ref: 09969ac9a29cdf8528e6980425a6df2c13674100
dir: /examples/vpx_temporal_svc_encoder.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // This is an example demonstrating how to implement a multi-layer VPx // encoding scheme based on temporal scalability for video applications // that benefit from a scalable bitstream. #include <assert.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "./vpx_config.h" #include "../vpx_ports/vpx_timer.h" #include "vpx/vp8cx.h" #include "vpx/vpx_encoder.h" #include "../tools_common.h" #include "../video_writer.h" static const char *exec_name; void usage_exit(void) { exit(EXIT_FAILURE); } // Denoiser states, for temporal denoising. enum denoiserState { kDenoiserOff, kDenoiserOnYOnly, kDenoiserOnYUV, kDenoiserOnYUVAggressive, kDenoiserOnAdaptive }; static int mode_to_num_layers[12] = {1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3}; // For rate control encoding stats. struct RateControlMetrics { // Number of input frames per layer. int layer_input_frames[VPX_TS_MAX_LAYERS]; // Total (cumulative) number of encoded frames per layer. int layer_tot_enc_frames[VPX_TS_MAX_LAYERS]; // Number of encoded non-key frames per layer. int layer_enc_frames[VPX_TS_MAX_LAYERS]; // Framerate per layer layer (cumulative). double layer_framerate[VPX_TS_MAX_LAYERS]; // Target average frame size per layer (per-frame-bandwidth per layer). double layer_pfb[VPX_TS_MAX_LAYERS]; // Actual average frame size per layer. double layer_avg_frame_size[VPX_TS_MAX_LAYERS]; // Average rate mismatch per layer (|target - actual| / target). double layer_avg_rate_mismatch[VPX_TS_MAX_LAYERS]; // Actual encoding bitrate per layer (cumulative). double layer_encoding_bitrate[VPX_TS_MAX_LAYERS]; // Average of the short-time encoder actual bitrate. // TODO(marpan): Should we add these short-time stats for each layer? double avg_st_encoding_bitrate; // Variance of the short-time encoder actual bitrate. double variance_st_encoding_bitrate; // Window (number of frames) for computing short-timee encoding bitrate. int window_size; // Number of window measurements. int window_count; int layer_target_bitrate[VPX_MAX_LAYERS]; }; // Note: these rate control metrics assume only 1 key frame in the // sequence (i.e., first frame only). So for temporal pattern# 7 // (which has key frame for every frame on base layer), the metrics // computation will be off/wrong. // TODO(marpan): Update these metrics to account for multiple key frames // in the stream. static void set_rate_control_metrics(struct RateControlMetrics *rc, vpx_codec_enc_cfg_t *cfg) { unsigned int i = 0; // Set the layer (cumulative) framerate and the target layer (non-cumulative) // per-frame-bandwidth, for the rate control encoding stats below. const double framerate = cfg->g_timebase.den / cfg->g_timebase.num; rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0]; rc->layer_pfb[0] = 1000.0 * rc->layer_target_bitrate[0] / rc->layer_framerate[0]; for (i = 0; i < cfg->ts_number_layers; ++i) { if (i > 0) { rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i]; rc->layer_pfb[i] = 1000.0 * (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) / (rc->layer_framerate[i] - rc->layer_framerate[i - 1]); } rc->layer_input_frames[i] = 0; rc->layer_enc_frames[i] = 0; rc->layer_tot_enc_frames[i] = 0; rc->layer_encoding_bitrate[i] = 0.0; rc->layer_avg_frame_size[i] = 0.0; rc->layer_avg_rate_mismatch[i] = 0.0; } rc->window_count = 0; rc->window_size = 15; rc->avg_st_encoding_bitrate = 0.0; rc->variance_st_encoding_bitrate = 0.0; } static void printout_rate_control_summary(struct RateControlMetrics *rc, vpx_codec_enc_cfg_t *cfg, int frame_cnt) { unsigned int i = 0; int tot_num_frames = 0; double perc_fluctuation = 0.0; printf("Total number of processed frames: %d\n\n", frame_cnt -1); printf("Rate control layer stats for %d layer(s):\n\n", cfg->ts_number_layers); for (i = 0; i < cfg->ts_number_layers; ++i) { const int num_dropped = (i > 0) ? (rc->layer_input_frames[i] - rc->layer_enc_frames[i]) : (rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1); tot_num_frames += rc->layer_input_frames[i]; rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] * rc->layer_encoding_bitrate[i] / tot_num_frames; rc->layer_avg_frame_size[i] = rc->layer_avg_frame_size[i] / rc->layer_enc_frames[i]; rc->layer_avg_rate_mismatch[i] = 100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[i]; printf("For layer#: %d \n", i); printf("Bitrate (target vs actual): %d %f \n", rc->layer_target_bitrate[i], rc->layer_encoding_bitrate[i]); printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i], rc->layer_avg_frame_size[i]); printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]); printf("Number of input frames, encoded (non-key) frames, " "and perc dropped frames: %d %d %f \n", rc->layer_input_frames[i], rc->layer_enc_frames[i], 100.0 * num_dropped / rc->layer_input_frames[i]); printf("\n"); } rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count; rc->variance_st_encoding_bitrate = rc->variance_st_encoding_bitrate / rc->window_count - (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate); perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) / rc->avg_st_encoding_bitrate; printf("Short-time stats, for window of %d frames: \n",rc->window_size); printf("Average, rms-variance, and percent-fluct: %f %f %f \n", rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate), perc_fluctuation); if ((frame_cnt - 1) != tot_num_frames) die("Error: Number of input frames not equal to output! \n"); } // Temporal scaling parameters: // NOTE: The 3 prediction frames cannot be used interchangeably due to // differences in the way they are handled throughout the code. The // frames should be allocated to layers in the order LAST, GF, ARF. // Other combinations work, but may produce slightly inferior results. static void set_temporal_layer_pattern(int layering_mode, vpx_codec_enc_cfg_t *cfg, int *layer_flags, int *flag_periodicity) { switch (layering_mode) { case 0: { // 1-layer. int ids[1] = {0}; cfg->ts_periodicity = 1; *flag_periodicity = 1; cfg->ts_number_layers = 1; cfg->ts_rate_decimator[0] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // Update L only. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; break; } case 1: { // 2-layers, 2-frame period. int ids[2] = {0, 1}; cfg->ts_periodicity = 2; *flag_periodicity = 2; cfg->ts_number_layers = 2; cfg->ts_rate_decimator[0] = 2; cfg->ts_rate_decimator[1] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); #if 1 // 0=L, 1=GF, Intra-layer prediction enabled. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF; layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_REF_ARF; #else // 0=L, 1=GF, Intra-layer prediction disabled. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF; layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST; #endif break; } case 2: { // 2-layers, 3-frame period. int ids[3] = {0, 1, 1}; cfg->ts_periodicity = 3; *flag_periodicity = 3; cfg->ts_number_layers = 2; cfg->ts_rate_decimator[0] = 3; cfg->ts_rate_decimator[1] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // 0=L, 1=GF, Intra-layer prediction enabled. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; layer_flags[1] = layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; break; } case 3: { // 3-layers, 6-frame period. int ids[6] = {0, 2, 2, 1, 2, 2}; cfg->ts_periodicity = 6; *flag_periodicity = 6; cfg->ts_number_layers = 3; cfg->ts_rate_decimator[0] = 6; cfg->ts_rate_decimator[1] = 3; cfg->ts_rate_decimator[2] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; layer_flags[1] = layer_flags[2] = layer_flags[4] = layer_flags[5] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST; break; } case 4: { // 3-layers, 4-frame period. int ids[4] = {0, 2, 1, 2}; cfg->ts_periodicity = 4; *flag_periodicity = 4; cfg->ts_number_layers = 3; cfg->ts_rate_decimator[0] = 4; cfg->ts_rate_decimator[1] = 2; cfg->ts_rate_decimator[2] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; layer_flags[1] = layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; break; } case 5: { // 3-layers, 4-frame period. int ids[4] = {0, 2, 1, 2}; cfg->ts_periodicity = 4; *flag_periodicity = 4; cfg->ts_number_layers = 3; cfg->ts_rate_decimator[0] = 4; cfg->ts_rate_decimator[1] = 2; cfg->ts_rate_decimator[2] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled // in layer 2. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; layer_flags[1] = layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; break; } case 6: { // 3-layers, 4-frame period. int ids[4] = {0, 2, 1, 2}; cfg->ts_periodicity = 4; *flag_periodicity = 4; cfg->ts_number_layers = 3; cfg->ts_rate_decimator[0] = 4; cfg->ts_rate_decimator[1] = 2; cfg->ts_rate_decimator[2] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; layer_flags[1] = layer_flags[3] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; break; } case 7: { // NOTE: Probably of academic interest only. // 5-layers, 16-frame period. int ids[16] = {0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4}; cfg->ts_periodicity = 16; *flag_periodicity = 16; cfg->ts_number_layers = 5; cfg->ts_rate_decimator[0] = 16; cfg->ts_rate_decimator[1] = 8; cfg->ts_rate_decimator[2] = 4; cfg->ts_rate_decimator[3] = 2; cfg->ts_rate_decimator[4] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); layer_flags[0] = VPX_EFLAG_FORCE_KF; layer_flags[1] = layer_flags[3] = layer_flags[5] = layer_flags[7] = layer_flags[9] = layer_flags[11] = layer_flags[13] = layer_flags[15] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; layer_flags[2] = layer_flags[6] = layer_flags[10] = layer_flags[14] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF; layer_flags[4] = layer_flags[12] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_ARF; layer_flags[8] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF; break; } case 8: { // 2-layers, with sync point at first frame of layer 1. int ids[2] = {0, 1}; cfg->ts_periodicity = 2; *flag_periodicity = 8; cfg->ts_number_layers = 2; cfg->ts_rate_decimator[0] = 2; cfg->ts_rate_decimator[1] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // 0=L, 1=GF. // ARF is used as predictor for all frames, and is only updated on // key frame. Sync point every 8 frames. // Layer 0: predict from L and ARF, update L and G. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF; // Layer 1: sync point: predict from L and ARF, and update G. layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; // Layer 0, predict from L and ARF, update L. layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; // Layer 1: predict from L, G and ARF, and update G. layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; // Layer 0. layer_flags[4] = layer_flags[2]; // Layer 1. layer_flags[5] = layer_flags[3]; // Layer 0. layer_flags[6] = layer_flags[4]; // Layer 1. layer_flags[7] = layer_flags[5]; break; } case 9: { // 3-layers: Sync points for layer 1 and 2 every 8 frames. int ids[4] = {0, 2, 1, 2}; cfg->ts_periodicity = 4; *flag_periodicity = 8; cfg->ts_number_layers = 3; cfg->ts_rate_decimator[0] = 4; cfg->ts_rate_decimator[1] = 2; cfg->ts_rate_decimator[2] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // 0=L, 1=GF, 2=ARF. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; layer_flags[3] = layer_flags[5] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; layer_flags[6] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_ENTROPY; break; } case 10: { // 3-layers structure where ARF is used as predictor for all frames, // and is only updated on key frame. // Sync points for layer 1 and 2 every 8 frames. int ids[4] = {0, 2, 1, 2}; cfg->ts_periodicity = 4; *flag_periodicity = 8; cfg->ts_number_layers = 3; cfg->ts_rate_decimator[0] = 4; cfg->ts_rate_decimator[1] = 2; cfg->ts_rate_decimator[2] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // 0=L, 1=GF, 2=ARF. // Layer 0: predict from L and ARF; update L and G. layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; // Layer 2: sync point: predict from L and ARF; update none. layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; // Layer 1: sync point: predict from L and ARF; update G. layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; // Layer 2: predict from L, G, ARF; update none. layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; // Layer 