ref: 8d88287b2da6712da7d9c216eb122b19a4fb3c7a
dir: /FIR-POLY/fir_interp.cc/
/* ** Copyright (C) 2004 Erik de Castro Lopo <[email protected]> ** ** The copyright above and this notice must be preserved in all ** copies of this source code. The copyright above does not ** evidence any actual or intended publication of this source code. ** ** This is unpublished proprietary trade secret of Erik de Castro ** Lopo. This source code may not be copied, disclosed, ** distributed, demonstrated or licensed except as authorized by ** Erik de Castro Lopo. ** ** No part of this program or publication may be reproduced, ** transmitted, transcribed, stored in a retrieval system, ** or translated into any language or computer language in any ** form or by any means, electronic, mechanical, magnetic, ** optical, chemical, manual, or otherwise, without the prior ** written permission of Erik de Castro Lopo. */ #include <cstdio> #include <cstdlib> #include <unistd.h> #include <ctime> #include <cstring> #include <complex> #include <GMatrix.hh> #include <Minimize.hh> #include "mag_spectrum.hh" #define UPSAMPLE_RATIO 2 #define ARRAY_LEN(x) (sizeof (x) / sizeof ((x) [0])) #define INTERP_LEN 1600 /* ** Number of half cycles of impulse response to the left and right ** of the center. ** left_half_offset <= right_len */ static int left_len = 150 ; static int right_len = 750 ; typedef struct { /* Window coefficients (all in range [0, 1]). */ double y_left [10], y_right [10] ; double sinc_time_fudge ; } FIR_PARAMS ; typedef struct { union { FIR_PARAMS fir_params ; double data [30] ; } ; unsigned middle, total_len ; double left_window_poly [20] ; double right_window_poly [20] ; double sinc [INTERP_LEN] ; double window [INTERP_LEN] ; double filter [INTERP_LEN] ; double mag [INTERP_LEN / 2] ; double logmag [INTERP_LEN / 2] ; double phase [INTERP_LEN / 2] ; } FIR_INTERP ; static double fir_error (const GMatrix& gm) ; static int calc_window (FIR_INTERP *interp, double * error) ; static void calc_sinc (FIR_INTERP *interp) ; static void calc_filter (FIR_INTERP *interp) ; static void oct_save (const FIR_INTERP *interp) ; static void randomize_data (FIR_INTERP *interp) ; static double evaluate_filter (FIR_INTERP *interp) ; int main (void) { FIR_INTERP interp ; GMatrix gm_start ; double error ; int param_count ; puts ("Running ........") ; param_count = sizeof (FIR_PARAMS) / sizeof (double) ; randomize_data (&interp) ; gm_start = GMatrix (param_count, 1, interp.data) ; fir_error (gm_start) ; do error = MinDiffEvol (fir_error, gm_start, 1e-15, 2.0, random ()) ; while (error > 10.0) ; printf ("error : %f\n", error) ; return 0 ; } /* main */ /*============================================================================== */ static inline double poly_evaluate (int order, const double *coeff, double x) { double result ; int k ; /* ** Use Horner's Rule for evaluating the value of ** the polynomial at x. */ result = coeff [order] ; for (k = order - 1 ; k >= 0 ; k--) result = result * x + coeff [k] ; return result ; } /* poly_evaluate */ static double evaluate_filter (FIR_INTERP *interp) { double error = 0.0, temp, stop_max = 0.0, stop_sum = 0.0 ; unsigned k ; mag_spectrum (interp->filter, ARRAY_LEN (interp->filter), interp->mag, interp->logmag, interp->phase) ; for (k = ARRAY_LEN (interp->logmag) / UPSAMPLE_RATIO ; k < ARRAY_LEN (interp->logmag) ; k++) { temp = interp->logmag [k] + 150.0 ; if (temp > stop_max) stop_max = temp ; if (temp > 0.0) stop_sum += temp ; } ; error = stop_max * stop_sum ; return error ; } /* evaluate_filter */ static double fir_error (const GMatrix& gm) { static FIR_INTERP interp ; static int test_count = 0 ; static double best_error = 1e200 ; double error = 0.0 ; unsigned param_count ; memset (&interp, 0, sizeof (interp)) ; param_count = sizeof (FIR_PARAMS) / sizeof (double) ; if (ARRAY_LEN (interp.data) < param_count) { printf ("\n\nError : ARRAY_LEN (interp.data) < param_count.