ref: 07b72ace70832240c20f461458d6ea1496135b26
dir: /vp9/common/vp9_reconinter.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" static int scale_value_x_with_scaling(int val, const struct scale_factors *scale) { return (val * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT); } static int scale_value_y_with_scaling(int val, const struct scale_factors *scale) { return (val * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT); } static int unscaled_value(int val, const struct scale_factors *scale) { (void) scale; return val; } static MV32 mv_q3_to_q4_with_scaling(const MV *mv, const struct scale_factors *scale) { const MV32 res = { ((mv->row << 1) * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->y_offset_q4, ((mv->col << 1) * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->x_offset_q4 }; return res; } static MV32 mv_q3_to_q4_without_scaling(const MV *mv, const struct scale_factors *scale) { const MV32 res = { mv->row << 1, mv->col << 1 }; return res; } static MV32 mv_q4_with_scaling(const MV *mv, const struct scale_factors *scale) { const MV32 res = { (mv->row * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->y_offset_q4, (mv->col * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->x_offset_q4 }; return res; } static MV32 mv_q4_without_scaling(const MV *mv, const struct scale_factors *scale) { const MV32 res = { mv->row, mv->col }; return res; } static void set_offsets_with_scaling(struct scale_factors *scale, int row, int col) { const int x_q4 = 16 * col; const int y_q4 = 16 * row; scale->x_offset_q4 = (x_q4 * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) & 0xf; scale->y_offset_q4 = (y_q4 * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) & 0xf; } static void set_offsets_without_scaling(struct scale_factors *scale, int row, int col) { scale->x_offset_q4 = 0; scale->y_offset_q4 = 0; } static int get_fixed_point_scale_factor(int other_size, int this_size) { // Calculate scaling factor once for each reference frame // and use fixed point scaling factors in decoding and encoding routines. // Hardware implementations can calculate scale factor in device driver // and use multiplication and shifting on hardware instead of division. return (other_size << VP9_REF_SCALE_SHIFT) / this_size; } void vp9_setup_scale_factors_for_frame(struct scale_factors *scale, int other_w, int other_h, int this_w, int this_h) { scale->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); scale->x_offset_q4 = 0; // calculated per-mb scale->x_step_q4 = (16 * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT); scale->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); scale->y_offset_q4 = 0; // calculated per-mb scale->y_step_q4 = (16 * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT); if ((other_w == this_w) && (other_h == this_h)) { scale->scale_value_x = unscaled_value; scale->scale_value_y = unscaled_value; scale->set_scaled_offsets = set_offsets_without_scaling; scale->scale_mv_q3_to_q4 = mv_q3_to_q4_without_scaling; scale->scale_mv_q4 = mv_q4_without_scaling; } else { scale->scale_value_x = scale_value_x_with_scaling; scale->scale_value_y = scale_value_y_with_scaling; scale->set_scaled_offsets = set_offsets_with_scaling; scale->scale_mv_q3_to_q4 = mv_q3_to_q4_with_scaling; scale->scale_mv_q4 = mv_q4_with_scaling; } // TODO(agrange): Investigate the best choice of functions to use here // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what // to do at full-pel offsets. The current selection, where the filter is // applied in one direction only, and not at all for 0,0, seems to give the // best quality, but it may be worth trying an additional mode that does // do the filtering on full-pel. if (scale->x_step_q4 == 16) { if (scale->y_step_q4 == 16) { // No scaling in either direction. scale->predict[0][0][0] = vp9_convolve_copy; scale->predict[0][0][1] = vp9_convolve_avg; scale->predict[0][1][0] = vp9_convolve8_vert; scale->predict[0][1][1] = vp9_convolve8_avg_vert; scale->predict[1][0][0] = vp9_convolve8_horiz; scale->predict[1][0][1] = vp9_convolve8_avg_horiz; } else { // No scaling in x direction. Must always scale in the y direction. scale->predict[0][0][0] = vp9_convolve8_vert; scale->predict[0][0][1] = vp9_convolve8_avg_vert; scale->predict[0][1][0] = vp9_convolve8_vert; scale->predict[0][1][1] = vp9_convolve8_avg_vert; scale->predict[1][0][0] = vp9_convolve8; scale->predict[1][0][1] = vp9_convolve8_avg; } } else { if (scale->y_step_q4 == 16) { // No scaling in the y direction. Must always scale in the x direction. scale->predict[0][0][0] = vp9_convolve8_horiz; scale->predict[0][0][1] = vp9_convolve8_avg_horiz; scale->predict[0][1][0] = vp9_convolve8; scale->predict[0][1][1] = vp9_convolve8_avg; scale->predict[1][0][0] = vp9_convolve8_horiz; scale->predict[1][0][1] = vp9_convolve8_avg_horiz; } else { // Must always scale in both directions. scale->predict[0][0][0] = vp9_convolve8; scale->predict[0][0][1] = vp9_convolve8_avg; scale->predict[0][1][0] = vp9_convolve8; scale->predict[0][1][1] = vp9_convolve8_avg; scale->predict[1][0][0] = vp9_convolve8; scale->predict[1][0][1] = vp9_convolve8_avg; } } // 2D subpel motion always gets filtered in both directions scale->predict[1][1][0] = vp9_convolve8; scale->predict[1][1][1] = vp9_convolve8_avg; } void vp9_setup_interp_filters(MACROBLOCKD *xd, INTERPOLATIONFILTERTYPE mcomp_filter_type, VP9_COMMON *cm) { if (xd->mode_info_context) { MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; set_scale_factors(xd, mbmi->ref_frame[0] - 1, mbmi->ref_frame[1] - 1, cm->active_ref_scale); } switch (mcomp_filter_type) { case EIGHTTAP: case SWITCHABLE: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8; break; case EIGHTTAP_SMOOTH: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp; break; case EIGHTTAP_SHARP: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s; break; case BILINEAR: xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters; break; } assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0); } void vp9_copy_mem16x16_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 16; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; dst[10] = src[10]; dst[11] = src[11]; dst[12] = src[12]; dst[13] = src[13]; dst[14] = src[14]; dst[15] = src[15]; #else ((uint32_t *)dst)[0] = ((const uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((const uint32_t *)src)[1]; ((uint32_t *)dst)[2] = ((const uint32_t *)src)[2]; ((uint32_t *)dst)[3] = ((const uint32_t *)src)[3]; #endif src += src_stride; dst += dst_stride; } } void vp9_copy_mem8x8_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 8; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; #else ((uint32_t *)dst)[0] = ((const uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((const uint32_t *)src)[1]; #endif src += src_stride; dst += dst_stride; } } void vp9_copy_mem8x4_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 4; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; #else ((uint32_t *)dst)[0] = ((const uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((const uint32_t *)src)[1]; #endif src += src_stride; dst += dst_stride; } } void vp9_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int_mv *src_mv, const struct scale_factors *scale, int w, int h, int weight, const struct subpix_fn_table *subpix, enum mv_precision precision) { const MV32 mv = precision == MV_PRECISION_Q4 ? scale->scale_mv_q4(&src_mv->as_mv, scale) : scale->scale_mv_q3_to_q4(&src_mv->as_mv, scale); const int subpel_x = mv.col & 15; const int subpel_y = mv.row & 15; src += (mv.row >> 4) * src_stride + (mv.col >> 4); scale->predict[!!subpel_x][!!subpel_y][weight]( src, src_stride, dst, dst_stride, subpix->filter_x[subpel_x], scale->x_step_q4, subpix->filter_y[subpel_y], scale->y_step_q4, w, h); } static INLINE int round_mv_comp_q4(int value) { return (value < 0 ? value - 2 : value + 2) / 4; } static int mi_mv_pred_row_q4(MACROBLOCKD *mb, int idx) { const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.row + mb->mode_info_context->bmi[1].as_mv[idx].as_mv.row + mb->mode_info_context->bmi[2].as_mv[idx].as_mv.row + mb->mode_info_context->bmi[3].as_mv[idx].as_mv.row; return round_mv_comp_q4(temp); } static int mi_mv_pred_col_q4(MACROBLOCKD *mb, int idx) { const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.col + mb->mode_info_context->bmi[1].as_mv[idx].as_mv.col + mb->mode_info_context->bmi[2].as_mv[idx].as_mv.col + mb->mode_info_context->bmi[3].as_mv[idx].as_mv.col; return round_mv_comp_q4(temp); } // TODO(jkoleszar): yet another mv clamping function :-( MV clamp_mv_to_umv_border_sb(const MV *src_mv, int bwl, int bhl, int ss_x, int ss_y, int mb_to_left_edge, int mb_to_top_edge, int mb_to_right_edge, int mb_to_bottom_edge) { /* If the MV points so far into the UMV border that no visible pixels * are used for reconstruction, the subpel part of the MV can be * discarded and the MV limited to 16 pixels with equivalent results. */ const int spel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 4; const int spel_right = spel_left - (1 << 4); const int spel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 4; const int spel_bottom = spel_top - (1 << 4); MV clamped_mv; assert(ss_x <= 1); assert(ss_y <= 1); clamped_mv.col = clamp(src_mv->col << (1 - ss_x), (mb_to_left_edge << (1 - ss_x)) - spel_left, (mb_to_right_edge << (1 - ss_x)) + spel_right); clamped_mv.row = clamp(src_mv->row << (1 - ss_y), (mb_to_top_edge << (1 - ss_y)) - spel_top, (mb_to_bottom_edge << (1 - ss_y)) + spel_bottom); return clamped_mv; } struct build_inter_predictors_args { MACROBLOCKD *xd; int x; int y; uint8_t* dst[MAX_MB_PLANE]; int