sample /= kernel_sum; samplex = vdupq_n_f32(sample); for (i = 0; i < SINC_WIDTH / 2; ++i) { temp1 = vld1q_f32( (const float32_t *)( kernel + i ) ); temp2 = vld1q_f32( (const float32_t *) out + i * 4 ); temp2 = vmlaq_f32( temp2, temp1, samplex ); vst1q_f32( (float32_t *) out + i * 4, temp2 ); } } inv_phase += inv_phase_inc; out += (int)inv_phase; inv_phase = fmod(inv_phase, 1.0f); } while ( in < in_end ); r->inv_phase = inv_phase; r->last_amp = last_amp; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif static int resampler_run_linear(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 2; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float phase = r->phase; float phase_inc = r->phase_inc; do { float sample; if ( out >= out_end ) break; sample = in[0] + (in[1] - in[0]) * phase; *out++ = sample; phase += phase_inc; in += (int)phase; phase = fmod(phase, 1.0f); } while ( in < in_end ); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #ifndef RESAMPLER_NEON static int resampler_run_blam(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 2; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float last_amp = r->last_amp; float phase = r->phase; float phase_inc = r->phase_inc; float inv_phase = r->inv_phase; float inv_phase_inc = r->inv_phase_inc; const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION; const int window_step = RESAMPLER_RESOLUTION; do { float sample; if ( out + SINC_WIDTH * 2 > out_end ) break; sample = in[0]; if (phase_inc < 1.0f) sample += (in[1] - in[0]) * phase; sample -= last_amp; if (sample) { float kernel[SINC_WIDTH * 2], kernel_sum = 0.0f; int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION); int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION; int i = SINC_WIDTH; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)]; } last_amp += sample; sample /= kernel_sum; for (i = 0; i < SINC_WIDTH * 2; ++i) out[i] += sample * kernel[i]; } if (inv_phase_inc < 1.0f) { ++in; inv_phase += inv_phase_inc; out += (int)inv_phase; inv_phase = fmod(inv_phase, 1.0f); } else { phase += phase_inc; ++out; in += (int)phase; phase = fmod(phase, 1.0f); } } while ( in < in_end ); r->phase = phase; r->inv_phase = inv_phase; r->last_amp = last_amp; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifdef RESAMPLER_SSE static int resampler_run_blam_sse(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 2; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float last_amp = r->last_amp; float phase = r->phase; float phase_inc = r->phase_inc; float inv_phase = r->inv_phase; float inv_phase_inc = r->inv_phase_inc; const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION; const int window_step = RESAMPLER_RESOLUTION; do { float sample; if ( out + SINC_WIDTH * 2 > out_end ) break; sample = in[0]; if (phase_inc < 1.0f) { sample += (in[1] - in[0]) * phase; } sample -= last_amp; if (sample) { float kernel_sum = 0.0f; __m128 kernel[SINC_WIDTH / 2]; __m128 temp1, temp2; __m128 samplex; float *kernelf = (float*)(&kernel); int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION); int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION; int i = SINC_WIDTH; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)]; } last_amp += sample; sample /= kernel_sum; samplex = _mm_set1_ps( sample ); for (i = 0; i < SINC_WIDTH / 2; ++i) { temp1 = _mm_load_ps( (const float *)( kernel + i ) ); temp1 = _mm_mul_ps( temp1, samplex ); temp2 = _mm_loadu_ps( (const float *) out + i * 4 ); temp1 = _mm_add_ps( temp1, temp2 ); _mm_storeu_ps( (float *) out + i * 4, temp1 ); } } if (inv_phase_inc < 1.0f) { ++in; inv_phase += inv_phase_inc; out += (int)inv_phase; inv_phase = fmod(inv_phase, 1.0f); } else { phase += phase_inc; ++out; if (phase >= 1.0f) { ++in; phase = fmod(phase, 1.0f); } } } while ( in < in_end ); r->phase = phase; r->inv_phase = inv_phase; r->last_amp = last_amp; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifdef RESAMPLER_NEON static