\n\n") ; exit (1) ; } ; if (gm.GetData (param_count, interp.data) != param_count) { printf ("\n\nError : GetData should return %d.\n\n", param_count) ; exit (1) ; } ; /* Eval error in sinc_time_fudge. */ if (fabs (interp.fir_params.sinc_time_fudge - 1.0) > 0.5) return 1e30 * (fabs (interp.fir_params.sinc_time_fudge - 1.0)) ; interp.middle = left_len ; interp.total_len = left_len + right_len ; if (interp.total_len > ARRAY_LEN (interp.sinc)) { printf ("\n\nError : interp.total_len > ARRAY_LEN (interp.sinc).\n") ; exit (1) ; } ; if (calc_window (&interp, &error)) return error ; calc_sinc (&interp) ; calc_filter (&interp) ; error = evaluate_filter (&interp) ; test_count ++ ; // printf ("%s %d : exit\n", __func__, __LINE__) ; // exit (1) ; if (error < best_error) { oct_save (&interp) ; best_error = error ; printf ("%12d best : %f\n", test_count, best_error) ; } ; return error ; } /* fir_error */ static int calc_window (FIR_INTERP *interp, double * returned_error) { unsigned k ; double error, temp, x ; /* Make sure left poly params are in range [0, 1]. */ error = 0.0 ; for (k = 0 ; k < ARRAY_LEN (interp->fir_params.y_left) ; k++) { temp = fabs (interp->fir_params.y_left [k] - 0.5) ; if (temp > 0.5 && temp > error) error = temp ; } ; if (error > 0.0) { *returned_error = 1e20 * error ; return 1 ; } ; /* Make sure right poly params are in range [0, 1]. */ error = 0.0 ; for (k = 0 ; k < ARRAY_LEN (interp->fir_params.y_right) ; k++) { temp = fabs (interp->fir_params.y_right [k] - 0.5) ; if (temp > 0.5 && temp > error) error = temp ; } ; if (error > 0.0) { *returned_error = 1e18 * error ; return 1 ; } ; /* Generate polynomial for left side of window. */ interp->left_window_poly [0] = interp->fir_params.y_left [0] ; interp->left_window_poly [1] = 12.4166666667 - 12.4166666667 * interp->fir_params.y_left [0] + 31.25 * interp->fir_params.y_left [1] - 41.6666666667 * interp->fir_params.y_left [2] + 41.6666666667 * interp->fir_params.y_left [3] - 31.25 * interp->fir_params.y_left [4] ; interp->left_window_poly [2] = -140.756944444 + 58.2916666667 * interp->fir_params.y_left [0] - 231.770833333 * interp->fir_params.y_left [1] + 413.194444444 * interp->fir_params.y_left [2] - 447.916666667 * interp->fir_params.y_left [3] + 348.958333333 * interp->fir_params.y_left [4] ; interp->left_window_poly [3] = 571.614583333 - 135.416666667 * interp->fir_params.y_left [0] + 662.760416667 * interp->fir_params.y_left [1] - 1395.83333333 * interp->fir_params.y_left [2] + 1682.29166667 * interp->fir_params.y_left [3] - 1385.41666667 * interp->fir_params.y_left [4] ; interp->left_window_poly [4] = -1062.93402778 + 166.666666667 * interp->fir_params.y_left [0] - 917.96875 * interp->fir_params.y_left [1] + 2152.77777778 * interp->fir_params.y_left [2] - 2838.54166667 * interp->fir_params.y_left [3] + 2500. * interp->fir_params.y_left [4] ; interp->left_window_poly [5] = 917.96875 - 104.166666667 * interp->fir_params.y_left [0] + 618.489583333 * interp->fir_params.y_left [1] - 1562.5 * interp->fir_params.y_left [2] + 2213.54166667 * interp->fir_params.y_left [3] - 2083.33333333 * interp->fir_params.y_left [4] ; interp->left_window_poly [6] = -297.309027778 + 26.0416666667 * interp->fir_params.y_left [0] - 162.760416667 * interp->fir_params.y_left [1] + 434.027777778 * interp->fir_params.y_left [2] - 651.041666667 * interp->fir_params.y_left [3] + 651.041666667 * interp->fir_params.y_left [4] ; /* Generate left side of window. */ error = 0.0 ; for (k = 0 ; k < interp->middle ; k++) { x = k / (interp->middle * 1.0) ; interp->window [k] = poly_evaluate (ARRAY_LEN (interp->left_window_poly) - 1, interp->left_window_poly, x) ; } ; /* Ensure start value in range [0, 0,2]. */ if (fabs (interp->window [0] - 0.1) > 0.1) { *returned_error = 1e16 * fabs (interp->window [0] - 0.1) ; return 1 ; } ; /* Generate polynomial for right side of window. */ interp->right_window_poly [0] = 1 ; interp->right_window_poly [1] = 0 ; interp->right_window_poly [2] = -83.4652777778 + 125. * interp->fir_params.y_right [0] - 62.5 * interp->fir_params.y_right [1] + 27.7777777778 * interp->fir_params.y_right [2] - 7.8125 * interp->fir_params.y_right [3] + interp->fir_params.y_right [4] ; interp->right_window_poly [3] = 446.614583333 - 802.083333333 * interp->fir_params.y_right [0] + 557.291666667 * interp->fir_params.y_right [1] - 270.833333333 * interp->fir_params.y_right [2] + 79.4270833333 * interp->fir_params.y_right [3] - 10.4166666667 * interp->fir_params.y_right [4] ; interp->right_window_poly [4] = -932.725694444 + 1848.95833333 * interp->fir_params.y_right [0] - 1536.45833333 * interp->fir_params.y_right [1] + 850.694444444 * interp->fir_params.y_right [2] - 266.927083333 * interp->fir_params.y_right [3] + 36.4583333333 * interp->fir_params.y_right [4] ; interp->right_window_poly [5] = 865.885416667 - 1822.91666667 * interp->fir_params.y_right [0] + 1692.70833333 * interp->fir_params.y_right [1] - 1041.66666667 * interp->fir_params.y_right [2] + 358.072916667 * interp->fir_params.y_right [3] - 52.0833333333 * interp->fir_params.y_right [4] ; interp->right_window_poly [6] = -297.309027778 + 651.041666667 * interp->fir_params.y_right [0] - 651.041666667 * interp->fir_params.y_right [1] + 434.027777778 * interp->fir_params.y_right [2] - 162.760416667 * interp->fir_params.y_right [3] + 26.0416666667 * interp->fir_params.y_right [4] ; /* Generate right side of window. */ error = 0.0 ; for (k = interp->middle ; k < interp->total_len ; k++) { x = (k - interp->middle) / (1.0 * (interp->total_len - interp->middle)) ; interp->window [k] = poly_evaluate (ARRAY_LEN (interp->right_window_poly) - 1, interp->right_window_poly, x) ; } ; /* Ensure end value in range [0, 0,4]. */ k = interp->total_len - 1 ; if (fabs (interp->window [k] - 0.1) > 0.1) { *returned_error = 1e16 * fabs (interp->window [k] - 0.1) ; return 1 ; } ; /* Ensure whole window is in [0, 1] range. */ error = 0.0 ; for (k = 0 ; k < interp->total_len ; k++) { temp = fabs (interp->window [k] - 0.5) ; if (temp > 0.5 && temp > error) error = temp ; } ; if (error > 0.0) { *returned_error = 1e16 * error ; return 1 ; } ; /* Monotonicity of left side of window. */ error = 0.0 ; for (k = 1 ; k < interp->middle ; k++) { temp = (interp->window [k - 1] - interp->window [k]) ; if (temp > 0.0) error += temp ; } ; if (error > 0.0) { *returned_error = 1e14 * error ; return 1 ; } ; /* Monotonicity of right side of window. */ error = 0.0 ; for (k = interp->middle + 1 ; k < interp->total_len ; k++) { temp = (interp->window [k] - interp->window [k - 1]) ; if (temp > 0.0) error += temp ; } ; if (error > 0.0) { *returned_error = 1e14 * error ; return 1 ; } ; return 0 ; } /* calc_window */ static void calc_sinc (FIR_INTERP *interp) { unsigned k ; double x ; for (k = 0 ; k < interp->middle ; k++) { x = M_PI * (interp->middle - k) * interp->fir_params.sinc_time_fudge / UPSAMPLE_RATIO ; interp->sinc [k] = sin (x) / x ; } ; interp->sinc [interp->middle] = 1.0 ; for (k = interp->middle + 1 ; k < interp->total_len ; k++) { x = M_PI * (k - interp->middle) * interp->fir_params.sinc_time_fudge / UPSAMPLE_RATIO ; interp->sinc [k] = sin (x) / x ; } ; } /* calc_sinc */ static void calc_filter (FIR_INTERP *interp) { unsigned k ; double sum = 0.0 ; for (k = 0 ; k < interp->total_len ; k++) { interp->filter [k] = interp->sinc [k] * interp->window [k] ; sum += interp->filter [k] ; } ; /* Now normalize. */ for (k = 0 ; k < interp->total_len ; k++) interp->filter [k] /= sum ; } /* calc_filter */ static void oct_save (const FIR_INTERP *interp) { const char * filename = "a.mat" ; FILE * file ; unsigned k ; unlink (filename) ; if ((file = fopen (filename, "w")) == NULL) { printf ("\nError : fopen failed.\n") ; exit (1) ; } ; fprintf (file, "# Not created by Octave\n") ; fprintf (file, "# name: sinc_time_fudge\n") ; fprintf (file, "# type: scalar\n%16.14f\n", interp->fir_params.sinc_time_fudge) ; fprintf (file, "# name: middle\n") ; fprintf (file, "# type: scalar\n%d\n", interp->middle) ; fprintf (file, "# name: total_len\n") ; fprintf (file, "# type: scalar\n%d\n", interp->total_len) ; fprintf (file, "# name: sinc\n") ; fprintf (file, "# type: matrix\n") ; fprintf (file, "# rows: %d\n", interp->total_len) ; fprintf (file, "# columns: 1\n") ; for (k = 0 ; k < interp->total_len ; k++) fprintf (file, "% f\n", interp->sinc [k]) ; fprintf (file, "# name: win\n") ; fprintf (file, "# type: matrix\n") ; fprintf (file, "# rows: %d\n", interp->total_len) ; fprintf (file, "# columns: 1\n") ; for (k = 0 ; k < interp->total_len ; k++) fprintf (file, "% f\n", interp->window [k]) ; fprintf (file, "# name: filt\n") ; fprintf (file, "# type: matrix\n") ; fprintf (file, "# rows: %d\n", interp->total_len) ; fprintf (file, "# columns: 1\n") ; for (k = 0 ; k < interp->total_len ; k++) fprintf (file, "% f\n", interp->filter [k] * UPSAMPLE_RATIO) ; fprintf (file, "# name: mag\n") ; fprintf (file, "# type: matrix\n") ; fprintf (file, "# rows: %d\n", ARRAY_LEN (interp->mag)) ; fprintf (file, "# columns: 1\n") ; for (k = 0 ; k < ARRAY_LEN (interp->mag) ; k++) fprintf (file, "% f\n", interp->mag [k]) ; fprintf (file, "# name: logmag\n") ; fprintf (file, "# type: matrix\n") ; fprintf (file, "# rows: %d\n", ARRAY_LEN (interp->logmag)) ; fprintf (file, "# columns: 1\n") ; for (k = 0 ; k < ARRAY_LEN (interp->logmag) ; k++) fprintf (file, "% f\n", interp->logmag [k]) ; fprintf (file, "# name: phase\n") ; fprintf (file, "# type: matrix\n") ; fprintf (file, "# rows: %d\n", ARRAY_LEN (interp->phase)) ; fprintf (file, "# columns: 1\n") ; for (k = 0 ; k < ARRAY_LEN (interp->phase) ; k++) fprintf (file, "% f\n", interp->phase [k]) ; fclose (file) ; } /* oct_save */ static void randomize_data (FIR_INTERP *interp) { FILE * file ; unsigned k, param_count, seed ; file = fopen ("/dev/urandom", "r") ; fread (&seed, 1, sizeof (seed), file) ; fclose (file) ; srandom (seed) ; param_count = sizeof (FIR_PARAMS) / sizeof (double) ; for (k = 0 ; k < param_count ; k++) interp->data [k] = 3.0 * ((1.0 * random ()) / INT_MAX - 0.5) ; } /* randomize_data */ /* ** Do not edit or modify anything in this comment block. ** The following line is a file identity tag for the GNU Arch ** revision control system. ** ** arch-tag: 3ce7ca6f-394e-432c-aeaa-f228afc05afd */