ref: 0eca2cd3c86801490557f1598d2616a8d977323d
dir: /vp9/encoder/vp9_onyx_if.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdio.h> #include <limits.h> #include "./vpx_config.h" #include "./vpx_scale_rtcd.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_idct.h" #if CONFIG_VP9_POSTPROC #include "vp9/common/vp9_postproc.h" #endif #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_firstpass.h" #include "vp9/encoder/vp9_mbgraph.h" #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_picklpf.h" #include "vp9/encoder/vp9_psnr.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/encoder/vp9_temporal_filter.h" #include "vp9/encoder/vp9_vaq.h" #include "vp9/encoder/vp9_resize.h" #include "vpx_ports/vpx_timer.h" void vp9_entropy_mode_init(); void vp9_coef_tree_initialize(); #define DEFAULT_INTERP_FILTER SWITCHABLE #define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */ #define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv // for altref computation. #define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision // mv. Choose a very high value for // now so that HIGH_PRECISION is always // chosen. // Masks for partially or completely disabling split mode #define DISABLE_ALL_SPLIT 0x3F #define DISABLE_ALL_INTER_SPLIT 0x1F #define DISABLE_COMPOUND_SPLIT 0x18 #define LAST_AND_INTRA_SPLIT_ONLY 0x1E // Max rate target for 1080P and below encodes under normal circumstances // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB #define MAX_MB_RATE 250 #define MAXRATE_1080P 2025000 #if CONFIG_INTERNAL_STATS extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, int lumamask, double *weight); extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, double *ssim_y, double *ssim_u, double *ssim_v); #endif // #define OUTPUT_YUV_REC #ifdef OUTPUT_YUV_SRC FILE *yuv_file; #endif #ifdef OUTPUT_YUV_REC FILE *yuv_rec_file; #endif #if 0 FILE *framepsnr; FILE *kf_list; FILE *keyfile; #endif void vp9_init_quantizer(VP9_COMP *cpi); static const double in_frame_q_adj_ratio[MAX_SEGMENTS] = {1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; static INLINE void Scale2Ratio(int mode, int *hr, int *hs) { switch (mode) { case NORMAL: *hr = 1; *hs = 1; break; case FOURFIVE: *hr = 4; *hs = 5; break; case THREEFIVE: *hr = 3; *hs = 5; break; case ONETWO: *hr = 1; *hs = 2; break; default: *hr = 1; *hs = 1; assert(0); break; } } static void set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) { MACROBLOCK *const mb = &cpi->mb; cpi->common.allow_high_precision_mv = allow_high_precision_mv; if (cpi->common.allow_high_precision_mv) { mb->mvcost = mb->nmvcost_hp; mb->mvsadcost = mb->nmvsadcost_hp; } else { mb->mvcost = mb->nmvcost; mb->mvsadcost = mb->nmvsadcost; } } void vp9_initialize_enc() { static int init_done = 0; if (!init_done) { vp9_initialize_common(); vp9_coef_tree_initialize(); vp9_tokenize_initialize(); vp9_init_quant_tables(); vp9_init_me_luts(); vp9_rc_init_minq_luts(); // init_base_skip_probs(); vp9_entropy_mv_init(); vp9_entropy_mode_init(); init_done = 1; } } static void dealloc_compressor_data(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; // Delete sementation map vpx_free(cpi->segmentation_map); cpi->segmentation_map = NULL; vpx_free(cm->last_frame_seg_map); cm->last_frame_seg_map = NULL; vpx_free(cpi->coding_context.last_frame_seg_map_copy); cpi->coding_context.last_frame_seg_map_copy = NULL; vpx_free(cpi->complexity_map); cpi->complexity_map = 0; vpx_free(cpi->active_map); cpi->active_map = 0; vp9_free_frame_buffers(cm); vp9_free_frame_buffer(&cpi->last_frame_uf); vp9_free_frame_buffer(&cpi->scaled_source); vp9_free_frame_buffer(&cpi->alt_ref_buffer); vp9_lookahead_destroy(cpi->lookahead); vpx_free(cpi->tok); cpi->tok = 0; // Activity mask based per mb zbin adjustments vpx_free(cpi->mb_activity_map); cpi->mb_activity_map = 0; vpx_free(cpi->mb_norm_activity_map); cpi->mb_norm_activity_map = 0; vpx_free(cpi->above_context[0]); cpi->above_context[0] = NULL; vpx_free(cpi->above_seg_context); cpi->above_seg_context = NULL; } // Computes a q delta (in "q index" terms) to get from a starting q value // to a target value // target q value int vp9_compute_qdelta(const VP9_COMP *cpi, double qstart, double qtarget) { const RATE_CONTROL *const rc = &cpi->rc; int start_index = rc->worst_quality; int target_index = rc->worst_quality; int i; // Convert the average q value to an index. for (i = rc->best_quality; i < rc->worst_quality; ++i) { start_index = i; if (vp9_convert_qindex_to_q(i) >= qstart) break; } // Convert the q target to an index for (i = rc->best_quality; i < rc->worst_quality; ++i) { target_index = i; if (vp9_convert_qindex_to_q(i) >= qtarget) break; } return target_index - start_index; } // Computes a q delta (in "q index" terms) to get from a starting q value // to a value that should equate to thegiven rate ratio. static int compute_qdelta_by_rate(VP9_COMP *cpi, int base_q_index, double rate_target_ratio) { int i; int target_index = cpi->rc.worst_quality; // Look up the current projected bits per block for the base index const int base_bits_per_mb = vp9_rc_bits_per_mb(cpi->common.frame_type, base_q_index, 1.0); // Find the target bits per mb based on the base value and given ratio. const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); // Convert the q target to an index for (i = cpi->rc.best_quality; i < cpi->rc.worst_quality; ++i) { target_index = i; if (vp9_rc_bits_per_mb(cpi->common.frame_type, i, 1.0) <= target_bits_per_mb ) break; } return target_index - base_q_index; } // This function sets up a set of segments with delta Q values around // the baseline frame quantizer. static void setup_in_frame_q_adj(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; struct segmentation *const seg = &cm->seg; // Make SURE use of floating point in this function is safe. vp9_clear_system_state(); if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { int segment; // Clear down the segment map vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); // Clear down the complexity map used for rd vpx_memset(cpi->complexity_map, 0, cm->mi_rows * cm->mi_cols); vp9_enable_segmentation((VP9_PTR)cpi); vp9_clearall_segfeatures(seg); // Select delta coding method seg->abs_delta = SEGMENT_DELTADATA; // Segment 0 "Q" feature is disabled so it defaults to the baseline Q vp9_disable_segfeature(seg, 0, SEG_LVL_ALT_Q); // Use some of the segments for in frame Q adjustment for (segment = 1; segment < 2; segment++) { const int qindex_delta = compute_qdelta_by_rate(cpi, cm->base_qindex, in_frame_q_adj_ratio[segment]); vp9_enable_segfeature(seg, segment, SEG_LVL_ALT_Q); vp9_set_segdata(seg, segment, SEG_LVL_ALT_Q, qindex_delta); } } } static void configure_static_seg_features(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; struct segmentation *const seg = &cm->seg; int high_q = (int)(cpi->rc.avg_q > 48.0); int qi_delta; // Disable and clear down for KF if (cm->frame_type == KEY_FRAME) { // Clear down the global segmentation map vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); seg->update_map = 0; seg->update_data = 0; cpi->static_mb_pct = 0; // Disable segmentation vp9_disable_segmentation((VP9_PTR)cpi); // Clear down the segment features. vp9_clearall_segfeatures(seg); } else if (cpi->refresh_alt_ref_frame) { // If this is an alt ref frame // Clear down the global segmentation map vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); seg->update_map = 0; seg->update_data = 0; cpi->static_mb_pct = 0; // Disable segmentation and individual segment features by default vp9_disable_segmentation((VP9_PTR)cpi); vp9_clearall_segfeatures(seg); // Scan frames from current to arf frame. // This function re-enables segmentation if appropriate. vp9_update_mbgraph_stats(cpi); // If segmentation was enabled set those features needed for the // arf itself. if (seg->enabled) { seg->update_map = 1; seg->update_data = 1; qi_delta = vp9_compute_qdelta( cpi, cpi->rc.avg_q, (cpi->rc.avg_q * 0.875)); vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta - 2)); vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); // Where relevant assume segment data is delta data seg->abs_delta = SEGMENT_DELTADATA; } } else if (seg->enabled) { // All other frames if segmentation has been enabled // First normal frame in a valid gf or alt ref group if (cpi->rc.frames_since_golden == 0) { // Set up segment features for normal frames in an arf group if (cpi->rc.source_alt_ref_active) { seg->update_map = 0; seg->update_data = 1; seg->abs_delta = SEGMENT_DELTADATA; qi_delta = vp9_compute_qdelta(cpi, cpi->rc.avg_q, (cpi->rc.avg_q * 1.125)); vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta + 2)); vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); // Segment coding disabled for compred testing if (high_q || (cpi->static_mb_pct == 100)) { vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP); } } else { // Disable segmentation and clear down features if alt ref // is not active for this group vp9_disable_segmentation((VP9_PTR)cpi); vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); seg->update_map = 0; seg->update_data = 0; vp9_clearall_segfeatures(seg); } } else if (cpi->rc.is_src_frame_alt_ref) { // Special case where we are coding over the top of a previous // alt ref frame. // Segment coding disabled for compred testing // Enable ref frame features for segment 0 as well vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME); vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); // All mbs should use ALTREF_FRAME vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME); vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME); vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME); vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); // Skip all MBs if high Q (0,0 mv and skip coeffs) if (high_q) { vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP); vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP); } // Enable data update seg->update_data = 1; } else { // All other frames. // No updates.. leave things as they are. seg->update_map = 0; seg->update_data = 0; } } } // DEBUG: Print out the segment id of each MB in the current frame. static void print_seg_map(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; int row, col; int map_index = 0; FILE *statsfile = fopen("segmap.stt", "a"); fprintf(statsfile, "%10d\n", cm->current_video_frame); for (row = 0; row < cpi->common.mi_rows; row++) { for (col = 0; col < cpi->common.mi_cols; col++) { fprintf(statsfile, "%10d", cpi->segmentation_map[map_index]); map_index++; } fprintf(statsfile, "\n"); } fprintf(statsfile, "\n"); fclose(statsfile); } static void update_reference_segmentation_map(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible; uint8_t *cache_ptr = cm->last_frame_seg_map; int row, col; for (row = 0; row < cm->mi_rows; row++) { MODE_INFO **mi_8x8 = mi_8x8_ptr; uint8_t *cache = cache_ptr; for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++) cache[0] = mi_8x8[0]->mbmi.segment_id; mi_8x8_ptr += cm->mode_info_stride; cache_ptr += cm->mi_cols; } } static int is_slowest_mode(int mode) { return (mode == MODE_SECONDPASS_BEST || mode == MODE_BESTQUALITY); } static void set_rd_speed_thresholds(VP9_COMP *cpi) { SPEED_FEATURES *sf = &cpi->sf; int i; // Set baseline threshold values for (i = 0; i < MAX_MODES; ++i) sf->thresh_mult[i] = is_slowest_mode(cpi->oxcf.mode) ? -500 : 0; sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_NEARESTG] = 0; sf->thresh_mult[THR_NEARESTA] = 0; sf->thresh_mult[THR_DC] += 1000; sf->thresh_mult[THR_NEWMV] += 1000; sf->thresh_mult[THR_NEWA] += 1000; sf->thresh_mult[THR_NEWG] += 1000; sf->thresh_mult[THR_NEARMV] += 1000; sf->thresh_mult[THR_NEARA] += 1000; sf->thresh_mult[THR_COMP_NEARESTLA] += 1000; sf->thresh_mult[THR_COMP_NEARESTGA] += 1000; sf->thresh_mult[THR_TM] += 1000; sf->thresh_mult[THR_COMP_NEARLA] += 1500; sf->thresh_mult[THR_COMP_NEWLA] += 2000; sf->thresh_mult[THR_NEARG] += 1000; sf->thresh_mult[THR_COMP_NEARGA] += 1500; sf->thresh_mult[THR_COMP_NEWGA] += 2000; sf->thresh_mult[THR_ZEROMV] += 2000; sf->thresh_mult[THR_ZEROG] += 2000; sf->thresh_mult[THR_ZEROA] += 2000; sf->thresh_mult[THR_COMP_ZEROLA] += 2500; sf->thresh_mult[THR_COMP_ZEROGA] += 2500; sf->thresh_mult[THR_H_PRED] += 2000; sf->thresh_mult[THR_V_PRED] += 2000; sf->thresh_mult[THR_D45_PRED ] += 2500; sf->thresh_mult[THR_D135_PRED] += 2500; sf->thresh_mult[THR_D117_PRED] += 2500; sf->thresh_mult[THR_D153_PRED] += 2500; sf->thresh_mult[THR_D207_PRED] += 2500; sf->thresh_mult[THR_D63_PRED] += 2500; // disable using golden frame modes if golden frames are not being used if (cpi->rc.frames_till_gf_update_due == INT_MAX) { sf->thresh_mult[THR_NEARESTG ] = INT_MAX; sf->thresh_mult[THR_ZEROG ] = INT_MAX; sf->thresh_mult[THR_NEARG ] = INT_MAX; sf->thresh_mult[THR_NEWG ] = INT_MAX; sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX; sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX; } /* disable frame modes if flags not set */ if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) { sf->thresh_mult[THR_NEWMV ] = INT_MAX; sf->thresh_mult[THR_NEARESTMV] = INT_MAX; sf->thresh_mult[THR_ZEROMV ] = INT_MAX; sf->thresh_mult[THR_NEARMV ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) { sf->thresh_mult[THR_NEARESTG ] = INT_MAX; sf->thresh_mult[THR_ZEROG ] = INT_MAX; sf->thresh_mult[THR_NEARG ] = INT_MAX; sf->thresh_mult[THR_NEWG ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) { sf->thresh_mult[THR_NEARESTA ] = INT_MAX; sf->thresh_mult[THR_ZEROA ] = INT_MAX; sf->thresh_mult[THR_NEARA ] = INT_MAX; sf->thresh_mult[THR_NEWA ] = INT_MAX; } if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) != (VP9_LAST_FLAG | VP9_ALT_FLAG)) { sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX; sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX; } if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) != (VP9_GOLD_FLAG | VP9_ALT_FLAG)) { sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX; sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX; } } static void set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) { SPEED_FEATURES *sf = &cpi->sf; int i; for (i = 0; i < MAX_REFS; ++i) sf->thresh_mult_sub8x8[i] = is_slowest_mode(cpi->oxcf.mode) ? -500 : 0; sf->thresh_mult_sub8x8[THR_LAST] += 2500; sf->thresh_mult_sub8x8[THR_GOLD] += 2500; sf->thresh_mult_sub8x8[THR_ALTR] += 2500; sf->thresh_mult_sub8x8[THR_INTRA] += 2500; sf->thresh_mult_sub8x8[THR_COMP_LA] += 4500; sf->thresh_mult_sub8x8[THR_COMP_GA] += 4500; // Check for masked out split cases. for (i = 0; i < MAX_REFS; i++) { if (sf->disable_split_mask & (1 << i)) sf->thresh_mult_sub8x8[i] = INT_MAX; } // disable mode test if frame flag is not set if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) sf->thresh_mult_sub8x8[THR_LAST] = INT_MAX; if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) sf->thresh_mult_sub8x8[THR_GOLD] = INT_MAX; if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) sf->thresh_mult_sub8x8[THR_ALTR] = INT_MAX; if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) != (VP9_LAST_FLAG | VP9_ALT_FLAG)) sf->thresh_mult_sub8x8[THR_COMP_LA] = INT_MAX; if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) != (VP9_GOLD_FLAG | VP9_ALT_FLAG)) sf->thresh_mult_sub8x8[THR_COMP_GA] = INT_MAX; } static void set_good_speed_feature(VP9_COMMON *cm, SPEED_FEATURES *sf, int speed) { int i; sf->adaptive_rd_thresh = 1; sf->recode_loop = ((speed < 1) ? ALLOW_RECODE : ALLOW_RECODE_KFMAXBW); if (speed == 1) { sf->use_square_partition_only = !frame_is_intra_only(cm); sf->less_rectangular_check = 1; sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL; if (MIN(cm->width, cm->height) >= 720) sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT; else sf->disable_split_mask = DISABLE_COMPOUND_SPLIT; sf->use_rd_breakout = 1; sf->adaptive_motion_search = 1; sf->adaptive_pred_interp_filter = 1; sf->auto_mv_step_size = 1; sf->adaptive_rd_thresh = 2; sf->recode_loop = ALLOW_RECODE_KFARFGF; sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V; sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V; sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V; } if (speed == 2) { sf->use_square_partition_only = !frame_is_intra_only(cm); sf->less_rectangular_check = 1; sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL; if (MIN(cm->width, cm->height) >= 720) sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT; else sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY; sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH | FLAG_SKIP_INTRA_BESTINTER | FLAG_SKIP_COMP_BESTINTRA | FLAG_SKIP_INTRA_LOWVAR; sf->use_rd_breakout = 1; sf->adaptive_motion_search = 1; sf->adaptive_pred_interp_filter = 2; sf->reference_masking = 1; sf->auto_mv_step_size = 1; sf->disable_filter_search_var_thresh = 50; sf->comp_inter_joint_search_thresh = BLOCK_SIZES; sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX; sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_LOW_MOTION; sf->adjust_partitioning_from_last_frame = 1; sf->last_partitioning_redo_frequency = 3; sf->adaptive_rd_thresh = 2; sf->recode_loop = ALLOW_RECODE_KFARFGF; sf->use_lp32x32fdct = 1; sf->mode_skip_start = 11; sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V; sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V; sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V; sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V; } if (speed == 3) { sf->use_square_partition_only = 1; sf->tx_size_search_method = USE_LARGESTALL; if (MIN(cm->width, cm->height) >= 720) sf->disable_split_mask = DISABLE_ALL_SPLIT; else sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT; sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH | FLAG_SKIP_INTRA_BESTINTER | FLAG_SKIP_COMP_BESTINTRA | FLAG_SKIP_INTRA_LOWVAR; sf->use_rd_breakout = 1; sf->adaptive_motion_search = 1; sf->adaptive_pred_interp_filter = 2; sf->reference_masking = 1; sf->auto_mv_step_size = 1; sf->disable_split_var_thresh = 32; sf->disable_filter_search_var_thresh = 100; sf->comp_inter_joint_search_thresh = BLOCK_SIZES; sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX; sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL; sf->adjust_partitioning_from_last_frame = 1; sf->last_partitioning_redo_frequency = 3; sf->use_uv_intra_rd_estimate = 1; sf->skip_encode_sb = 1; sf->use_lp32x32fdct = 1; sf->subpel_iters_per_step = 1; sf->use_fast_coef_updates = 2; sf->adaptive_rd_thresh = 4; sf->mode_skip_start = 6; } if (speed == 4) { sf->use_square_partition_only = 1; sf->tx_size_search_method = USE_LARGESTALL; sf->disable_split_mask = DISABLE_ALL_SPLIT; sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH | FLAG_SKIP_INTRA_BESTINTER | FLAG_SKIP_COMP_BESTINTRA | FLAG_SKIP_COMP_REFMISMATCH | FLAG_SKIP_INTRA_LOWVAR | FLAG_EARLY_TERMINATE; sf->use_rd_breakout = 1; sf->adaptive_motion_search = 1; sf->adaptive_pred_interp_filter = 2; sf->reference_masking = 1; sf->auto_mv_step_size = 1; sf->disable_split_var_thresh = 64; sf->disable_filter_search_var_thresh = 200; sf->comp_inter_joint_search_thresh = BLOCK_SIZES; sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX; sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL; sf->adjust_partitioning_from_last_frame = 1; sf->last_partitioning_redo_frequency = 3; sf->use_uv_intra_rd_estimate = 1; sf->skip_encode_sb = 1; sf->use_lp32x32fdct = 1; sf->subpel_iters_per_step = 1; sf->use_fast_coef_updates = 2; sf->adaptive_rd_thresh = 4; sf->mode_skip_start = 6; } if (speed >= 5) { sf->comp_inter_joint_search_thresh = BLOCK_SIZES; sf->partition_search_type = FIXED_PARTITION; sf->always_this_block_size = BLOCK_16X16; sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL; sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH | FLAG_SKIP_INTRA_BESTINTER | FLAG_SKIP_COMP_BESTINTRA | FLAG_SKIP_COMP_REFMISMATCH | FLAG_SKIP_INTRA_LOWVAR | FLAG_EARLY_TERMINATE; sf->use_rd_breakout = 1; sf->use_lp32x32fdct = 1; sf->optimize_coefficients = 0; sf->auto_mv_step_size = 1; sf->reference_masking = 1; sf->disable_split_mask = DISABLE_ALL_SPLIT; sf->search_method = HEX; sf->subpel_iters_per_step = 1; sf->disable_split_var_thresh = 64; sf->disable_filter_search_var_thresh = 500; for (i = 0; i < TX_SIZES; i++) { sf->intra_y_mode_mask[i] = INTRA_DC_ONLY; sf->intra_uv_mode_mask[i] = INTRA_DC_ONLY; } sf->use_fast_coef_updates = 2; sf->adaptive_rd_thresh = 4; sf->mode_skip_start = 6; } } static void set_rt_speed_feature(VP9_COMMON *cm, SPEED_FEATURES *sf, int speed) { sf->static_segmentation = 0; sf->adaptive_rd_thresh = 1; sf->recode_loop = ((speed < 1) ? ALLOW_RECODE : ALLOW_RECODE_KFMAXBW); sf->encode_breakout_thresh = 1; if (speed == 1) { sf->use_square_partition_only = !frame_is_intra_only(cm); sf->less_rectangular_check = 1; sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL; if (MIN(cm->width, cm->height) >= 720) sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT; else sf->disable_split_mask = DISABLE_COMPOUND_SPLIT; sf->use_rd_breakout = 1; sf->adaptive_motion_search = 1; sf->adaptive_pred_interp_filter = 1; sf->auto_mv_step_size = 1; sf->adaptive_rd_thresh = 2; sf->recode_loop = ALLOW_RECODE_KFARFGF; sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V; sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V; sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V; sf->encode_breakout_thresh = 8; } if (speed >= 2) { sf->use_square_partition_only = !frame_is_intra_only(cm); sf->less_rectangular_check = 1; sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL; if (MIN(cm->width, cm->height) >= 720) sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT; else sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY; sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH | FLAG_SKIP_INTRA_BESTINTER | FLAG_SKIP_COMP_BESTINTRA | FLAG_SKIP_INTRA_LOWVAR; sf->use_rd_breakout = 1; sf->adaptive_motion_search = 1; sf->adaptive_pred_interp_filter = 2; sf->auto_mv_step_size = 1; sf->reference_masking = 1; sf->disable_filter_search_var_thresh = 50; sf->comp_inter_joint_search_thresh = BLOCK_SIZES; sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX; sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_LOW_MOTION; sf->adjust_partitioning_from_last_frame = 1; sf->last_partitioning_redo_frequency = 3; sf->adaptive_rd_thresh = 2; sf->recode_loop = ALLOW_RECODE_KFARFGF; sf->use_lp32x32fdct = 1; sf->mode_skip_start = 11; sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V; sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V; sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V; sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V; sf->encode_breakout_thresh = 200; } if (speed >= 3) { sf->use_square_partition_only = 1; sf->tx_size_search_method = USE_LARGESTALL; if (MIN(cm->width, cm->height) >= 720) sf->disable_split_mask = DISABLE_ALL_SPLIT; else sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT; sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH | FLAG_SKIP_INTRA_BESTINTER | FLAG_SKIP_COMP_BESTINTRA | FLAG_SKIP_INTRA_LOWVAR; sf->disable_filter_search_var_thresh = 100; sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL; sf->use_uv_intra_rd_estimate = 1; sf->skip_encode_sb = 1; sf->subpel_iters_per_step = 1; sf->use_fast_coef_updates = 2; sf->adaptive_rd_thresh = 4; sf->mode_skip_start = 6; sf->encode_breakout_thresh = 400; } if (speed >= 4) { sf->optimize_coefficients = 0; sf->disable_split_mask = DISABLE_ALL_SPLIT; sf->use_fast_lpf_pick = 2; sf->encode_breakout_thresh = 700; } if (speed >= 5) { int i; sf->adaptive_rd_thresh = 5; sf->auto_min_max_partition_size = frame_is_intra_only(cm) ? RELAXED_NEIGHBORING_MIN_MAX : STRICT_NEIGHBORING_MIN_MAX; sf->subpel_force_stop = 1; for (i = 0; i < TX_SIZES; i++) { sf->intra_y_mode_mask[i] = INTRA_DC_H_V; sf->intra_uv_mode_mask[i] = INTRA_DC_ONLY; } sf->frame_parameter_update = 0; sf->encode_breakout_thresh = 1000; sf->search_method = FAST_HEX; } if (speed >= 6) { sf->partition_search_type = VAR_BASED_FIXED_PARTITION; } if (speed >= 7) { sf->partition_search_type = FIXED_PARTITION; sf->always_this_block_size = BLOCK_16X16; sf->use_nonrd_pick_mode = 1; } } void vp9_set_speed_features(VP9_COMP *cpi) { SPEED_FEATURES *sf = &cpi->sf; VP9_COMMON *cm = &cpi->common; int speed = cpi->speed; int i; // Convert negative speed to positive if (speed < 0) speed = -speed; #if CONFIG_INTERNAL_STATS for (i = 0; i < MAX_MODES; ++i) cpi->mode_chosen_counts[i] = 0; #endif // best quality defaults sf->frame_parameter_update = 1; sf->search_method = NSTEP; sf->recode_loop = ALLOW_RECODE; sf->subpel_search_method = SUBPEL_TREE; sf->subpel_iters_per_step = 2; sf->subpel_force_stop = 0; sf->optimize_coefficients = !cpi->oxcf.lossless; sf->reduce_first_step_size = 0; sf->auto_mv_step_size = 0; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; sf->comp_inter_joint_search_thresh = BLOCK_4X4; sf->adaptive_rd_thresh = 0; sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_OFF; sf->tx_size_search_method = USE_FULL_RD; sf->use_lp32x32fdct = 0; sf->adaptive_motion_search = 0; sf->adaptive_pred_interp_filter = 0; sf->reference_masking = 0; sf->partition_search_type = SEARCH_PARTITION; sf->less_rectangular_check = 0; sf->use_square_partition_only = 0; sf->auto_min_max_partition_size = NOT_IN_USE; sf->max_partition_size = BLOCK_64X64; sf->min_partition_size = BLOCK_4X4; sf->adjust_partitioning_from_last_frame = 0; sf->last_partitioning_redo_frequency = 4; sf->disable_split_mask = 0; sf->mode_search_skip_flags = 0; sf->disable_split_var_thresh = 0; sf->disable_filter_search_var_thresh = 0; for (i = 0; i < TX_SIZES; i++) { sf->intra_y_mode_mask[i] = ALL_INTRA_MODES; sf->intra_uv_mode_mask[i] = ALL_INTRA_MODES; } sf->use_rd_breakout = 0; sf->skip_encode_sb = 0; sf->use_uv_intra_rd_estimate = 0; sf->use_fast_lpf_pick = 0; sf->use_fast_coef_updates = 0; sf->mode_skip_start = MAX_MODES; // Mode index at which mode skip mask set sf->use_nonrd_pick_mode = 0; sf->encode_breakout_thresh = 0; switch (cpi->oxcf.mode) { case MODE_BESTQUALITY: case MODE_SECONDPASS_BEST: // This is the best quality mode. cpi->diamond_search_sad = vp9_full_range_search; break; case MODE_FIRSTPASS: case MODE_GOODQUALITY: case MODE_SECONDPASS: set_good_speed_feature(cm, sf, speed); break; case MODE_REALTIME: set_rt_speed_feature(cm, sf, speed); break; }; /* switch */ // Set rd thresholds based on mode and speed setting set_rd_speed_thresholds(cpi); set_rd_speed_thresholds_sub8x8(cpi); // Slow quant, dct and trellis not worthwhile for first pass // so make sure they are always turned off. if (cpi->pass == 1) { sf->optimize_coefficients = 0; } // No recode for 1 pass. if (cpi->pass == 0) { sf->recode_loop = DISALLOW_RECODE; sf->optimize_coefficients = 0; } cpi->mb.fwd_txm4x4 = vp9_fdct4x4; if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) { cpi->mb.fwd_txm4x4 = vp9_fwht4x4; } if (cpi->sf.subpel_search_method == SUBPEL_TREE) { cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree; cpi->find_fractional_mv_step_comp = vp9_find_best_sub_pixel_comp_tree; } cpi->mb.optimize = cpi->sf.optimize_coefficients == 1 && cpi->pass != 1; if (cpi->encode_breakout && cpi->oxcf.mode == MODE_REALTIME && sf->encode_breakout_thresh > cpi->encode_breakout) cpi->encode_breakout = sf->encode_breakout_thresh; if (sf->disable_split_mask == DISABLE_ALL_SPLIT) sf->adaptive_pred_interp_filter = 0; } static void alloc_raw_frame_buffers(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; const VP9_CONFIG *oxcf = &cpi->oxcf; cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height, cm->subsampling_x, cm->subsampling_y, oxcf->lag_in_frames); if (!cpi->lookahead) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate lag buffers"); if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate altref buffer"); } void vp9_alloc_compressor_data(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; if (vp9_alloc_frame_buffers(cm, cm->width, cm->height)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); if (vp9_alloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate last frame buffer"); if (vp9_alloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate scaled source buffer"); vpx_free(cpi->tok); { unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols); CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); } vpx_free(cpi->mb_activity_map); CHECK_MEM_ERROR(cm, cpi->mb_activity_map, vpx_calloc(sizeof(unsigned int), cm->mb_rows * cm->mb_cols)); vpx_free(cpi->mb_norm_activity_map); CHECK_MEM_ERROR(cm, cpi->mb_norm_activity_map, vpx_calloc(sizeof(unsigned int), cm->mb_rows * cm->mb_cols)); // 2 contexts per 'mi unit', so that we have one context per 4x4 txfm // block where mi unit size is 8x8. vpx_free(cpi->above_context[0]); CHECK_MEM_ERROR(cm, cpi->above_context[0], vpx_calloc(2 * mi_cols_aligned_to_sb(cm->mi_cols) * MAX_MB_PLANE, sizeof(*cpi->above_context[0]))); vpx_free(cpi->above_seg_context); CHECK_MEM_ERROR(cm, cpi->above_seg_context, vpx_calloc(mi_cols_aligned_to_sb(cm->mi_cols), sizeof(*cpi->above_seg_context))); } static void update_frame_size(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; vp9_update_frame_size(cm); // Update size of buffers local to this frame if (vp9_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to reallocate last frame buffer"); if (vp9_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to reallocate scaled source buffer"); { int y_stride = cpi->scaled_source.y_stride; if (cpi->sf.search_method == NSTEP) { vp9_init3smotion_compensation(&cpi->mb, y_stride); } else if (cpi->sf.search_method == DIAMOND) { vp9_init_dsmotion_compensation(&cpi->mb, y_stride); } } { int i; for (i = 1; i < MAX_MB_PLANE; ++i) { cpi->above_context[i] = cpi->above_context[0] + i * sizeof(*cpi->above_context[0]) * 2 * mi_cols_aligned_to_sb(cm->mi_cols); } } } // Table that converts 0-63 Q range values passed in outside to the Qindex // range used internally. static const int q_trans[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255, }; int vp9_reverse_trans(int x) { int i; for (i = 0; i < 64; i++) if (q_trans[i] >= x) return i; return 63; }; void vp9_new_framerate(VP9_COMP *cpi, double framerate) { VP9_COMMON *const cm = &cpi->common; int vbr_max_bits; if (framerate < 0.1) framerate = 30; cpi->oxcf.framerate = framerate; cpi->output_framerate = cpi->oxcf.framerate; cpi->rc.av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate); cpi->rc.min_frame_bandwidth = (int)(cpi->rc.av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); cpi->rc.min_frame_bandwidth = MAX(cpi->rc.min_frame_bandwidth, FRAME_OVERHEAD_BITS); // A maximum bitrate for a frame is defined. // The baseline for this aligns with HW implementations that // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits // per 16x16 MB (averaged over a frame). However this limit is extended if // a very high rate is given on the command line or the the rate cannnot // be acheived because of a user specificed max q (e.g. when the user // specifies lossless encode. // vbr_max_bits = (int)(((int64_t)cpi->rc.av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmax_section) / 100); cpi->rc.max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits); // Set Maximum gf/arf interval cpi->rc.max_gf_interval = 16; // Extended interval for genuinely static scenes cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1; // Special conditions when alt ref frame enabled in lagged compress mode if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) { if (cpi->rc.max_gf_interval > cpi->oxcf.lag_in_frames - 1) cpi->rc.max_gf_interval = cpi->oxcf.lag_in_frames - 1; if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1) cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1; } if (cpi->rc.max_gf_interval > cpi->twopass.static_scene_max_gf_interval) cpi->rc.max_gf_interval = cpi->twopass.static_scene_max_gf_interval; } static int64_t rescale(int64_t val, int64_t num, int denom) { int64_t llnum = num; int64_t llden = denom; int64_t llval = val; return (llval * llnum / llden); } // Initialize layer context data from init_config(). static void init_layer_context(VP9_COMP *const cpi) { const VP9_CONFIG *const oxcf = &cpi->oxcf; int temporal_layer = 0; cpi->svc.spatial_layer_id = 0; cpi->svc.temporal_layer_id = 0; for (temporal_layer = 0; temporal_layer < cpi->svc.number_temporal_layers; ++temporal_layer) { LAYER_CONTEXT *const lc = &cpi->svc.layer_context[temporal_layer]; RATE_CONTROL *const lrc = &lc->rc; lrc->avg_frame_qindex[INTER_FRAME] = q_trans[oxcf->worst_allowed_q]; lrc->last_q[INTER_FRAME] = q_trans[oxcf->worst_allowed_q]; lrc->ni_av_qi = q_trans[oxcf->worst_allowed_q]; lrc->total_actual_bits = 0; lrc->total_target_vs_actual = 0; lrc->ni_tot_qi = 0; lrc->tot_q = 0.0; lrc->avg_q = 0.0; lrc->ni_frames = 0; lrc->decimation_count = 0; lrc->decimation_factor = 0; lrc->rate_correction_factor = 1.0; lrc->key_frame_rate_correction_factor = 1.0; lc->target_bandwidth = oxcf->ts_target_bitrate[temporal_layer] * 1000; lrc->buffer_level = rescale((int)(oxcf->starting_buffer_level), lc->target_bandwidth, 1000); lrc->bits_off_target = lrc->buffer_level; } } // Update the layer context from a change_config() call. static void update_layer_context_change_config(VP9_COMP *const cpi, const int target_bandwidth) { const VP9_CONFIG *const oxcf = &cpi->oxcf; const RATE_CONTROL *const rc = &cpi->rc; int temporal_layer = 0; float bitrate_alloc = 1.0; for (temporal_layer = 0; temporal_layer < cpi->svc.number_temporal_layers; ++temporal_layer) { LAYER_CONTEXT *const lc = &cpi->svc.layer_context[temporal_layer]; RATE_CONTROL *const lrc = &lc->rc; lc->target_bandwidth = oxcf->ts_target_bitrate[temporal_layer] * 1000; bitrate_alloc = (float)lc->target_bandwidth / (float)target_bandwidth; // Update buffer-related quantities. lc->starting_buffer_level = (int64_t)(oxcf->starting_buffer_level * bitrate_alloc); lc->optimal_buffer_level = (int64_t)(oxcf->optimal_buffer_level * bitrate_alloc); lc->maximum_buffer_size = (int64_t)(oxcf->maximum_buffer_size * bitrate_alloc); lrc->bits_off_target = MIN(lrc->bits_off_target, lc->maximum_buffer_size); lrc->buffer_level = MIN(lrc->buffer_level, lc->maximum_buffer_size); // Update framerate-related quantities. lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[temporal_layer]; lrc->av_per_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = rc->max_frame_bandwidth; // Update qp-related quantities. lrc->worst_quality = rc->worst_quality; lrc->best_quality = rc->best_quality; } } // Prior to encoding the frame, update framerate-related quantities // for the current layer. static void update_layer_framerate(VP9_COMP *const cpi) { int temporal_layer = cpi->svc.temporal_layer_id; const VP9_CONFIG *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = &cpi->svc.layer_context[temporal_layer]; RATE_CONTROL *const lrc = &lc->rc; lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[temporal_layer]; lrc->av_per_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth; // Update the average layer frame size (non-cumulative per-frame-bw). if (temporal_layer == 0) { lc->avg_frame_size = lrc->av_per_frame_bandwidth; } else { double prev_layer_framerate = oxcf->framerate / oxcf->ts_rate_decimator[temporal_layer - 1]; int prev_layer_target_bandwidth = oxcf->ts_target_bitrate[temporal_layer - 1] * 1000; lc->avg_frame_size = (int)((lc->target_bandwidth - prev_layer_target_bandwidth) / (lc->framerate - prev_layer_framerate)); } } // Prior to encoding the frame, set the layer context, for the current layer // to be encoded, to the cpi struct. static