ref: 00a35fdedacde01a8a2bb23cae1e1270d7834c3a
dir: /vpx_dsp/fwd_txfm.c/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_dsp/fwd_txfm.h" void vp9_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { // The 2D transform is done with two passes which are actually pretty // similar. In the first one, we transform the columns and transpose // the results. In the second one, we transform the rows. To achieve that, // as the first pass results are transposed, we transpose the columns (that // is the transposed rows) and transpose the results (so that it goes back // in normal/row positions). int pass; // We need an intermediate buffer between passes. tran_low_t intermediate[4 * 4]; const int16_t *in_pass0 = input; const tran_low_t *in = NULL; tran_low_t *out = intermediate; // Do the two transform/transpose passes for (pass = 0; pass < 2; ++pass) { tran_high_t input[4]; // canbe16 tran_high_t step[4]; // canbe16 tran_high_t temp1, temp2; // needs32 int i; for (i = 0; i < 4; ++i) { // Load inputs. if (0 == pass) { input[0] = in_pass0[0 * stride] * 16; input[1] = in_pass0[1 * stride] * 16; input[2] = in_pass0[2 * stride] * 16; input[3] = in_pass0[3 * stride] * 16; if (i == 0 && input[0]) { input[0] += 1; } } else { input[0] = in[0 * 4]; input[1] = in[1 * 4]; input[2] = in[2 * 4]; input[3] = in[3 * 4]; } // Transform. step[0] = input[0] + input[3]; step[1] = input[1] + input[2]; step[2] = input[1] - input[2]; step[3] = input[0] - input[3]; temp1 = (step[0] + step[1]) * cospi_16_64; temp2 = (step[0] - step[1]) * cospi_16_64; out[0] = (tran_low_t)fdct_round_shift(temp1); out[2] = (tran_low_t)fdct_round_shift(temp2); temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; out[1] = (tran_low_t)fdct_round_shift(temp1); out[3] = (tran_low_t)fdct_round_shift(temp2); // Do next column (which is a transposed row in second/horizontal pass) in_pass0++; in++; out += 4; } // Setup in/out for next pass. in = intermediate; out = output; } { int i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2; } } } void vp9_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { int i, j; tran_low_t intermediate[64]; int pass; tran_low_t *output = intermediate; const tran_low_t *in = NULL; // Transform columns for (pass = 0; pass < 2; ++pass) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 tran_high_t t0, t1, t2, t3; // needs32 tran_high_t x0, x1, x2, x3; // canbe16 int i; for (i = 0; i < 8; i++) { // stage 1 if (pass == 0) { s0 = (input[0 * stride] + input[7 * stride]) * 4; s1 = (input[1 * stride] + input[6 * stride]) * 4; s2 = (input[2 * stride] + input[5 * stride]) * 4; s3 = (input[3 * stride] + input[4 * stride]) * 4; s4 = (input[3 * stride] - input[4 * stride]) * 4; s5 = (input[2 * stride] - input[5 * stride]) * 4; s6 = (input[1 * stride] - input[6 * stride]) * 4; s7 = (input[0 * stride] - input[7 * stride]) * 4; ++input; } else { s0 = in[0 * 8] + in[7 * 8]; s1 = in[1 * 8] + in[6 * 8]; s2 = in[2 * 8] + in[5 * 8]; s3 = in[3 * 8] + in[4 * 8]; s4 = in[3 * 8] - in[4 * 8]; s5 = in[2 * 8] - in[5 * 8]; s6 = in[1 * 8] - in[6 * 8]; s7 = in[0 * 8] - in[7 * 8]; ++in; } // fdct4(step, step); x0 = s0 + s3; x1 = s1 + s2; x2 = s1 - s2; x3 = s0 - s3; t0 = (x0 + x1) * cospi_16_64; t1 = (x0 - x1) * cospi_16_64; t2 = x2 * cospi_24_64 + x3 * cospi_8_64; t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; output[0] = (tran_low_t)fdct_round_shift(t0); output[2] = (tran_low_t)fdct_round_shift(t2); output[4] = (tran_low_t)fdct_round_shift(t1); output[6] = (tran_low_t)fdct_round_shift(t3); // Stage 2 t0 = (s6 - s5) * cospi_16_64; t1 = (s6 + s5) * cospi_16_64; t2 = fdct_round_shift(t0); t3 = fdct_round_shift(t1); // Stage 3 x0 = s4 + t2; x1 = s4 - t2; x2 = s7 - t3; x3 = s7 + t3; // Stage 4 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; t1 = x1 * cospi_12_64 + x2 * cospi_20_64; t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; output[1] = (tran_low_t)fdct_round_shift(t0); output[3] = (tran_low_t)fdct_round_shift(t2); output[5] = (tran_low_t)fdct_round_shift(t1); output[7] = (tran_low_t)fdct_round_shift(t3); output += 8; } in = intermediate; output = final_output; } // Rows for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2; } } void vp9_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) { // The 2D transform is done with two passes which are actually pretty // similar. In the first one, we transform the columns and transpose // the results. In the second one, we transform the rows. To achieve that, // as the first pass results are transposed, we transpose the columns (that // is the transposed rows) and transpose the results (so that it goes back // in normal/row positions). int pass; // We need an intermediate buffer between passes. tran_low_t intermediate[256]; const int16_t *in_pass0 = input; const tran_low_t *in = NULL; tran_low_t *out = intermediate; // Do the two transform/transpose passes for (pass = 0; pass < 2; ++pass) { tran_high_t step1[8]; // canbe16 tran_high_t step2[8]; // canbe16 tran_high_t step3[8]; // canbe16 tran_high_t input[8]; // canbe16 tran_high_t temp1, temp2; // needs32 int i; for (i = 0; i < 16; i++) { if (0 == pass) { // Calculate input for the first 8 results. input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4; input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4; input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4; input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4; input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4; input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4; input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4; input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4; // Calculate