ref: 8ef3d1e6dc0c162ebb1e901a7902e46590e5801f
dir: /src/src_sinc.c/
/* ** Copyright (C) 2002-2004 Erik de Castro Lopo <[email protected]> ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include "config.h" #include "float_cast.h" #include "common.h" #define SINC_MAGIC_MARKER MAKE_MAGIC (' ', 's', 'i', 'n', 'c', ' ') #define ARRAY_LEN(x) ((int) (sizeof (x) / sizeof ((x) [0]))) /*======================================================================================== ** Macros for handling the index into the array for the filter. ** Double precision floating point is not accurate enough so use a 64 bit ** fixed point value instead. SHIFT_BITS (current value of 48) is the number ** of bits to the right of the decimal point. ** The rest of the macros are for retrieving the fractional and integer parts ** and for converting floats and ints to the fixed point format or from the ** fixed point type back to integers and floats. */ #define MAKE_INCREMENT_T(x) ((increment_t) (x)) #define SHIFT_BITS 16 #define FP_ONE ((double) (((increment_t) 1) << SHIFT_BITS)) #define DOUBLE_TO_FP(x) (lrint ((x) * FP_ONE)) #define INT_TO_FP(x) (((increment_t) (x)) << SHIFT_BITS) #define FP_FRACTION_PART(x) ((x) & ((((increment_t) 1) << SHIFT_BITS) - 1)) #define FP_INTEGER_PART(x) ((x) & (((increment_t) -1) << SHIFT_BITS)) #define FP_TO_INT(x) (((x) >> SHIFT_BITS)) #define FP_TO_DOUBLE(x) (FP_FRACTION_PART (x) / FP_ONE) /*======================================================================================== */ typedef int32_t increment_t ; typedef float coeff_t ; enum { STATE_BUFFER_START = 101, STATE_DATA_CONTINUE = 102, STATE_BUFFER_END = 103, STATE_FINISHED } ; typedef struct { int sinc_magic_marker ; int channels ; long in_count, in_used ; long out_count, out_gen ; int coeff_half_len, index_inc ; int has_diffs ; double src_ratio, input_index ; int coeff_len ; coeff_t const *coeffs ; int b_current, b_end, b_real_end, b_len ; float buffer [1] ; } SINC_FILTER ; static int sinc_process (SRC_PRIVATE *psrc, SRC_DATA *data) ; static double calc_output (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int ch) ; static void prepare_data (SINC_FILTER *filter, SRC_DATA *data, int half_filter_chan_len) ; static void sinc_reset (SRC_PRIVATE *psrc) ; static coeff_t const high_qual_coeffs [] = { #include "high_qual_coeffs.h" } ; /* high_qual_coeffs */ static coeff_t const mid_qual_coeffs [] = { #include "mid_qual_coeffs.h" } ; /* mid_qual_coeffs */ static coeff_t const fastest_coeffs [] = { #include "fastest_coeffs.h" } ; /* fastest_coeffs */ /*---------------------------------------------------------------------------------------- */ const char* sinc_get_name (int src_enum) { switch (src_enum) { case SRC_SINC_BEST_QUALITY : return "Best Sinc Interpolator" ; case SRC_SINC_MEDIUM_QUALITY : return "Medium Sinc Interpolator" ; case SRC_SINC_FASTEST : return "Fastest Sinc Interpolator" ; } ; return NULL ; } /* sinc_get_descrition */ const char* sinc_get_description (int src_enum) { switch (src_enum) { case SRC_SINC_BEST_QUALITY : return "Band limited sinc interpolation, best quality, 97dB SNR, 96% BW." ; case SRC_SINC_MEDIUM_QUALITY : return "Band limited sinc interpolation, medium quality, 97dB SNR, 90% BW." ; case SRC_SINC_FASTEST : return "Band limited sinc interpolation, fastest, 97dB SNR, 80% BW." ; } ; return NULL ; } /* sinc_get_descrition */ int sinc_set_converter (SRC_PRIVATE *psrc, int src_enum) { SINC_FILTER *filter, temp_filter ; int count, bits ; /* Quick sanity check. */ if (SHIFT_BITS >= sizeof (increment_t) * 8 - 1) return SRC_ERR_SHIFT_BITS ; if (psrc->private_data != NULL) { filter = (SINC_FILTER*) psrc->private_data ; if (filter->sinc_magic_marker != SINC_MAGIC_MARKER) { free (psrc->private_data) ; psrc->private_data = NULL ; } ; } ; memset (&temp_filter, 0, sizeof (temp_filter)) ; temp_filter.sinc_magic_marker = SINC_MAGIC_MARKER ; temp_filter.channels = psrc->channels ; psrc->process = sinc_process ; psrc->reset = sinc_reset ; switch (src_enum) { case SRC_SINC_BEST_QUALITY : temp_filter.coeffs = high_qual_coeffs ; temp_filter.coeff_half_len = ARRAY_LEN (high_qual_coeffs) - 1 ; temp_filter.index_inc = 128 ; temp_filter.has_diffs = SRC_FALSE ; temp_filter.coeff_len = ARRAY_LEN (high_qual_coeffs) ; break ; case SRC_SINC_MEDIUM_QUALITY : temp_filter.coeffs = mid_qual_coeffs ; temp_filter.coeff_half_len = ARRAY_LEN (mid_qual_coeffs) - 1 ; temp_filter.index_inc = 128 ; temp_filter.has_diffs = SRC_FALSE ; temp_filter.coeff_len = ARRAY_LEN (mid_qual_coeffs) ; break ; case SRC_SINC_FASTEST : temp_filter.coeffs = fastest_coeffs ; temp_filter.coeff_half_len = ARRAY_LEN (fastest_coeffs) - 1 ; temp_filter.index_inc = 128 ; temp_filter.has_diffs = SRC_FALSE ; temp_filter.coeff_len = ARRAY_LEN (fastest_coeffs) ; break ; default : return SRC_ERR_BAD_CONVERTER ; } ; /* ** FIXME : This needs to be looked at more closely to see if there is ** a better way. Need to look at prepare_data () at the same time. */ temp_filter.b_len = 1000 + 2 * lrint (0.5 + temp_filter.coeff_len / (temp_filter.index_inc * 1.0) * SRC_MAX_RATIO) ; temp_filter.b_len *= temp_filter.channels ; if ((filter = calloc (1, sizeof (SINC_FILTER) + sizeof (filter->buffer [0]) * (temp_filter.b_len + temp_filter.channels))) == NULL) return SRC_ERR_MALLOC_FAILED ; *filter = temp_filter ; memset (&temp_filter, 0xEE, sizeof (temp_filter)) ; psrc->private_data = filter ; sinc_reset (psrc) ; count = filter->coeff_half_len ; for (bits = 0 ; (1 << bits) < count ; bits++) count |= (1 << bits) ; if (bits + SHIFT_BITS - 1 >= (int) (sizeof (increment_t) * 8)) return SRC_ERR_FILTER_LEN ; return SRC_ERR_NO_ERROR ; } /* sinc_set_converter */ static void sinc_reset (SRC_PRIVATE *psrc) { SINC_FILTER *filter ; filter = (SINC_FILTER*) psrc->private_data ; if (filter == NULL) return ; filter->b_current = filter->b_end = 0 ; filter->b_real_end = -1 ; filter->src_ratio = filter->input_index = 0.0 ; memset (filter->buffer, 0, filter->b_len * sizeof (filter->buffer [0])) ; /* Set this for a sanity check */ memset (filter->buffer + filter->b_len, 0xAA, filter->channels * sizeof (filter->buffer [0])) ; } /* sinc_reset */ /*======================================================================================== ** Beware all ye who dare pass this point. There be dragons here. */ static int sinc_process (SRC_PRIVATE *psrc, SRC_DATA *data) { SINC_FILTER *filter ; double input_index, src_ratio, count, float_increment, terminate, rem ; increment_t increment, start_filter_index ; int half_filter_chan_len, samples_in_hand, ch ; if (psrc->private_data == NULL) return SRC_ERR_NO_PRIVATE ; filter = (SINC_FILTER*) psrc->private_data ; /* If there is not a problem, this will be optimised out. */ if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0])) return SRC_ERR_SIZE_INCOMPATIBILITY ; filter->in_count = data->input_frames * filter->channels ; filter->out_count = data->output_frames * filter->channels ; filter->in_used = filter->out_gen = 0 ; src_ratio = psrc->last_ratio ; /* Check the sample rate ratio wrt the buffer len. */ count = (filter->coeff_half_len + 2.0) / filter->index_inc ; if (MIN (psrc->last_ratio, data->src_ratio) < 1.0) count /= MIN (psrc->last_ratio, data->src_ratio) ; /* Maximum coefficientson either side of center point. */ half_filter_chan_len = filter->channels * (lrint (count) + 1) ; input_index = psrc->last_position ; float_increment = filter->index_inc ; rem = fmod (input_index, 1.0) ; filter->b_current = (filter->b_current + filter->channels * lrint (input_index - rem)) % filter->b_len ; input_index = rem ; terminate = 1.0 / src_ratio + 1e-20 ; /* Main processing loop. */ while (filter->out_gen < filter->out_count) { /* Need to reload buffer? */ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; if (samples_in_hand <= half_filter_chan_len) { prepare_data (filter, data, half_filter_chan_len) ; samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; if (samples_in_hand <= half_filter_chan_len) break ; } ; /* This is the termination condition. */ if (filter->b_real_end >= 0) { if (filter->b_current + input_index + terminate >= filter->b_real_end) break ; } ; if (fabs (psrc->last_ratio - data->src_ratio) > 1e-10) src_ratio = psrc->last_ratio + filter->out_gen * (data->src_ratio - psrc->last_ratio) / (filter->out_count - 1) ; float_increment = filter->index_inc * 1.0 ; if (src_ratio < 1.0) float_increment = filter->index_inc * src_ratio ; increment = DOUBLE_TO_FP (float_increment) ; start_filter_index = DOUBLE_TO_FP (input_index * float_increment) ; for (ch = 0 ; ch < filter->channels ; ch++) { data->data_out [filter->out_gen] = (float_increment / filter->index_inc) * calc_output (filter, increment, start_filter_index, ch) ; filter->out_gen ++ ; } ; /* Figure out the next index. */ input_index += 1.0 / src_ratio ; rem = fmod (input_index, 1.0) ; filter->b_current = (filter->b_current + filter->channels * lrint (input_index - rem)) % filter->b_len ; input_index = rem ; } ; psrc->last_position = input_index ; /* Save current ratio rather then target ratio. */ psrc->last_ratio = src_ratio ; data->input_frames_used = filter->in_used / filter->channels ; data->output_frames_gen = filter->out_gen / filter->channels ; return SRC_ERR_NO_ERROR ; } /* sinc_process */ /*---------------------------------------------------------------------------------------- */ static void prepare_data (SINC_FILTER *filter, SRC_DATA *data, int half_filter_chan_len) { int len = 0 ; if (filter->b_real_end >= 0) return ; /* This doesn't make sense, so return. */ if (filter->b_current == 0) { /* Initial state. Set up zeros at the start of the buffer and ** then load new data after that. */ len = filter->b_len - 2 * half_filter_chan_len ; filter->b_current = filter->b_end = half_filter_chan_len ; } else if (filter->b_end + half_filter_chan_len + filter->channels < filter->b_len) { /* Load data at current end position. */ len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ; } else { /* Move data at end of buffer back to the start of the buffer. */ len = filter->b_end - filter->b_current ; memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len, (half_filter_chan_len + len) * sizeof (filter->buffer [0])) ; filter->b_current = half_filter_chan_len ; filter->b_end = filter->b_current + len ; /* Now load data at current end of buffer. */ len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ; } ; len = MIN (filter->in_count - filter->in_used, len) ; len -= (len % filter->channels) ; memcpy (filter->buffer + filter->b_end, data->data_in + filter->in_used, len * sizeof (filter->buffer [0])) ; filter->b_end += len ; filter->in_used += len ; if (filter->in_used == filter->in_count && filter->b_end - filter->b_current < 2 * half_filter_chan_len && data->end_of_input) { /* Handle the case where all data in the current buffer has been ** consumed and this is the last buffer. */ if (filter->b_len - filter->b_end < half_filter_chan_len + 5) { /* If necessary, move data down to the start of the buffer. */ len = filter->b_end - filter->b_current ; memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len, (half_filter_chan_len + len) * sizeof (filter->buffer [0])) ; filter->b_current = half_filter_chan_len ; filter->b_end = filter->b_current + len ; } ; filter->b_real_end = filter->b_end ; len = half_filter_chan_len + 5 ; memset (filter->buffer + filter->b_end, 0, len * sizeof (filter->buffer [0])) ; filter->b_end += len ; } ; return ; } /* prepare_data */ static double calc_output (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int ch) { double fraction, left, right, icoeff ; increment_t filter_index, max_filter_index ; int data_index, coeff_count, indx ; /* Convert input parameters into fixed point. */ max_filter_index = INT_TO_FP (filter->coeff_half_len) ; /* First apply the left half of the filter. */ filter_index = start_filter_index ; coeff_count = (max_filter_index - filter_index) / increment ; filter_index = filter_index + coeff_count * increment ; data_index = filter->b_current - filter->channels * coeff_count ; left = 0.0 ; do { fraction = FP_TO_DOUBLE (filter_index) ; indx = FP_TO_INT (filter_index) ; icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; left += icoeff * filter->buffer [data_index + ch] ; filter_index -= increment ; data_index = data_index + filter->channels ; } while (filter_index >= MAKE_INCREMENT_T (0)) ; /* Now apply the right half of the filter. */ filter_index = increment - start_filter_index ; coeff_count = (max_filter_index - filter_index) / increment ; filter_index = filter_index + coeff_count * increment ; data_index = filter->b_current + filter->channels * (1 + coeff_count) ; right = 0.0 ; do { fraction = FP_TO_DOUBLE (filter_index) ; indx = FP_TO_INT (filter_index) ; icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; right += icoeff * filter->buffer [data_index + ch] ; filter_index -= increment ; data_index = data_index - filter->channels ; } while (filter_index > MAKE_INCREMENT_T (0)) ; return (left + right) ; } /* calc_output */ /* ** Do not edit or modify anything in this comment block. ** The arch-tag line is a file identity tag for the GNU Arch ** revision control system. ** ** arch-tag: db8efe06-2fbd-487e-be8f-bfc01e68c19f */