int resampler_run_blam(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 2; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float last_amp = r->last_amp; float phase = r->phase; float phase_inc = r->phase_inc; float inv_phase = r->inv_phase; float inv_phase_inc = r->inv_phase_inc; const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION; const int window_step = RESAMPLER_RESOLUTION; do { float sample; if ( out + SINC_WIDTH * 2 > out_end ) break; sample = in[0]; if (phase_inc < 1.0f) sample += (in[1] - in[0]) * phase; sample -= last_amp; if (sample) { float kernel_sum = 0.0; float32x4_t kernel[SINC_WIDTH / 2]; float32x4_t temp1, temp2; float32x4_t samplex; float *kernelf = (float*)(&kernel); int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION); int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION; int i = SINC_WIDTH; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)]; } last_amp += sample; sample /= kernel_sum; samplex = vdupq_n_f32(sample); for (i = 0; i < SINC_WIDTH / 2; ++i) { temp1 = vld1q_f32( (const float32_t *)( kernel + i ) ); temp2 = vld1q_f32( (const float32_t *) out + i * 4 ); temp2 = vmlaq_f32( temp2, temp1, samplex ); vst1q_f32( (float32_t *) out + i * 4, temp2 ); } } if (inv_phase_inc < 1.0f) { ++in; inv_phase += inv_phase_inc; out += (int)inv_phase; inv_phase = fmod(inv_phase, 1.0f); } else { phase += phase_inc; ++out; if (phase >= 1.0f) { ++in; phase = fmod(phase, 1.0f); } } } while ( in < in_end ); r->phase = phase; r->inv_phase = inv_phase; r->last_amp = last_amp; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifndef RESAMPLER_NEON static int resampler_run_cubic(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 4; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float phase = r->phase; float phase_inc = r->phase_inc; do { float * kernel; int i; float sample; if ( out >= out_end ) break; kernel = cubic_lut + (int)(phase * RESAMPLER_RESOLUTION) * 4; for (sample = 0, i = 0; i < 4; ++i) sample += in[i] * kernel[i]; *out++ = sample; phase += phase_inc; in += (int)phase; phase = fmod(phase, 1.0f); } while ( in < in_end ); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifdef RESAMPLER_SSE static int resampler_run_cubic_sse(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 4; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float phase = r->phase; float phase_inc = r->phase_inc; do { __m128 temp1, temp2; __m128 samplex = _mm_setzero_ps(); if ( out >= out_end ) break; temp1 = _mm_loadu_ps( (const float *)( in ) ); temp2 = _mm_load_ps( (const float *)( cubic_lut + (int)(phase * RESAMPLER_RESOLUTION) * 4 ) ); temp1 = _mm_mul_ps( temp1, temp2 ); samplex = _mm_add_ps( samplex, temp1 ); temp1 = _mm_movehl_ps( temp1, samplex ); samplex = _mm_add_ps( samplex, temp1 ); temp1 = samplex; temp1 = _mm_shuffle_ps( temp1, samplex, _MM_SHUFFLE(0, 0, 0, 1) ); samplex = _mm_add_ps( samplex, temp1 ); _mm_store_ss( out, samplex ); ++out; phase += phase_inc; in += (int)phase; phase = fmod(phase, 1.0f); } while ( in < in_end ); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifdef RESAMPLER_NEON static int resampler_run_cubic(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 4; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float phase = r->phase; float phase_inc = r->phase_inc; do { float32x4_t temp1, temp2; float32x2_t half; if ( out >= out_end ) break; temp1 = vld1q_f32( (const float32_t *)( in ) ); temp2 = vld1q_f32( (const float32_t *)( cubic_lut + (int)(phase * RESAMPLER_RESOLUTION) * 4 ) ); temp1 = vmulq_f32( temp1, temp2 ); half = vadd_f32(vget_high_f32(temp1), vget_low_f32(temp1)); *out++ = vget_lane_f32(vpadd_f32(half, half), 0); phase += phase_inc; in += (int)phase; phase = fmod(phase, 1.0f); } while ( in < in_end ); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifndef RESAMPLER_NEON static int resampler_run_sinc(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= SINC_WIDTH * 2; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float phase = r->phase; float phase_inc = r->phase_inc; int step = phase_inc > 1.0f ? (int)(RESAMPLER_RESOLUTION / phase_inc * RESAMPLER_SINC_CUTOFF) : (int)(RESAMPLER_RESOLUTION * RESAMPLER_SINC_CUTOFF); int window_step = RESAMPLER_RESOLUTION; do { float kernel[SINC_WIDTH * 2], kernel_sum = 0.0; int i = SINC_WIDTH; int phase_reduced = (int)(phase * RESAMPLER_RESOLUTION); int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION; float sample; if ( out >= out_end ) break; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)]; } for (sample = 0, i = 0; i < SINC_WIDTH * 2; ++i) sample += in[i] * kernel[i]; *out++ = (float)(sample / kernel_sum); phase += phase_inc; in += (int)phase; phase = fmod(phase, 1.0f); } while ( in < in_end ); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifdef RESAMPLER_SSE static int resampler_run_sinc_sse(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= SINC_WIDTH * 2; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float phase = r->phase; float phase_inc = r->phase_inc; int step = phase_inc > 1.0f ? (int)(RESAMPLER_RESOLUTION / phase_inc * RESAMPLER_SINC_CUTOFF) : (int)(RESAMPLER_RESOLUTION * RESAMPLER_SINC_CUTOFF); int window_step = RESAMPLER_RESOLUTION; do { // accumulate in extended precision float kernel_sum = 0.0; __m128 kernel[SINC_WIDTH / 2]; __m128 temp1, temp2; __m128 samplex = _mm_setzero_ps(); float *kernelf = (float*)(&kernel); int i = SINC_WIDTH; int phase_reduced = (int)(phase * RESAMPLER_RESOLUTION); int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION; if ( out >= out_end ) break; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)]; } for (i = 0; i < SINC_WIDTH / 2; ++i) { temp1 = _mm_loadu_ps( (const float *)( in + i * 4 ) ); temp2 = _mm_load_ps( (const float *)( kernel + i ) ); temp1 = _mm_mul_ps( temp1, temp2 ); samplex = _mm_add_ps( samplex, temp1 ); } kernel_sum = 1.0 / kernel_sum; temp1 = _mm_movehl_ps( temp1, samplex ); samplex = _mm_add_ps( samplex, temp1 ); temp1 = samplex; temp1 = _mm_shuffle_ps( temp1, samplex, _MM_SHUFFLE(0, 0, 0, 1) ); samplex = _mm_add_ps( samplex, temp1 ); temp1 = _mm_set_ss( kernel_sum ); samplex = _mm_mul_ps( samplex, temp1 ); _mm_store_ss( out, samplex ); ++out; phase += phase_inc; in += (int)phase; phase = fmod(phase, 1.0f); } while ( in < in_end ); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif #ifdef RESAMPLER_NEON static int resampler_run_sinc(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= SINC_WIDTH * 2; if ( in_size > 0 ) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float phase = r->phase; float phase_inc = r->phase_inc; int step = phase_inc > 1.0f ? (int)(RESAMPLER_RESOLUTION / phase_inc * RESAMPLER_SINC_CUTOFF) : (int)(RESAMPLER_RESOLUTION * RESAMPLER_SINC_CUTOFF); int window_step = RESAMPLER_RESOLUTION; do { // accumulate in extended precision float kernel_sum = 0.0; float32x4_t kernel[SINC_WIDTH / 2]; float32x4_t temp1, temp2; float32x4_t samplex = {0}; float32x2_t half; float *kernelf = (float*)(&kernel); int i = SINC_WIDTH; int phase_reduced = (int)(phase * RESAMPLER_RESOLUTION); int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION; if ( out >= out_end ) break; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)]; } for (i = 0; i < SINC_WIDTH / 2; ++i) { temp1 = vld1q_f32( (const float32_t *)( in + i * 4 ) ); temp2 = vld1q_f32( (const float32_t *)( kernel + i ) ); samplex = vmlaq_f32( samplex, temp1, temp2 ); } kernel_sum = 1.0 / kernel_sum; samplex = vmulq_f32(samplex, vmovq_n_f32(kernel_sum)); half = vadd_f32(vget_high_f32(samplex), vget_low_f32(samplex)); *out++ = vget_lane_f32(vpadd_f32(half, half), 0); phase += phase_inc; in += (int)phase; phase = fmod(phase, 1.0f); } while ( in < in_end ); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif static void resampler_fill(resampler * r) { int min_filled = resampler_min_filled(r); int quality = r->quality; while ( r->write_filled > min_filled && r->read_filled < resampler_buffer_size ) { int write_pos = ( r->read_pos + r->read_filled ) % resampler_buffer_size; int write_size = resampler_buffer_size - write_pos; float * out = r->buffer_out + write_pos; if ( write_size > ( resampler_buffer_size - r->read_filled ) ) write_size = resampler_buffer_size - r->read_filled; switch (quality) { case RESAMPLER_QUALITY_ZOH: resampler_run_zoh( r, &out, out + write_size ); break; case RESAMPLER_QUALITY_BLEP: { int used; int write_extra = 0; if ( write_pos >= r->read_pos ) write_extra = r->read_pos; if ( write_extra > SINC_WIDTH * 2 - 1 ) write_extra = SINC_WIDTH * 2 - 1; memcpy( r->buffer_out + resampler_buffer_size, r->buffer_out, write_extra * sizeof(r->buffer_out[0]) ); #ifdef RESAMPLER_SSE if ( resampler_has_sse ) used = resampler_run_blep_sse( r, &out, out + write_size + write_extra ); else #endif used = resampler_run_blep( r, &out, out + write_size + write_extra ); memcpy( r->buffer_out, r->buffer_out + resampler_buffer_size, write_extra * sizeof(r->buffer_out[0]) ); if (!used) return; break; } case RESAMPLER_QUALITY_LINEAR: resampler_run_linear( r, &out, out + write_size ); break; case RESAMPLER_QUALITY_BLAM: { float * out_ = out; int write_extra = 0; if ( write_pos >= r->read_pos ) write_extra = r->read_pos; if ( write_extra > SINC_WIDTH * 2 - 1 ) write_extra = SINC_WIDTH * 2 - 1; memcpy( r->buffer_out + resampler_buffer_size, r->buffer_out, write_extra * sizeof(r->buffer_out[0]) ); #ifdef RESAMPLER_SSE if ( resampler_has_sse ) resampler_run_blam_sse( r, &out, out + write_size + write_extra ); else #endif resampler_run_blam( r, &out, out + write_size + write_extra ); memcpy( r->buffer_out, r->buffer_out + resampler_buffer_size, write_extra * sizeof(r->buffer_out[0]) ); if ( out == out_ ) return; break; } case RESAMPLER_QUALITY_CUBIC: #ifdef RESAMPLER_SSE if ( resampler_has_sse ) resampler_run_cubic_sse( r, &out, out + write_size ); else #endif resampler_run_cubic( r, &out, out + write_size ); break; case RESAMPLER_QUALITY_SINC: #ifdef RESAMPLER_SSE if ( resampler_has_sse ) resampler_run_sinc_sse( r, &out, out + write_size ); else #endif resampler_run_sinc( r, &out, out + write_size ); break; } r->read_filled += out - r->buffer_out - write_pos; } } static void resampler_fill_and_remove_delay(resampler * r) { resampler_fill( r ); if ( r->delay_removed < 0 ) { int delay = resampler_output_delay( r ); r->delay_removed = 0; while ( delay-- ) resampler_remove_sample( r, 1 ); } } int resampler_get_sample_count(void *_r) { resampler * r = ( resampler * ) _r; if ( r->read_filled < 1 && ((r->quality != RESAMPLER_QUALITY_BLEP && r->quality != RESAMPLER_QUALITY_BLAM) || r->inv_phase_inc)) resampler_fill_and_remove_delay( r ); return r->read_filled; } int resampler_get_sample(void *_r) { resampler * r = ( resampler * ) _r; if ( r->read_filled < 1 && r->phase_inc) resampler_fill_and_remove_delay( r ); if ( r->read_filled < 1 ) return 0; if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM ) return (int)(r->buffer_out[ r->read_pos ] + r->accumulator); else return (int)r->buffer_out[ r->read_pos ]; } float resampler_get_sample_float(void *_r) { resampler * r = ( resampler * ) _r; if ( r->read_filled < 1 && r->phase_inc) resampler_fill_and_remove_delay( r ); if ( r->read_filled < 1 ) return 0; if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM ) return r->buffer_out[ r->read_pos ] + r->accumulator; else return r->buffer_out[ r->read_pos ]; } void resampler_remove_sample(void *_r, int decay) { resampler * r = ( resampler * ) _r; if ( r->read_filled > 0 ) { if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM ) { r->accumulator += r->buffer_out[ r->read_pos ]; r->buffer_out[ r->read_pos ] = 0; if (decay) { r->accumulator -= r->accumulator * (1.0f / 8192.0f); if (fabs(r->accumulator) < 1e-20f) r->accumulator = 0; } } --r->read_filled; r->read_pos = ( r->read_pos + 1 ) % resampler_buffer_size; } }