input for the next 8 results. step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4; step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4; step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4; step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4; step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4; step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4; step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4; step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4; } else { // Calculate input for the first 8 results. input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2); input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2); input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2); input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2); input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2); input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2); input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2); input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2); // Calculate input for the next 8 results. step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2); step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2); step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2); step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2); step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2); step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2); step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2); step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2); } // Work on the first eight values; fdct8(input, even_results); { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 tran_high_t t0, t1, t2, t3; // needs32 tran_high_t x0, x1, x2, x3; // canbe16 // stage 1 s0 = input[0] + input[7]; s1 = input[1] + input[6]; s2 = input[2] + input[5]; s3 = input[3] + input[4]; s4 = input[3] - input[4]; s5 = input[2] - input[5]; s6 = input[1] - input[6]; s7 = input[0] - input[7]; // fdct4(step, step); x0 = s0 + s3; x1 = s1 + s2; x2 = s1 - s2; x3 = s0 - s3; t0 = (x0 + x1) * cospi_16_64; t1 = (x0 - x1) * cospi_16_64; t2 = x3 * cospi_8_64 + x2 * cospi_24_64; t3 = x3 * cospi_24_64 - x2 * cospi_8_64; out[0] = (tran_low_t)fdct_round_shift(t0); out[4] = (tran_low_t)fdct_round_shift(t2); out[8] = (tran_low_t)fdct_round_shift(t1); out[12] = (tran_low_t)fdct_round_shift(t3); // Stage 2 t0 = (s6 - s5) * cospi_16_64; t1 = (s6 + s5) * cospi_16_64; t2 = fdct_round_shift(t0); t3 = fdct_round_shift(t1); // Stage 3 x0 = s4 + t2; x1 = s4 - t2; x2 = s7 - t3; x3 = s7 + t3; // Stage 4 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; t1 = x1 * cospi_12_64 + x2 * cospi_20_64; t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; out[2] = (tran_low_t)fdct_round_shift(t0); out[6] = (tran_low_t)fdct_round_shift(t2); out[10] = (tran_low_t)fdct_round_shift(t1); out[14] = (tran_low_t)fdct_round_shift(t3); } // Work on the next eight values; step1 -> odd_results { // step 2 temp1 = (step1[5] - step1[2]) * cospi_16_64; temp2 = (step1[4] - step1[3]) * cospi_16_64; step2[2] = fdct_round_shift(temp1); step2[3] = fdct_round_shift(temp2); temp1 = (step1[4] + step1[3]) * cospi_16_64; temp2 = (step1[5] + step1[2]) * cospi_16_64; step2[4] = fdct_round_shift(temp1); step2[5] = fdct_round_shift(temp2); // step 3 step3[0] = step1[0] + step2[3]; step3[1] = step1[1] + step2[2]; step3[2] = step1[1] - step2[2]; step3[3] = step1[0] - step2[3]; step3[4] = step1[7] - step2[4]; step3[5] = step1[6] - step2[5]; step3[6] = step1[6] + step2[5]; step3[7] = step1[7] + step2[4]; // step 4 temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; step2[1] = fdct_round_shift(temp1); step2[2] = fdct_round_shift(temp2); temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; step2[5] = fdct_round_shift(temp1); step2[6] = fdct_round_shift(temp2); // step 5 step1[0] = step3[0] + step2[1]; step1[1] = step3[0] - step2[1]; step1[2] = step3[3] + step2[2]; step1[3] = step3[3] - step2[2]; step1[4] = step3[4] - step2[5]; step1[5] = step3[4] + step2[5]; step1[6] = step3[7] - step2[6]; step1[7] = step3[7] + step2[6]; // step 6 temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; out[1] = (tran_low_t)fdct_round_shift(temp1); out[9] = (tran_low_t)fdct_round_shift(temp2); temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; out[5] = (tran_low_t)fdct_round_shift(temp1); out[13] = (tran_low_t)fdct_round_shift(temp2); temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; out[3] = (tran_low_t)fdct_round_shift(temp1); out[11] = (tran_low_t)fdct_round_shift(temp2); temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; out[7] = (tran_low_t)fdct_round_shift(temp1); out[15] = (tran_low_t)fdct_round_shift(temp2); } // Do next column (which is a transposed row in second/horizontal pass) in++; in_pass0++; out += 16; } // Setup in/out for next pass. in = intermediate; out = output; } } #if CONFIG_VP9_HIGHBITDEPTH void vp9_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { vp9_fdct4x4_c(input, output, stride); } void vp9_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { vp9_fdct8x8_c(input, final_output, stride); } void vp9_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) { vp9_fdct16x16_c(input, output, stride); } #endif // CONFIG_VP9_HIGHBITDEPTH