ref: 03b779e99bd45bfd6aef6184f6f636ed51e3b13d
dir: /tools/3D-Reconstruction/MotionEST/SearchSmooth.py/
#!/usr/bin/env python # coding: utf-8 import numpy as np import numpy.linalg as LA from Util import MSE from MotionEST import MotionEST """Search & Smooth Model with Adapt Weights""" class SearchSmoothAdapt(MotionEST): """ Constructor: cur_f: current frame ref_f: reference frame blk_sz: block size wnd_size: search window size beta: neigbor loss weight max_iter: maximum number of iterations metric: metric to compare the blocks distrotion """ def __init__(self, cur_f, ref_f, blk_size, search, max_iter=100): self.search = search self.max_iter = max_iter super(SearchSmoothAdapt, self).__init__(cur_f, ref_f, blk_size) """ get local diffiencial of refernce """ def getRefLocalDiff(self, mvs): m, n = self.num_row, self.num_col localDiff = [[] for _ in xrange(m)] blk_sz = self.blk_sz for r in xrange(m): for c in xrange(n): I_row = 0 I_col = 0 #get ssd surface count = 0 center = self.cur_yuv[r * blk_sz:(r + 1) * blk_sz, c * blk_sz:(c + 1) * blk_sz, 0] ty = np.clip(r * blk_sz + int(mvs[r, c, 0]), 0, self.height - blk_sz) tx = np.clip(c * blk_sz + int(mvs[r, c, 1]), 0, self.width - blk_sz) target = self.ref_yuv[ty:ty + blk_sz, tx:tx + blk_sz, 0] for y, x in {(ty - blk_sz, tx), (ty + blk_sz, tx)}: if 0 <= y < self.height - blk_sz and 0 <= x < self.width - blk_sz: nb = self.ref_yuv[y:y + blk_sz, x:x + blk_sz, 0] I_row += np.sum(np.abs(nb - center)) - np.sum( np.abs(target - center)) count += 1 I_row //= (count * blk_sz * blk_sz) count = 0 for y, x in {(ty, tx - blk_sz), (ty, tx + blk_sz)}: if 0 <= y < self.height - blk_sz and 0 <= x < self.width - blk_sz: nb = self.ref_yuv[y:y + blk_sz, x:x + blk_sz, 0] I_col += np.sum(np.abs(nb - center)) - np.sum( np.abs(target - center)) count += 1 I_col //= (count * blk_sz * blk_sz) localDiff[r].append( np.array([[I_row * I_row, I_row * I_col], [I_col * I_row, I_col * I_col]])) return localDiff """ add smooth constraint """ def smooth(self, uvs, mvs): sm_uvs = np.zeros(uvs.shape) blk_sz = self.blk_sz for r in xrange(self.num_row): for c in xrange(self.num_col): nb_uv = np.array([0.0, 0.0]) for i, j in {(r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)}: if 0 <= i < self.num_row and 0 <= j < self.num_col: nb_uv += uvs[i, j] / 6.0 else: nb_uv += uvs[r, c] / 6.0 for i, j in {(r - 1, c - 1), (r - 1, c + 1), (r + 1, c - 1), (r + 1, c + 1)}: if 0 <= i < self.num_row and 0 <= j < self.num_col: nb_uv += uvs[i, j] / 12.0 else: nb_uv += uvs[r, c] / 12.0 ssd_nb = self.block_dist(r, c, self.blk_sz * nb_uv) mv = mvs[r, c] ssd_mv = self.block_dist(r, c, mv) alpha = (ssd_nb - ssd_mv) / (ssd_mv + 1e-6) M = alpha * self.localDiff[r][c] P = M + np.identity(2) inv_P = LA.inv(P) sm_uvs[r, c] = np.dot(inv_P, nb_uv) + np.dot( np.matmul(inv_P, M), mv / blk_sz) return sm_uvs def block_matching(self): self.search.motion_field_estimation() def motion_field_estimation(self): self.localDiff = self.getRefLocalDiff(self.search.mf) #get matching results mvs = self.search.mf #add smoothness constraint uvs = mvs / self.blk_sz for _ in xrange(self.max_iter): uvs = self.smooth(uvs, mvs) self.mf = uvs * self.blk_sz """Search & Smooth Model with Fixed Weights""" class SearchSmoothFix(MotionEST): """ Constructor: cur_f: current frame ref_f: reference frame blk_sz: block size wnd_size: search window size beta: neigbor loss weight max_iter: maximum number of iterations metric: metric to compare the blocks distrotion """ def __init__(self, cur_f, ref_f, blk_size, search, beta, max_iter=100): self.search = search self.max_iter = max_iter self.beta = beta super(SearchSmoothFix, self).__init__(cur_f, ref_f, blk_size) """ get local diffiencial of refernce """ def getRefLocalDiff(self, mvs): m, n = self.num_row, self.num_col localDiff = [[] for _ in xrange(m)] blk_sz = self.blk_sz for r in xrange(m): for c in xrange(n): I_row = 0 I_col = 0 #get ssd surface count = 0 center = self.cur_yuv[r * blk_sz:(r + 1) * blk_sz, c * blk_sz:(c + 1) * blk_sz, 0] ty = np.clip(r * blk_sz + int(mvs[r, c, 0]), 0, self.height - blk_sz) tx = np.clip(c * blk_sz + int(mvs[r, c, 1]), 0, self.width - blk_sz) target = self.ref_yuv[ty:ty + blk_sz, tx:tx + blk_sz, 0] for y, x in {(ty - blk_sz, tx), (ty + blk_sz, tx)}: if 0 <= y < self.height - blk_sz and 0 <= x < self.width - blk_sz: nb = self.ref_yuv[y:y + blk_sz, x:x + blk_sz, 0] I_row += np.sum(np.abs(nb - center)) - np.sum( np.abs(target - center)) count += 1 I_row //= (count * blk_sz * blk_sz) count = 0 for y, x in {(ty, tx - blk_sz), (ty, tx + blk_sz)}: if 0 <= y < self.height - blk_sz and 0 <= x < self.width - blk_sz: nb = self.ref_yuv[y:y + blk_sz, x:x + blk_sz, 0] I_col += np.sum(np.abs(nb - center)) - np.sum( np.abs(target - center)) count += 1 I_col //= (count * blk_sz * blk_sz) localDiff[r].append( np.array([[I_row * I_row, I_row * I_col], [I_col * I_row, I_col * I_col]])) return localDiff """ add smooth constraint """ def smooth(self, uvs, mvs): sm_uvs = np.zeros(uvs.shape) blk_sz = self.blk_sz for r in xrange(self.num_row): for c in xrange(self.num_col): nb_uv = np.array([0.0, 0.0]) for i, j in {(r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)}: if 0 <= i < self.num_row and 0 <= j < self.num_col: nb_uv += uvs[i, j] / 6.0 else: nb_uv += uvs[r, c] / 6.0 for i, j in {(r - 1, c - 1), (r - 1, c + 1), (r + 1, c - 1), (r + 1, c + 1)}: if 0 <= i < self.num_row and 0 <= j < self.num_col: nb_uv += uvs[i, j] / 12.0 else: nb_uv += uvs[r, c] / 12.0 mv = mvs[r, c] / blk_sz M = self.localDiff[r][c] P = M + self.beta * np.identity(2) inv_P = LA.inv(P) sm_uvs[r, c] = np.dot(inv_P, self.beta * nb_uv) + np.dot( np.matmul(inv_P, M), mv) return sm_uvs def block_matching(self): self.search.motion_field_estimation() def motion_field_estimation(self): #get local structure self.localDiff = self.getRefLocalDiff(self.search.mf) #get matching results mvs = self.search.mf #add smoothness constraint uvs = mvs / self.blk_sz for _ in xrange(self.max_iter): uvs = self.smooth(uvs, mvs) self.mf = uvs * self.blk_sz