0: predict from L and ARF; update L. layer_flags[4] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; // Layer 2: predict from L, G, ARF; update none. layer_flags[5] = layer_flags[3]; // Layer 1: predict from L, G, ARF; update G. layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; // Layer 2: predict from L, G, ARF; update none. layer_flags[7] = layer_flags[3]; break; } case 11: default: { // 3-layers structure as in case 10, but no sync/refresh points for // layer 1 and 2. int ids[4] = {0, 2, 1, 2}; cfg->ts_periodicity = 4; *flag_periodicity = 8; cfg->ts_number_layers = 3; cfg->ts_rate_decimator[0] = 4; cfg->ts_rate_decimator[1] = 2; cfg->ts_rate_decimator[2] = 1; memcpy(cfg->ts_layer_id, ids, sizeof(ids)); // 0=L, 1=GF, 2=ARF. // Layer 0: predict from L and ARF; update L. layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; layer_flags[4] = layer_flags[0]; // Layer 1: predict from L, G, ARF; update G. layer_flags[2] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; layer_flags[6] = layer_flags[2]; // Layer 2: predict from L, G, ARF; update none. layer_flags[1] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; layer_flags[3] = layer_flags[1]; layer_flags[5] = layer_flags[1]; layer_flags[7] = layer_flags[1]; break; } } } int main(int argc, char **argv) { VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = {NULL}; vpx_codec_ctx_t codec; vpx_codec_enc_cfg_t cfg; int frame_cnt = 0; vpx_image_t raw; vpx_codec_err_t res; unsigned int width; unsigned int height; int speed; int frame_avail; int got_data; int flags = 0; unsigned int i; int pts = 0; // PTS starts at 0. int frame_duration = 1; // 1 timebase tick per frame. int layering_mode = 0; int layer_flags[VPX_TS_MAX_PERIODICITY] = {0}; int flag_periodicity = 1; #if VPX_ENCODER_ABI_VERSION > (4 + VPX_CODEC_ABI_VERSION) vpx_svc_layer_id_t layer_id = {0, 0}; #else vpx_svc_layer_id_t layer_id = {0}; #endif const VpxInterface *encoder = NULL; FILE *infile = NULL; struct RateControlMetrics rc; int64_t cx_time = 0; const int min_args_base = 11; #if CONFIG_VP9_HIGHBITDEPTH vpx_bit_depth_t bit_depth = VPX_BITS_8; int input_bit_depth = 8; const int min_args = min_args_base + 1; #else const int min_args = min_args_base; #endif // CONFIG_VP9_HIGHBITDEPTH double sum_bitrate = 0.0; double sum_bitrate2 = 0.0; double framerate = 30.0; exec_name = argv[0]; // Check usage and arguments. if (argc < min_args) { #if CONFIG_VP9_HIGHBITDEPTH die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> " "<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> " "<Rate_0> ... <Rate_nlayers-1> <bit-depth> \n", argv[0]); #else die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> " "<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> " "<Rate_0> ... <Rate_nlayers-1> \n", argv[0]); #endif // CONFIG_VP9_HIGHBITDEPTH } encoder = get_vpx_encoder_by_name(argv[3]); if (!encoder) die("Unsupported codec."); printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); width = strtol(argv[4], NULL, 0); height = strtol(argv[5], NULL, 0); if (width < 16 || width % 2 || height < 16 || height % 2) { die("Invalid resolution: %d x %d", width, height); } layering_mode = strtol(argv[10], NULL, 0); if (layering_mode < 0 || layering_mode > 12) { die("Invalid layering mode (0..12) %s", argv[10]); } if (argc != min_args + mode_to_num_layers[layering_mode]) { die("Invalid number of arguments"); } #if CONFIG_VP9_HIGHBITDEPTH switch (strtol(argv[argc-1], NULL, 0)) { case 8: bit_depth = VPX_BITS_8; input_bit_depth = 8; break; case 10: bit_depth = VPX_BITS_10; input_bit_depth = 10; break; case 12: bit_depth = VPX_BITS_12; input_bit_depth = 12; break; default: die("Invalid bit depth (8, 10, 12) %s", argv[argc-1]); } if (!vpx_img_alloc(&raw, bit_depth == VPX_BITS_8 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_I42016, width, height, 32)) { die("Failed to allocate image", width, height); } #else if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, width, height, 32)) { die("Failed to allocate image", width, height); } #endif // CONFIG_VP9_HIGHBITDEPTH // Populate encoder