ref: 08cdd006e1b25a9d803bfd13c4fb1400f3e4ca93
dir: /vp9/common/x86/vp9_subpixel_8t_intrin_ssse3.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <tmmintrin.h> #include "vpx_ports/mem.h" #include "vpx_ports/emmintrin_compat.h" // filters only for the 4_h8 convolution DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = { 0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6 }; DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = { 4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10 }; // filters for 8_h8 and 16_h8 DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = { 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 }; DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = { 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 }; DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = { 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 }; void vp9_filter_block1d4_h8_intrin_ssse3(unsigned char *src_ptr, unsigned int src_pixels_per_line, unsigned char *output_ptr, unsigned int output_pitch, unsigned int output_height, int16_t *filter) { __m128i firstFilters, secondFilters, shuffle1, shuffle2; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; __m128i addFilterReg64, filtersReg, srcReg, minReg; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 =_mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((__m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter into the first lane firstFilters = _mm_shufflelo_epi16(filtersReg, 0); // duplicate only the third 16 bit in the filter into the first lane secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu); // duplicate only the seconds 16 bits in the filter into the second lane // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3 firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u); // duplicate only the forth 16 bits in the filter into the second lane // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7 secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu); // loading the local filters shuffle1 =_mm_load_si128((__m128i const *)filt1_4_h8); shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8); for (i = 0; i < output_height; i++) { srcReg = _mm_loadu_si128((__m128i *)(src_ptr-3)); // filter the source buffer srcRegFilt1= _mm_shuffle_epi8(srcReg, shuffle1); srcRegFilt2= _mm_shuffle_epi8(srcReg, shuffle2); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); // extract the higher half of the lane srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8); srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8); minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2); // add and saturate all the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bits srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr+=src_pixels_per_line; // save only 4 bytes *((int*)&output_ptr[0])= _mm_cvtsi128_si32(srcRegFilt1); output_ptr+=output_pitch; } } void vp9_filter_block1d8_h8_intrin_ssse3(unsigned char *src_ptr, unsigned int src_pixels_per_line, unsigned char *output_ptr, unsigned int output_pitch, unsigned int output_height, int16_t *filter) { __m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg; __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; __m128i addFilterReg64, filtersReg, minReg; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((__m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits (first and second byte) // across 128 bit register firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 128 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 128 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 128 bit register forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); filt1Reg = _mm_load_si128((__m128i const *)filt1_global); filt2Reg = _mm_load_si128((__m128i const *)filt2_global); filt3Reg = _mm_load_si128((__m128i const *)filt3_global); filt4Reg = _mm_load_si128((__m128i const *)filt4_global); for (i = 0; i < output_height; i++) { srcReg = _mm_loadu_si128((__m128i *)(src_ptr-3)); // filter the source buffer srcRegFilt1= _mm_shuffle_epi8(srcReg, filt1Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg, filt2Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg, filt3Reg); srcRegFilt4= _mm_shuffle_epi8(srcReg, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters); srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters); // add and saturate all the results together minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt2= _mm_max_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bits srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr+=src_pixels_per_line; // save only 8 bytes _mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1); output_ptr+=output_pitch; } } void vp9_filter_block1d16_h8_intrin_ssse3(unsigned char *src_ptr, unsigned int src_pixels_per_line, unsigned char *output_ptr, unsigned int output_pitch, unsigned int output_height, int16_t *filter) { __m128i addFilterReg64, filtersReg, srcReg1, srcReg2; __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m128i firstFilters, secondFilters, thirdFilters, forthFilters; __m128i srcRegFilt1_1, srcRegFilt2_1, srcRegFilt2, srcRegFilt3; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((__m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits (first and second byte) // across 128 bit register firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 128 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 128 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 128 bit register forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); filt1Reg = _mm_load_si128((__m128i const *)filt1_global); filt2Reg = _mm_load_si128((__m128i const *)filt2_global); filt3Reg = _mm_load_si128((__m128i const *)filt3_global); filt4Reg = _mm_load_si128((__m128i const *)filt4_global); for (i = 0; i < output_height; i++) { srcReg1 = _mm_loadu_si128((__m128i *)(src_ptr-3)); // filter the source buffer srcRegFilt1_1= _mm_shuffle_epi8(srcReg1, filt1Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, forthFilters); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg1, filt2Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); // reading the next 16 bytes. // (part of it was being read by earlier read) srcReg2 = _mm_loadu_si128((__m128i *)(src_ptr+5)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); // filter the source buffer