dst_stride[MAX_MB_PLANE]; uint8_t* pre[2][MAX_MB_PLANE]; int pre_stride[2][MAX_MB_PLANE]; }; static void build_inter_predictors(int plane, int block, BLOCK_SIZE_TYPE bsize, int pred_w, int pred_h, void *argv) { const struct build_inter_predictors_args* const arg = argv; MACROBLOCKD * const xd = arg->xd; const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; const int bh = 4 << bhl, bw = 4 << bwl; const int x = 4 * (block & ((1 << bwl) - 1)), y = 4 * (block >> bwl); const int use_second_ref = xd->mode_info_context->mbmi.ref_frame[1] > 0; int which_mv; assert(x < bw); assert(y < bh); assert(xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8 || 4 << pred_w == bw); assert(xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8 || 4 << pred_h == bh); for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { // source const uint8_t * const base_pre = arg->pre[which_mv][plane]; const int pre_stride = arg->pre_stride[which_mv][plane]; const uint8_t *const pre = base_pre + scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]); struct scale_factors * const scale = plane == 0 ? &xd->scale_factor[which_mv] : &xd->scale_factor_uv[which_mv]; // dest uint8_t *const dst = arg->dst[plane] + arg->dst_stride[plane] * y + x; // motion vector const MV *mv; MV split_chroma_mv; int_mv clamped_mv; if (xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8) { if (plane == 0) { mv = &xd->mode_info_context->bmi[block].as_mv[which_mv].as_mv; } else { // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the // same MV (the average of the 4 luma MVs) but we could do something // smarter for non-4:2:0. Just punt for now, pending the changes to get // rid of SPLITMV mode entirely. split_chroma_mv.row = mi_mv_pred_row_q4(xd, which_mv); split_chroma_mv.col = mi_mv_pred_col_q4(xd, which_mv); mv = &split_chroma_mv; } } else { mv = &xd->mode_info_context->mbmi.mv[which_mv].as_mv; } /* TODO(jkoleszar): This clamping is done in the incorrect place for the * scaling case. It needs to be done on the scaled MV, not the pre-scaling * MV. Note however that it performs the subsampling aware scaling so * that the result is always q4. */ clamped_mv.as_mv = clamp_mv_to_umv_border_sb(mv, bwl, bhl, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y, xd->mb_to_left_edge, xd->mb_to_top_edge, xd->mb_to_right_edge, xd->mb_to_bottom_edge); scale->set_scaled_offsets(scale, arg->y + y, arg->x + x); vp9_build_inter_predictor(pre, pre_stride, dst, arg->dst_stride[plane], &clamped_mv, &xd->scale_factor[which_mv], 4 << pred_w, 4 << pred_h, which_mv, &xd->subpix, MV_PRECISION_Q4); } } void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { struct build_inter_predictors_args args = { xd, mi_col * MI_SIZE, mi_row * MI_SIZE, {xd->plane[0].dst.buf, NULL, NULL}, {xd->plane[0].dst.stride, 0, 0}, {{xd->plane[0].pre[0].buf, NULL, NULL}, {xd->plane[0].pre[1].buf, NULL, NULL}}, {{xd->plane[0].pre[0].stride, 0, 0}, {xd->plane[0].pre[1].stride, 0, 0}}, }; foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args); } void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { struct build_inter_predictors_args args = { xd, mi_col * MI_SIZE, mi_row * MI_SIZE, #if CONFIG_ALPHA {NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[3].dst.buf}, {0, xd->plane[1].dst.stride, xd->plane[1].dst.stride, xd->plane[3].dst.stride}, {{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf, xd->plane[3].pre[0].buf}, {NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf, xd->plane[3].pre[1].buf}}, {{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride, xd->plane[3].pre[0].stride}, {0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride, xd->plane[3].pre[1].stride}}, #else {NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf}, {0, xd->plane[1].dst.stride, xd->plane[1].dst.stride}, {{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf}, {NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf}}, {{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride}, {0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride}}, #endif }; foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args); } void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize); } /*encoder only*/ void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd, int mb_row, int mb_col) { vp9_build_inter_predictors_sbuv(xd, mb_row, mb_col, BLOCK_SIZE_MB16X16); } // TODO(dkovalev: find better place for this function) void vp9_setup_scale_factors(VP9_COMMON *cm, int i) { const int ref = cm->active_ref_idx[i]; struct scale_factors *const sf = &cm->active_ref_scale[i]; if (ref >= NUM_YV12_BUFFERS) { memset(sf, 0, sizeof(*sf)); } else { YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref]; vp9_setup_scale_factors_for_frame(sf, fb->y_crop_width, fb->y_crop_height, cm->width, cm->height); } }