configuration. res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0); if (res) { printf("Failed to get config: %s\n", vpx_codec_err_to_string(res)); return EXIT_FAILURE; } // Update the default configuration with our settings. cfg.g_w = width; cfg.g_h = height; #if CONFIG_VP9_HIGHBITDEPTH if (bit_depth != VPX_BITS_8) { cfg.g_bit_depth = bit_depth; cfg.g_input_bit_depth = input_bit_depth; cfg.g_profile = 2; } #endif // CONFIG_VP9_HIGHBITDEPTH // Timebase format e.g. 30fps: numerator=1, demoninator = 30. cfg.g_timebase.num = strtol(argv[6], NULL, 0); cfg.g_timebase.den = strtol(argv[7], NULL, 0); speed = strtol(argv[8], NULL, 0); if (speed < 0) { die("Invalid speed setting: must be positive"); } for (i = min_args_base; (int)i < min_args_base + mode_to_num_layers[layering_mode]; ++i) { rc.layer_target_bitrate[i - 11] = strtol(argv[i], NULL, 0); if (strncmp(encoder->name, "vp8", 3) == 0) cfg.ts_target_bitrate[i - 11] = rc.layer_target_bitrate[i - 11]; else if (strncmp(encoder->name, "vp9", 3) == 0) cfg.layer_target_bitrate[i - 11] = rc.layer_target_bitrate[i - 11]; } // Real time parameters. cfg.rc_dropframe_thresh = strtol(argv[9], NULL, 0); cfg.rc_end_usage = VPX_CBR; cfg.rc_min_quantizer = 2; cfg.rc_max_quantizer = 56; if (strncmp(encoder->name, "vp9", 3) == 0) cfg.rc_max_quantizer = 52; cfg.rc_undershoot_pct = 50; cfg.rc_overshoot_pct = 50; cfg.rc_buf_initial_sz = 500; cfg.rc_buf_optimal_sz = 600; cfg.rc_buf_sz = 1000; // Disable dynamic resizing by default. cfg.rc_resize_allowed = 0; // Use 1 thread as default. cfg.g_threads = 1; // Enable error resilient mode. cfg.g_error_resilient = 1; cfg.g_lag_in_frames = 0; cfg.kf_mode = VPX_KF_AUTO; // Disable automatic keyframe placement. cfg.kf_min_dist = cfg.kf_max_dist = 3000; cfg.temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; set_temporal_layer_pattern(layering_mode, &cfg, layer_flags, &flag_periodicity); set_rate_control_metrics(&rc, &cfg); // Target bandwidth for the whole stream. // Set to layer_target_bitrate for highest layer (total bitrate). cfg.rc_target_bitrate = rc.layer_target_bitrate[cfg.ts_number_layers - 1]; // Open input file. if (!(infile = fopen(argv[1], "rb"))) { die("Failed to open %s for reading", argv[1]); } framerate = cfg.g_timebase.den / cfg.g_timebase.num; // Open an output file for each stream. for (i = 0; i < cfg.ts_number_layers; ++i) { char file_name[PATH_MAX]; VpxVideoInfo info; info.codec_fourcc = encoder->fourcc; info.frame_width = cfg.g_w; info.frame_height = cfg.g_h; info.time_base.numerator = cfg.g_timebase.num; info.time_base.denominator = cfg.g_timebase.den; snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i); outfile[i] = vpx_video_writer_open(file_name, kContainerIVF, &info); if (!outfile[i]) die("Failed to open %s for writing", file_name); assert(outfile[i] != NULL); } // No spatial layers in this encoder. cfg.ss_number_layers = 1; // Initialize codec. #if CONFIG_VP9_HIGHBITDEPTH if (vpx_codec_enc_init( &codec, encoder->codec_interface(), &cfg, bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH)) #else if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0)) #endif // CONFIG_VP9_HIGHBITDEPTH die_codec(&codec, "Failed to initialize encoder"); if (strncmp(encoder->name, "vp8", 3) == 0) { vpx_codec_control(&codec, VP8E_SET_CPUUSED, -speed); vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, kDenoiserOff); vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 0); } else if (strncmp(encoder->name, "vp9", 3) == 0) { vpx_svc_extra_cfg_t svc_params; vpx_codec_control(&codec, VP8E_SET_CPUUSED, speed); vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3); vpx_codec_control(&codec, VP9E_SET_FRAME_PERIODIC_BOOST, 0); vpx_codec_control(&codec, VP9E_SET_NOISE_SENSITIVITY, 0); vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 0); vpx_codec_control(&codec, VP9E_SET_TUNE_CONTENT, 0); vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, (cfg.g_threads >> 1)); if (vpx_codec_control(&codec, VP9E_SET_SVC, layering_mode > 0 ? 