srcRegFilt2_1= _mm_shuffle_epi8(srcReg2, filt1Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, forthFilters); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg2, filt2Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, addFilterReg64); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7); srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1); src_ptr+=src_pixels_per_line; // save 16 bytes _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1); output_ptr+=output_pitch; } } void vp9_filter_block1d8_v8_intrin_ssse3(unsigned char *src_ptr, unsigned int src_pitch, unsigned char *output_ptr, unsigned int out_pitch, unsigned int output_height, int16_t *filter) { __m128i addFilterReg64, filtersReg, minReg, srcRegFilt6; __m128i firstFilters, secondFilters, thirdFilters, forthFilters; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4, srcRegFilt5; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((__m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits in the filter secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits in the filter thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits in the filter forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); for (i = 0; i < output_height; i++) { // load the first 8 bytes srcRegFilt1 = _mm_loadl_epi64((__m128i *)&src_ptr[0]); // load the next 8 bytes in stride of src_pitch srcRegFilt2 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch)[0]); srcRegFilt3 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*2)[0]); srcRegFilt4 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*3)[0]); // merge the result together srcRegFilt1 = _mm_unpacklo_epi8(srcRegFilt1, srcRegFilt2); srcRegFilt3 = _mm_unpacklo_epi8(srcRegFilt3, srcRegFilt4); // load the next 8 bytes in stride of src_pitch srcRegFilt2 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*4)[0]); srcRegFilt4 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*5)[0]); srcRegFilt5 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*6)[0]); srcRegFilt6 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*7)[0]); // merge the result together srcRegFilt2 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt4); srcRegFilt5 = _mm_unpacklo_epi8(srcRegFilt5, srcRegFilt6); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters); // add and saturate the results together minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5); srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr+=src_pitch; // save only 8 bytes convolve result _mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1); output_ptr+=out_pitch; } } void vp9_filter_block1d16_v8_intrin_ssse3(unsigned char *src_ptr, unsigned int src_pitch, unsigned char *output_ptr, unsigned int out_pitch, unsigned int output_height, int16_t *filter) { __m128i addFilterReg64, filtersReg, srcRegFilt1, srcRegFilt2, srcRegFilt3; __m128i firstFilters, secondFilters, thirdFilters, forthFilters; __m128i srcRegFilt4, srcRegFilt5, srcRegFilt6, srcRegFilt7, srcRegFilt8; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((__m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits in the filter secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits in the filter thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits in the filter forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); for (i = 0; i < output_height; i++) { // load the first 16 bytes srcRegFilt1 = _mm_loadu_si128((__m128i *)(src_ptr)); // load the next 16 bytes in stride of src_pitch srcRegFilt2 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch)); srcRegFilt3 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*6)); srcRegFilt4 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*7)); // merge the result together srcRegFilt5 = _mm_unpacklo_epi8(srcRegFilt1, srcRegFilt2); srcRegFilt6 = _mm_unpacklo_epi8(srcRegFilt3, srcRegFilt4); srcRegFilt1 = _mm_unpackhi_epi8(srcRegFilt1, srcRegFilt2); srcRegFilt3 = _mm_unpackhi_epi8(srcRegFilt3, srcRegFilt4); // multiply 2 adjacent elements with the filter and add the result srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, firstFilters); srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, forthFilters); srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, forthFilters); // add and saturate the results together srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, srcRegFilt6); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3); // load the next 16 bytes in stride of two/three src_pitch srcRegFilt2 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*2)); srcRegFilt3 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*3)); // merge the result together srcRegFilt4 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt3); srcRegFilt6 = _mm_unpackhi_epi8(srcRegFilt2, srcRegFilt3); // multiply 2 adjacent elements with the filter and add the result srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, secondFilters); srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, secondFilters); // load the next 16 bytes in stride of four/five src_pitch srcRegFilt2 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*4)); srcRegFilt3 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*5)); // merge the result together srcRegFilt7 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt3); srcRegFilt8 = _mm_unpackhi_epi8(srcRegFilt2, srcRegFilt3); // multiply 2 adjacent elements with the filter and add the result srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7, thirdFilters); srcRegFilt8 = _mm_maddubs_epi16(srcRegFilt8, thirdFilters); // add and saturate the results together srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, _mm_min_epi16(srcRegFilt4, srcRegFilt7)); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_min_epi16(srcRegFilt6, srcRegFilt8)); // add and saturate the results together srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, _mm_max_epi16(srcRegFilt4, srcRegFilt7)); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_max_epi16(srcRegFilt6, srcRegFilt8)); srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, addFilterReg64); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt5 = _mm_srai_epi16(srcRegFilt5, 7); srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1 = _mm_packus_epi16(srcRegFilt5, srcRegFilt1); src_ptr+=src_pitch; // save 16 bytes convolve result _mm_store_si128((__m128i*)output_ptr, srcRegFilt1); output_ptr+=out_pitch; } }