1: 0)) die_codec(&codec, "Failed to set SVC"); for (i = 0; i < cfg.ts_number_layers; ++i) { svc_params.max_quantizers[i] = cfg.rc_max_quantizer; svc_params.min_quantizers[i] = cfg.rc_min_quantizer; } svc_params.scaling_factor_num[0] = cfg.g_h; svc_params.scaling_factor_den[0] = cfg.g_h; vpx_codec_control(&codec, VP9E_SET_SVC_PARAMETERS, &svc_params); } if (strncmp(encoder->name, "vp8", 3) == 0) { vpx_codec_control(&codec, VP8E_SET_SCREEN_CONTENT_MODE, 0); } vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1); // This controls the maximum target size of the key frame. // For generating smaller key frames, use a smaller max_intra_size_pct // value, like 100 or 200. { const int max_intra_size_pct = 900; vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT, max_intra_size_pct); } frame_avail = 1; while (frame_avail || got_data) { struct vpx_usec_timer timer; vpx_codec_iter_t iter = NULL; const vpx_codec_cx_pkt_t *pkt; #if VPX_ENCODER_ABI_VERSION > (4 + VPX_CODEC_ABI_VERSION) // Update the temporal layer_id. No spatial layers in this test. layer_id.spatial_layer_id = 0; #endif layer_id.temporal_layer_id = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity]; if (strncmp(encoder->name, "vp9", 3) == 0) { vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id); } else if (strncmp(encoder->name, "vp8", 3) == 0) { vpx_codec_control(&codec, VP8E_SET_TEMPORAL_LAYER_ID, layer_id.temporal_layer_id); } flags = layer_flags[frame_cnt % flag_periodicity]; if (layering_mode == 0) flags = 0; frame_avail = vpx_img_read(&raw, infile); if (frame_avail) ++rc.layer_input_frames[layer_id.temporal_layer_id]; vpx_usec_timer_start(&timer); if (vpx_codec_encode(&codec, frame_avail? &raw : NULL, pts, 1, flags, VPX_DL_REALTIME)) { die_codec(&codec, "Failed to encode frame"); } vpx_usec_timer_mark(&timer); cx_time += vpx_usec_timer_elapsed(&timer); // Reset KF flag. if (layering_mode != 7) { layer_flags[0] &= ~VPX_EFLAG_FORCE_KF; } got_data = 0; while ( (pkt = vpx_codec_get_cx_data(&codec, &iter)) ) { got_data = 1; switch (pkt->kind) { case VPX_CODEC_CX_FRAME_PKT: for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity]; i < cfg.ts_number_layers; ++i) { vpx_video_writer_write_frame(outfile[i], pkt->data.frame.buf, pkt->data.frame.sz, pts); ++rc.layer_tot_enc_frames[i]; rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz; // Keep count of rate control stats per layer (for non-key frames). if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] && !(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) { rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz; rc.layer_avg_rate_mismatch[i] += fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) / rc.layer_pfb[i]; ++rc.layer_enc_frames[i]; } } // Update for short-time encoding bitrate states, for moving window // of size rc->window, shifted by rc->window / 2. // Ignore first window segment, due to key frame. if (frame_cnt > rc.window_size) { sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate; if (frame_cnt % rc.window_size == 0) { rc.window_count += 1; rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size; rc.variance_st_encoding_bitrate += (sum_bitrate / rc.window_size) * (sum_bitrate / rc.window_size); sum_bitrate = 0.0; } } // Second shifted window. if (frame_cnt > rc.window_size + rc.window_size / 2) { sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate; if (frame_cnt > 2 * rc.window_size && frame_cnt % rc.window_size == 0) { rc.window_count += 1; rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size; rc.variance_st_encoding_bitrate += (sum_bitrate2 / rc.window_size) * (sum_bitrate2 / rc.window_size); sum_bitrate2 = 0.0; } } break; default: break; } } ++frame_cnt; pts += frame_duration; } fclose(infile); printout_rate_control_summary(&rc, &cfg, frame_cnt); printf("\n"); printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n", frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000), 1000000 * (double)frame_cnt / (double)cx_time); if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec"); // Try to rewrite the output file headers with the actual frame count. for (i = 0; i < cfg.ts_number_layers; ++i) vpx_video_writer_close(outfile[i]); vpx_img_free(&raw); return EXIT_SUCCESS; }