void restore_layer_context(VP9_COMP *const cpi) { int temporal_layer = cpi->svc.temporal_layer_id; LAYER_CONTEXT *lc = &cpi->svc.layer_context[temporal_layer]; int frame_since_key = cpi->rc.frames_since_key; int frame_to_key = cpi->rc.frames_to_key; cpi->rc = lc->rc; cpi->oxcf.target_bandwidth = lc->target_bandwidth; cpi->oxcf.starting_buffer_level = lc->starting_buffer_level; cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level; cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size; cpi->output_framerate = lc->framerate; // Reset the frames_since_key and frames_to_key counters to their values // before the layer restore. Keep these defined for the stream (not layer). cpi->rc.frames_since_key = frame_since_key; cpi->rc.frames_to_key = frame_to_key; } // Save the layer context after encoding the frame. static void save_layer_context(VP9_COMP *const cpi) { int temporal_layer = cpi->svc.temporal_layer_id; LAYER_CONTEXT *lc = &cpi->svc.layer_context[temporal_layer]; lc->rc = cpi->rc; lc->target_bandwidth = (int)cpi->oxcf.target_bandwidth; lc->starting_buffer_level = cpi->oxcf.starting_buffer_level; lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level; lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size; lc->framerate = cpi->output_framerate; } static void set_tile_limits(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; int min_log2_tile_cols, max_log2_tile_cols; vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols); cm->log2_tile_rows = cpi->oxcf.tile_rows; } static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) { VP9_COMP *cpi = (VP9_COMP *)(ptr); VP9_COMMON *const cm = &cpi->common; int i; cpi->oxcf = *oxcf; cm->version = oxcf->version; cm->width = oxcf->width; cm->height = oxcf->height; cm->subsampling_x = 0; cm->subsampling_y = 0; vp9_alloc_compressor_data(cpi); // Spatial scalability. cpi->svc.number_spatial_layers = oxcf->ss_number_layers; // Temporal scalability. cpi->svc.number_temporal_layers = oxcf->ts_number_layers; if (cpi->svc.number_temporal_layers > 1 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { init_layer_context(cpi); } // change includes all joint functionality vp9_change_config(ptr, oxcf); // Initialize active best and worst q and average q values. if (cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { cpi->rc.avg_frame_qindex[0] = cpi->oxcf.worst_allowed_q; cpi->rc.avg_frame_qindex[1] = cpi->oxcf.worst_allowed_q; cpi->rc.avg_frame_qindex[2] = cpi->oxcf.worst_allowed_q; } else { cpi->rc.avg_frame_qindex[0] = (cpi->oxcf.worst_allowed_q + cpi->oxcf.best_allowed_q) / 2; cpi->rc.avg_frame_qindex[1] = (cpi->oxcf.worst_allowed_q + cpi->oxcf.best_allowed_q) / 2; cpi->rc.avg_frame_qindex[2] = (cpi->oxcf.worst_allowed_q + cpi->oxcf.best_allowed_q) / 2; } cpi->rc.last_q[0] = cpi->oxcf.best_allowed_q; cpi->rc.last_q[1] = cpi->oxcf.best_allowed_q; cpi->rc.last_q[2] = cpi->oxcf.best_allowed_q; // Initialise the starting buffer levels cpi->rc.buffer_level = cpi->oxcf.starting_buffer_level; cpi->rc.bits_off_target = cpi->oxcf.starting_buffer_level; cpi->rc.rolling_target_bits = cpi->rc.av_per_frame_bandwidth; cpi->rc.rolling_actual_bits = cpi->rc.av_per_frame_bandwidth; cpi->rc.long_rolling_target_bits = cpi->rc.av_per_frame_bandwidth; cpi->rc.long_rolling_actual_bits = cpi->rc.av_per_frame_bandwidth; cpi->rc.total_actual_bits = 0; cpi->rc.total_target_vs_actual = 0; cpi->static_mb_pct = 0; cpi->lst_fb_idx = 0; cpi->gld_fb_idx = 1; cpi->alt_fb_idx = 2; set_tile_limits(cpi); cpi->fixed_divide[0] = 0; for (i = 1; i < 512; i++) cpi->fixed_divide[i] = 0x80000 / i; } void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) { VP9_COMP *cpi = (VP9_COMP *)(ptr); VP9_COMMON *const cm = &cpi->common; if (!cpi || !oxcf) return; if (cm->version != oxcf->version) { cm->version = oxcf->version; } cpi->oxcf = *oxcf; if (cpi->oxcf.cpu_used == -6) cpi->oxcf.play_alternate = 0; switch (cpi->oxcf.mode) { // Real time and one pass deprecated in test code base case MODE_GOODQUALITY: cpi->pass = 0; cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5); break; case MODE_FIRSTPASS: cpi->pass = 1; break; case MODE_SECONDPASS: cpi->pass = 2; cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5); break; case MODE_SECONDPASS_BEST: cpi->pass = 2; break; case MODE_REALTIME: cpi->pass = 0; break; } cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level]; cpi->oxcf.lossless = oxcf->lossless; cpi->mb.e_mbd.itxm_add = cpi->oxcf.lossless ? vp9_iwht4x4_add : vp9_idct4x4_add; cpi->rc.baseline_gf_interval = DEFAULT_GF_INTERVAL; cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; cpi->refresh_golden_frame = 0; cpi->refresh_last_frame = 1; cm->refresh_frame_context = 1; cm->reset_frame_context = 0; vp9_reset_segment_features(&cm->seg); set_high_precision_mv(cpi, 0); { int i; for (i = 0; i < MAX_SEGMENTS; i++) cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; } cpi->encode_breakout = cpi->oxcf.encode_breakout; // local file playback mode == really big buffer if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) { cpi->oxcf.starting_buffer_level = 60000; cpi->oxcf.optimal_buffer_level = 60000; cpi->oxcf.maximum_buffer_size = 240000; } // Convert target bandwidth from Kbit/s to Bit/s cpi->oxcf.target_bandwidth *= 1000; cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000); // Set or reset optimal and maximum buffer levels. if (cpi->oxcf.optimal_buffer_level == 0) cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000); if (cpi->oxcf.maximum_buffer_size == 0) cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size, cpi->oxcf.target_bandwidth, 1000); // Under a configuration change, where maximum_buffer_size may change, // keep buffer level clipped to the maximum allowed buffer size. cpi->rc.bits_off_target = MIN(cpi->rc.bits_off_target, cpi->oxcf.maximum_buffer_size); cpi->rc.buffer_level = MIN(cpi->rc.buffer_level, cpi->oxcf.maximum_buffer_size); // Set up frame rate and related parameters rate control values. vp9_new_framerate(cpi, cpi->oxcf.framerate); // Set absolute upper and lower quality limits cpi->rc.worst_quality = cpi->oxcf.worst_allowed_q; cpi->rc.best_quality = cpi->oxcf.best_allowed_q; // active values should only be modified if out of new range cpi->cq_target_quality = cpi->oxcf.cq_level; cm->interp_filter = DEFAULT_INTERP_FILTER; cm->display_width = cpi->oxcf.width; cm->display_height = cpi->oxcf.height; // VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) cpi->oxcf.sharpness = MIN(7, cpi->oxcf.sharpness); cpi->common.lf.sharpness_level = cpi->oxcf.sharpness; if (cpi->initial_width) { // Increasing the size of the frame beyond the first seen frame, or some // otherwise signaled maximum size, is not supported. // TODO(jkoleszar): exit gracefully. assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); } update_frame_size(cpi); if (cpi->svc.number_temporal_layers > 1 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { update_layer_context_change_config(cpi, (int)cpi->oxcf.target_bandwidth); } cpi->speed = abs(cpi->oxcf.cpu_used); // Limit on lag buffers as these are not currently dynamically allocated. if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; #if CONFIG_MULTIPLE_ARF vp9_zero(cpi->alt_ref_source); #else cpi->alt_ref_source = NULL; #endif cpi->rc.is_src_frame_alt_ref = 0; #if 0 // Experimental RD Code cpi->frame_distortion = 0; cpi->last_frame_distortion = 0; #endif set_tile_limits(cpi); cpi->ext_refresh_frame_flags_pending = 0; cpi->ext_refresh_frame_context_pending = 0; } #define M_LOG2_E 0.693147180559945309417 #define log2f(x) (log (x) / (float) M_LOG2_E) static void cal_nmvjointsadcost(int *mvjointsadcost) { mvjointsadcost[0] = 600; mvjointsadcost[1] = 300; mvjointsadcost[2] = 300; mvjointsadcost[0] = 300; } static void cal_nmvsadcosts(int *mvsadcost[2]) { int i = 1; mvsadcost[0][0] = 0; mvsadcost[1][0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost[0][i] = (int)z; mvsadcost[1][i] = (int)z; mvsadcost[0][-i] = (int)z; mvsadcost[1][-i] = (int)z; } while (++i <= MV_MAX); } static void cal_nmvsadcosts_hp(int *mvsadcost[2]) { int i = 1; mvsadcost[0][0] = 0; mvsadcost[1][0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost[0][i] = (int)z; mvsadcost[1][i] = (int)z; mvsadcost[0][-i] = (int)z; mvsadcost[1][-i] = (int)z; } while (++i <= MV_MAX); } static void alloc_mode_context(VP9_COMMON *cm, int num_4x4_blk, PICK_MODE_CONTEXT *ctx) { int num_pix = num_4x4_blk << 4; int i, k; ctx->num_4x4_blk = num_4x4_blk; CHECK_MEM_ERROR(cm, ctx->zcoeff_blk, vpx_calloc(num_4x4_blk, sizeof(uint8_t))); for (i = 0; i < MAX_MB_PLANE; ++i) { for (k = 0; k < 3; ++k) { CHECK_MEM_ERROR(cm, ctx->coeff[i][k], vpx_memalign(16, num_pix * sizeof(int16_t))); CHECK_MEM_ERROR(cm, ctx->qcoeff[i][k], vpx_memalign(16, num_pix * sizeof(int16_t))); CHECK_MEM_ERROR(cm, ctx->dqcoeff[i][k], vpx_memalign(16, num_pix * sizeof(int16_t))); CHECK_MEM_ERROR(cm, ctx->eobs[i][k], vpx_memalign(16, num_pix * sizeof(uint16_t))); ctx->coeff_pbuf[i][k] = ctx->coeff[i][k]; ctx->qcoeff_pbuf[i][k] = ctx->qcoeff[i][k]; ctx->dqcoeff_pbuf[i][k] = ctx->dqcoeff[i][k]; ctx->eobs_pbuf[i][k] = ctx->eobs[i][k]; } } } static void free_mode_context(PICK_MODE_CONTEXT *ctx) { int i, k; vpx_free(ctx->zcoeff_blk); ctx->zcoeff_blk = 0; for (i = 0; i < MAX_MB_PLANE; ++i) { for (k = 0; k < 3; ++k) { vpx_free(ctx->coeff[i][k]); ctx->coeff[i][k] = 0; vpx_free(ctx->qcoeff[i][k]); ctx->qcoeff[i][k] = 0; vpx_free(ctx->dqcoeff[i][k]); ctx->dqcoeff[i][k] = 0; vpx_free(ctx->eobs[i][k]); ctx->eobs[i][k] = 0; } } } static void init_pick_mode_context(VP9_COMP *cpi) { int i; VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; for (i = 0; i < BLOCK_SIZES; ++i) { const int num_4x4_w = num_4x4_blocks_wide_lookup[i]; const int num_4x4_h = num_4x4_blocks_high_lookup[i]; const int num_4x4_blk = MAX(4, num_4x4_w * num_4x4_h); if (i < BLOCK_16X16) { for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index) { for (x->mb_index = 0; x->mb_index < 4; ++x->mb_index) { for (x->b_index = 0; x->b_index < 16 / num_4x4_blk; ++x->b_index) { PICK_MODE_CONTEXT *ctx = get_block_context(x, i); alloc_mode_context(cm, num_4x4_blk, ctx); } } } } else if (i < BLOCK_32X32) { for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index) { for (x->mb_index = 0; x->mb_index < 64 / num_4x4_blk; ++x->mb_index) { PICK_MODE_CONTEXT *ctx = get_block_context(x, i); ctx->num_4x4_blk = num_4x4_blk; alloc_mode_context(cm, num_4x4_blk, ctx); } } } else if (i < BLOCK_64X64) { for (x->sb_index = 0; x->sb_index < 256 / num_4x4_blk; ++x->sb_index) { PICK_MODE_CONTEXT *ctx = get_block_context(x, i); ctx->num_4x4_blk = num_4x4_blk; alloc_mode_context(cm, num_4x4_blk, ctx); } } else { PICK_MODE_CONTEXT *ctx = get_block_context(x, i); ctx->num_4x4_blk = num_4x4_blk; alloc_mode_context(cm, num_4x4_blk, ctx); } } } static void free_pick_mode_context(MACROBLOCK *x) { int i; for (i = 0; i < BLOCK_SIZES; ++i) { const int num_4x4_w = num_4x4_blocks_wide_lookup[i]; const int num_4x4_h = num_4x4_blocks_high_lookup[i]; const int num_4x4_blk = MAX(4, num_4x4_w * num_4x4_h); if (i < BLOCK_16X16) { for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index) { for (x->mb_index = 0; x->mb_index < 4; ++x->mb_index) { for (x->b_index = 0; x->b_index < 16 / num_4x4_blk; ++x->b_index) { PICK_MODE_CONTEXT *ctx = get_block_context(x, i); free_mode_context(ctx); } } } } else if (i < BLOCK_32X32) { for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index) { for (x->mb_index = 0; x->mb_index < 64 / num_4x4_blk; ++x->mb_index) { PICK_MODE_CONTEXT *ctx = get_block_context(x, i); free_mode_context(ctx); } } } else if (i < BLOCK_64X64) { for (x->sb_index = 0; x->sb_index < 256 / num_4x4_blk; ++x->sb_index) { PICK_MODE_CONTEXT *ctx = get_block_context(x, i); free_mode_context(ctx); } } else { PICK_MODE_CONTEXT *ctx = get_block_context(x, i); free_mode_context(ctx); } } } VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) { int i, j; volatile union { VP9_COMP *cpi; VP9_PTR ptr; } ctx; VP9_COMP *cpi; VP9_COMMON *cm; cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP)); // Check that the CPI instance is valid if (!cpi) return 0; cm = &cpi->common; vp9_zero(*cpi); if (setjmp(cm->error.jmp)) { VP9_PTR ptr = ctx.ptr; ctx.cpi->common.error.setjmp = 0; vp9_remove_compressor(&ptr); return 0; } cm->error.setjmp = 1; CHECK_MEM_ERROR(cm, cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1)); vp9_create_common(cm); cpi->use_svc = 0; init_config((VP9_PTR)cpi, oxcf); init_pick_mode_context(cpi); cm->current_video_frame = 0; // Set reference frame sign bias for ALTREF frame to 1 (for now) cm->ref_frame_sign_bias[ALTREF_FRAME] = 1; cpi->rc.baseline_gf_interval = DEFAULT_GF_INTERVAL; cpi->gold_is_last = 0; cpi->alt_is_last = 0; cpi->gold_is_alt = 0; // Create the encoder segmentation map and set all entries to 0 CHECK_MEM_ERROR(cm, cpi->segmentation_map, vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); // Create a complexity map used for rd adjustment CHECK_MEM_ERROR(cm, cpi->complexity_map, vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); // And a place holder structure is the coding context // for use if we want to save and restore it CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy, vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); CHECK_MEM_ERROR(cm, cpi->active_map, vpx_calloc(cm->MBs, 1)); vpx_memset(cpi->active_map, 1, cm->MBs); cpi->active_map_enabled = 0; for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0])); i++) { CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats, vpx_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1)); } /*Initialize the feed-forward activity masking.*/ cpi->activity_avg = 90 << 12; cpi->key_frame_frequency = cpi->oxcf.key_freq; cpi->rc.frames_since_key = 8; // Sensible default for first frame. cpi->rc.this_key_frame_forced = 0; cpi->rc.next_key_frame_forced = 0; cpi->rc.source_alt_ref_pending = 0; cpi->rc.source_alt_ref_active = 0; cpi->refresh_alt_ref_frame = 0; #if CONFIG_MULTIPLE_ARF // Turn multiple ARF usage on/off. This is a quick hack for the initial test // version. It should eventually be set via the codec API. cpi->multi_arf_enabled = 1; if (cpi->multi_arf_enabled) { cpi->sequence_number = 0; cpi->frame_coding_order_period = 0; vp9_zero(cpi->frame_coding_order); vp9_zero(cpi->arf_buffer_idx); } #endif cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; #if CONFIG_INTERNAL_STATS cpi->b_calculate_ssimg = 0; cpi->count = 0; cpi->bytes = 0; if (cpi->b_calculate_psnr) { cpi->total_y = 0.0; cpi->total_u = 0.0; cpi->total_v = 0.0; cpi->total = 0.0; cpi->total_sq_error = 0; cpi->total_samples = 0; cpi->totalp_y = 0.0; cpi->totalp_u = 0.0; cpi->totalp_v = 0.0; cpi->totalp = 0.0; cpi->totalp_sq_error = 0; cpi->totalp_samples = 0; cpi->tot_recode_hits = 0; cpi->summed_quality = 0; cpi->summed_weights = 0; cpi->summedp_quality = 0; cpi->summedp_weights = 0; } if (cpi->b_calculate_ssimg) { cpi->total_ssimg_y = 0; cpi->total_ssimg_u = 0; cpi->total_ssimg_v = 0; cpi->total_ssimg_all = 0; } #endif cpi->first_time_stamp_ever = INT64_MAX; cpi->rc.frames_till_gf_update_due = 0; cpi->rc.ni_av_qi = cpi->oxcf.worst_allowed_q; cpi->rc.ni_tot_qi = 0; cpi->rc.ni_frames = 0; cpi->rc.tot_q = 0.0; cpi->rc.avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q); cpi->rc.rate_correction_factor = 1.0; cpi->rc.key_frame_rate_correction_factor = 1.0; cpi->rc.gf_rate_correction_factor = 1.0; cal_nmvjointsadcost(cpi->mb.nmvjointsadcost); cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX]; cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX]; cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX]; cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX]; cal_nmvsadcosts(cpi->mb.nmvsadcost); cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX]; cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX]; cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX]; cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX]; cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp); #ifdef OUTPUT_YUV_SRC yuv_file = fopen("bd.yuv", "ab"); #endif #ifdef OUTPUT_YUV_REC yuv_rec_file = fopen("rec.yuv", "wb"); #endif #if 0 framepsnr = fopen("framepsnr.stt", "a"); kf_list = fopen("kf_list.stt", "w"); #endif cpi->output_pkt_list = oxcf->output_pkt_list; cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED; if (cpi->pass == 1) { vp9_init_first_pass(cpi); } else if (cpi->pass == 2) { size_t packet_sz = sizeof(FIRSTPASS_STATS); int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; cpi->twopass.stats_in = cpi->twopass.stats_in_start; cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in + (packets - 1) * packet_sz); vp9_init_second_pass(cpi); } vp9_set_speed_features(cpi); // Default rd threshold factors for mode selection for (i = 0; i < BLOCK_SIZES; ++i) { for (j = 0; j < MAX_MODES; ++j) cpi->rd_thresh_freq_fact[i][j] = 32; for (j = 0; j < MAX_REFS; ++j) cpi->rd_thresh_freq_sub8x8[i][j] = 32; } #define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SVFHH, SVFHV, SVFHHV, \ SDX3F, SDX8F, SDX4DF)\ cpi->fn_ptr[BT].sdf = SDF; \ cpi->fn_ptr[BT].sdaf = SDAF; \ cpi->fn_ptr[BT].vf = VF; \ cpi->fn_ptr[BT].svf = SVF; \ cpi->fn_ptr[BT].svaf = SVAF; \ cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \ cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \ cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \ cpi->fn_ptr[BT].sdx3f = SDX3F; \ cpi->fn_ptr[BT].sdx8f = SDX8F; \ cpi->fn_ptr[BT].sdx4df = SDX4DF; BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg, vp9_variance32x16, vp9_sub_pixel_variance32x16, vp9_sub_pixel_avg_variance32x16, NULL, NULL, NULL, NULL, NULL, vp9_sad32x16x4d) BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg, vp9_variance16x32, vp9_sub_pixel_variance16x32, vp9_sub_pixel_avg_variance16x32, NULL, NULL, NULL, NULL, NULL, vp9_sad16x32x4d) BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg, vp9_variance64x32, vp9_sub_pixel_variance64x32, vp9_sub_pixel_avg_variance64x32, NULL, NULL, NULL, NULL, NULL, vp9_sad64x32x4d) BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg, vp9_variance32x64, vp9_sub_pixel_variance32x64, vp9_sub_pixel_avg_variance32x64, NULL, NULL, NULL, NULL, NULL, vp9_sad32x64x4d) BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg, vp9_variance32x32, vp9_sub_pixel_variance32x32, vp9_sub_pixel_avg_variance32x32, vp9_variance_halfpixvar32x32_h, vp9_variance_halfpixvar32x32_v, vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8, vp9_sad32x32x4d) BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg, vp9_variance64x64, vp9_sub_pixel_variance64x64, vp9_sub_pixel_avg_variance64x64, vp9_variance_halfpixvar64x64_h, vp9_variance_halfpixvar64x64_v, vp9_variance_halfpixvar64x64_hv, vp9_sad64x64x3, vp9_sad64x64x8, vp9_sad64x64x4d) BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg, vp9_variance16x16, vp9_sub_pixel_variance16x16, vp9_sub_pixel_avg_variance16x16, vp9_variance_halfpixvar16x16_h, vp9_variance_halfpixvar16x16_v, vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8, vp9_sad16x16x4d) BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg, vp9_variance16x8, vp9_sub_pixel_variance16x8, vp9_sub_pixel_avg_variance16x8, NULL, NULL, NULL, vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d) BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg, vp9_variance8x16, vp9_sub_pixel_variance8x16, vp9_sub_pixel_avg_variance8x16, NULL, NULL, NULL, vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d) BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg, vp9_variance8x8, vp9_sub_pixel_variance8x8, vp9_sub_pixel_avg_variance8x8, NULL, NULL, NULL, vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d) BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg, vp9_variance8x4, vp9_sub_pixel_variance8x4, vp9_sub_pixel_avg_variance8x4, NULL, NULL, NULL, NULL, vp9_sad8x4x8, vp9_sad8x4x4d) BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg, vp9_variance4x8, vp9_sub_pixel_variance4x8, vp9_sub_pixel_avg_variance4x8, NULL, NULL, NULL, NULL, vp9_sad4x8x8, vp9_sad4x8x4d) BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg, vp9_variance4x4, vp9_sub_pixel_variance4x4, vp9_sub_pixel_avg_variance4x4, NULL, NULL, NULL, vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d) cpi->full_search_sad = vp9_full_search_sad; cpi->diamond_search_sad = vp9_diamond_search_sad; cpi->refining_search_sad = vp9_refining_search_sad; /* vp9_init_quantizer() is first called here. Add check in * vp9_frame_init_quantizer() so that vp9_init_quantizer is only * called later when needed. This will avoid unnecessary calls of * vp9_init_quantizer() for every frame. */ vp9_init_quantizer(cpi); vp9_loop_filter_init(cm); cm->error.setjmp = 0; vp9_zero(cpi->common.counts.uv_mode); #ifdef MODE_TEST_HIT_STATS vp9_zero(cpi->mode_test_hits); #endif return (VP9_PTR) cpi; } void vp9_remove_compressor(VP9_PTR *ptr) { VP9_COMP *cpi = (VP9_COMP *)(*ptr); int i; if (!cpi) return; if (cpi && (cpi->common.current_video_frame > 0)) { if (cpi->pass == 2) { vp9_end_second_pass(cpi); } #if CONFIG_INTERNAL_STATS vp9_clear_system_state(); // printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count); if (cpi->pass != 1) { FILE *f = fopen("opsnr.stt", "a"); double time_encoded = (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / 10000000.000; double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded; if (cpi->b_calculate_psnr) { const double total_psnr = vp9_mse2psnr((double)cpi->total_samples, 255.0, (double)cpi->total_sq_error); const double totalp_psnr = vp9_mse2psnr((double)cpi->totalp_samples, 255.0, (double)cpi->totalp_sq_error); const double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); const double totalp_ssim = 100 * pow(cpi->summedp_quality / cpi->summedp_weights, 8.0); fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" "VPXSSIM\tVPSSIMP\t Time(ms)\n"); fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n", dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, totalp_psnr, total_ssim, totalp_ssim, total_encode_time); } if (cpi->b_calculate_ssimg) { fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n"); fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr, cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time); } fclose(f); } #endif #ifdef MODE_TEST_HIT_STATS if (cpi->pass != 1) { double norm_per_pixel_mode_tests = 0; double norm_counts[BLOCK_SIZES]; int i; int sb64_per_frame; int norm_factors[BLOCK_SIZES] = {256, 128, 128, 64, 32, 32, 16, 8, 8, 4, 2, 2, 1}; FILE *f = fopen("mode_hit_stats.stt", "a"); // On average, how many mode tests do we do for (i = 0; i < BLOCK_SIZES; ++i) { norm_counts[i] = (double)cpi->mode_test_hits[i] / (double)norm_factors[i]; norm_per_pixel_mode_tests += norm_counts[i]; } // Convert to a number per 64x64 and per frame sb64_per_frame = ((cpi->common.height + 63) / 64) * ((cpi->common.width + 63) / 64); norm_per_pixel_mode_tests = norm_per_pixel_mode_tests / (double)(cpi->common.current_video_frame * sb64_per_frame); fprintf(f, "%6.4f\n", norm_per_pixel_mode_tests); fclose(f); } #endif #if 0 { printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); } #endif } free_pick_mode_context(&cpi->mb); dealloc_compressor_data(cpi); vpx_free(cpi->mb.ss); vpx_free(cpi->tok); for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); ++i) { vpx_free(cpi->mbgraph_stats[i].mb_stats); } vp9_remove_common(&cpi->common); vpx_free(cpi); *ptr = 0; #ifdef OUTPUT_YUV_SRC fclose(yuv_file); #endif #ifdef OUTPUT_YUV_REC fclose(yuv_rec_file); #endif #if 0 if (keyfile) fclose(keyfile); if (framepsnr) fclose(framepsnr); if (kf_list) fclose(kf_list); #endif } static uint64_t calc_plane_error(const uint8_t *orig, int orig_stride, const uint8_t *recon, int recon_stride, unsigned int cols, unsigned int rows) { unsigned int row, col; uint64_t total_sse = 0; int diff; for (row = 0; row + 16 <= rows; row += 16) { for (col = 0; col + 16 <= cols; col += 16) { unsigned int sse; vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse); total_sse += sse; } /* Handle odd-sized width */ if (col < cols) { unsigned int border_row, border_col; const uint8_t *border_orig = orig; const uint8_t *border_recon = recon; for (border_row = 0; border_row < 16; border_row++) { for (border_col = col; border_col < cols; border_col++) { diff = border_orig[border_col] - border_recon[border_col]; total_sse += diff * diff; } border_orig += orig_stride; border_recon += recon_stride; } } orig += orig_stride * 16; recon += recon_stride * 16; } /* Handle odd-sized height */ for (; row < rows; row++) { for (col = 0; col < cols; col++) { diff = orig[col] - recon[col]; total_sse += diff * diff; } orig += orig_stride; recon += recon_stride; } return total_sse; } typedef struct { double psnr[4]; // total/y/u/v uint64_t sse[4]; // total/y/u/v uint32_t samples[4]; // total/y/u/v } PSNR_STATS; static void calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b, PSNR_STATS *psnr) { const int widths[3] = {a->y_width, a->uv_width, a->uv_width }; const int heights[3] = {a->y_height, a->uv_height, a->uv_height}; const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer }; const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride}; const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer }; const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride}; int i; uint64_t total_sse = 0; uint32_t total_samples = 0; for (i = 0; i < 3; ++i) { const int w = widths[i]; const int h = heights[i]; const uint32_t samples = w * h; const uint64_t sse = calc_plane_error(a_planes[i], a_strides[i], b_planes[i], b_strides[i], w, h); psnr->sse[1 + i] = sse; psnr->samples[1 + i] = samples; psnr->psnr[1 + i] = vp9_mse2psnr(samples, 255.0, (double) sse); total_sse += sse; total_samples += samples; } psnr->sse[0] = total_sse; psnr->samples[0] = total_samples; psnr->psnr[0] = vp9_mse2psnr((double)total_samples, 255.0, (double)total_sse); } static void generate_psnr_packet(VP9_COMP *cpi) { struct vpx_codec_cx_pkt pkt; int i; PSNR_STATS psnr; calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr); for (i = 0; i < 4; ++i) { pkt.data.psnr.samples[i] = psnr.samples[i]; pkt.data.psnr.sse[i] = psnr.sse[i]; pkt.data.psnr.psnr[i] = psnr.psnr[i]; } pkt.kind = VPX_CODEC_PSNR_PKT; vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); } int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) { VP9_COMP *cpi = (VP9_COMP *)(ptr); if (ref_frame_flags > 7) return -1; cpi->ref_frame_flags = ref_frame_flags; return 0; } int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) { VP9_COMP *cpi = (VP9_COMP *)(ptr); if (ref_frame_flags > 7) return -1; cpi->ext_refresh_golden_frame = 0; cpi->ext_refresh_alt_ref_frame = 0; cpi->ext_refresh_last_frame = 0; if (ref_frame_flags & VP9_LAST_FLAG) cpi->ext_refresh_last_frame = 1; if (ref_frame_flags & VP9_GOLD_FLAG) cpi->ext_refresh_golden_frame = 1; if (ref_frame_flags & VP9_ALT_FLAG) cpi->ext_refresh_alt_ref_frame = 1; cpi->ext_refresh_frame_flags_pending = 1; return 0; } static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag) { MV_REFERENCE_FRAME ref_frame = NONE; if (ref_frame_flag == VP9_LAST_FLAG) ref_frame = LAST_FRAME; else if (ref_frame_flag == VP9_GOLD_FLAG) ref_frame = GOLDEN_FRAME; else if (ref_frame_flag == VP9_ALT_FLAG) ref_frame = ALTREF_FRAME; return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame); } int vp9_copy_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP9_COMP *const cpi = (VP9_COMP *)ptr; YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag); if (cfg) { vp8_yv12_copy_frame(cfg, sd); return 0; } else { return -1; } } int vp9_get_reference_enc(VP9_PTR ptr, int index, YV12_BUFFER_CONFIG **fb) { VP9_COMP *cpi = (VP9_COMP *)ptr; VP9_COMMON *cm = &cpi->common; if (index < 0 || index >= REF_FRAMES) return -1; *fb = &cm->frame_bufs[cm->ref_frame_map[index]].buf; return 0; } int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP9_COMP *cpi = (VP9_COMP *)ptr; YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag); if (cfg) { vp8_yv12_copy_frame(sd, cfg); return 0; } else { return -1; } } int vp9_update_entropy(VP9_PTR comp, int update) { ((VP9_COMP *)comp)->ext_refresh_frame_context = update; ((VP9_COMP *)comp)->ext_refresh_frame_context_pending = 1; return 0; } #ifdef OUTPUT_YUV_SRC void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) { uint8_t *src = s->y_buffer; int h = s->y_height; do { fwrite(src, s->y_width, 1, yuv_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_file); src += s->uv_stride; } while (--h); } #endif #ifdef OUTPUT_YUV_REC void vp9_write_yuv_rec_frame(VP9_COMMON *cm) { YV12_BUFFER_CONFIG *s = cm->frame_to_show; uint8_t *src = s->y_buffer; int h = cm->height; do { fwrite(src, s->y_width, 1, yuv_rec_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); #if CONFIG_ALPHA if (s->alpha_buffer) { src = s->alpha_buffer; h = s->alpha_height; do { fwrite(src, s->alpha_width, 1, yuv_rec_file); src += s->alpha_stride; } while (--h); } #endif fflush(yuv_rec_file); } #endif static void scale_and_extend_frame_nonnormative(YV12_BUFFER_CONFIG *src_fb, YV12_BUFFER_CONFIG *dst_fb) { const int in_w = src_fb->y_crop_width; const int in_h = src_fb->y_crop_height; const int out_w = dst_fb->y_crop_width; const int out_h = dst_fb->y_crop_height; const int in_w_uv = src_fb->uv_crop_width; const int in_h_uv = src_fb->uv_crop_height; const int out_w_uv = dst_fb->uv_crop_width; const int out_h_uv = dst_fb->uv_crop_height; int i; uint8_t *srcs[4] = {src_fb->y_buffer, src_fb->u_buffer, src_fb->v_buffer, src_fb->alpha_buffer}; int src_strides[4] = {src_fb->y_stride, src_fb->uv_stride, src_fb->uv_stride, src_fb->alpha_stride}; uint8_t *dsts[4] = {dst_fb->y_buffer, dst_fb->u_buffer, dst_fb->v_buffer, dst_fb->alpha_buffer}; int dst_strides[4] = {dst_fb->y_stride, dst_fb->uv_stride, dst_fb->uv_stride, dst_fb->alpha_stride}; for (i = 0; i < MAX_MB_PLANE; ++i) { if (i == 0 || i == 3) { // Y and alpha planes vp9_resize_plane(srcs[i], in_h, in_w, src_strides[i], dsts[i], out_h, out_w, dst_strides[i]); } else { // Chroma planes vp9_resize_plane(srcs[i], in_h_uv, in_w_uv, src_strides[i], dsts[i], out_h_uv, out_w_uv, dst_strides[i]); } } vp8_yv12_extend_frame_borders(dst_fb); } static void scale_and_extend_frame(YV12_BUFFER_CONFIG *src_fb, YV12_BUFFER_CONFIG *dst_fb) { const int in_w = src_fb->y_crop_width; const int in_h = src_fb->y_crop_height; const int out_w = dst_fb->y_crop_width; const int out_h = dst_fb->y_crop_height; int x, y, i; uint8_t *srcs[4] = {src_fb->y_buffer, src_fb->u_buffer, src_fb->v_buffer, src_fb->alpha_buffer}; int src_strides[4] = {src_fb->y_stride, src_fb->uv_stride, src_fb->uv_stride, src_fb->alpha_stride}; uint8_t *dsts[4] = {dst_fb->y_buffer, dst_fb->u_buffer, dst_fb->v_buffer, dst_fb->alpha_buffer}; int dst_strides[4] = {dst_fb->y_stride, dst_fb->uv_stride, dst_fb->uv_stride, dst_fb->alpha_stride}; for (y = 0; y < out_h; y += 16) { for (x = 0; x < out_w; x += 16) { for (i = 0; i < MAX_MB_PLANE; ++i) { const int factor = (i == 0 || i == 3 ? 1 : 2); const int x_q4 = x * (16 / factor) * in_w / out_w; const int y_q4 = y * (16 / factor) * in_h / out_h; const int src_stride = src_strides[i]; const int dst_stride = dst_strides[i]; uint8_t *src = srcs[i] + y / factor * in_h / out_h * src_stride + x / factor * in_w / out_w; uint8_t *dst = dsts[i] + y / factor * dst_stride + x / factor; vp9_convolve8(src, src_stride, dst, dst_stride, vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w, vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h, 16 / factor, 16 / factor); } } } vp8_yv12_extend_frame_borders(dst_fb); } static int find_fp_qindex() { int i; for (i = 0; i < QINDEX_RANGE; i++) { if (vp9_convert_qindex_to_q(i) >= 30.0) { break; } } if (i == QINDEX_RANGE) i--; return i; } #define WRITE_RECON_BUFFER 0 #if WRITE_RECON_BUFFER void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) { FILE *yframe; int i; char filename[255]; snprintf(filename, sizeof(filename), "cx\\y%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->y_height; i++) fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe); fclose(yframe); snprintf(filename, sizeof(filename), "cx\\u%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; i++) fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); snprintf(filename, sizeof(filename), "cx\\v%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; i++) fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); } #endif static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) { #define EDGE_THRESH 128 int i, j; int num_edge_pels = 0; int num_pels = (frame->y_height - 2) * (frame->y_width - 2); uint8_t *prev = frame->y_buffer + 1; uint8_t *curr = frame->y_buffer + 1 + frame->y_stride; uint8_t *next = frame->y_buffer + 1 + 2 * frame->y_stride; for (i = 1; i < frame->y_height - 1; i++) { for (j = 1; j < frame->y_width - 1; j++) { /* Sobel hor and ver gradients */ int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]); int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]); h = (h < 0 ? -h : h); v = (v < 0 ? -v : v); if (h > EDGE_THRESH || v > EDGE_THRESH) num_edge_pels++; curr++; prev++; next++; } curr += frame->y_stride - frame->y_width + 2; prev += frame->y_stride - frame->y_width + 2; next += frame->y_stride - frame->y_width + 2; } return (double)num_edge_pels / num_pels; } // Function to test for conditions that indicate we should loop // back and recode a frame. static int recode_loop_test(const VP9_COMP *cpi, int high_limit, int low_limit, int q, int maxq, int minq) { const VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; int force_recode = 0; // Special case trap if maximum allowed frame size exceeded. if (rc->projected_frame_size > rc->max_frame_bandwidth) { force_recode = 1; // Is frame recode allowed. // Yes if either recode mode 1 is selected or mode 2 is selected // and the frame is a key frame, golden frame or alt_ref_frame } else if ((cpi->sf.recode_loop == ALLOW_RECODE) || ((cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF) && (cm->frame_type == KEY_FRAME || cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { // General over and under shoot tests if ((rc->projected_frame_size > high_limit && q < maxq) || (rc->projected_frame_size < low_limit && q > minq)) { force_recode = 1; } else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { // Deal with frame undershoot and whether or not we are // below the automatically set cq level. if (q > cpi->cq_target_quality && rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) { force_recode = 1; } } } return force_recode; } static void update_reference_frames(VP9_COMP * const cpi) { VP9_COMMON * const cm = &cpi->common; // At this point the new frame has been encoded. // If any buffer copy / swapping is signaled it should be done here. if (cm->frame_type == KEY_FRAME) { ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); } #if CONFIG_MULTIPLE_ARF else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { #else else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame && !cpi->use_svc) { #endif /* Preserve the previously existing golden frame and update the frame in * the alt ref slot instead. This is highly specific to the current use of * alt-ref as a forward reference, and this needs to be generalized as * other uses are implemented (like RTC/temporal scaling) * * The update to the buffer in the alt ref slot was signaled in * vp9_pack_bitstream(), now swap the buffer pointers so that it's treated * as the golden frame next time. */ int tmp; ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); tmp = cpi->alt_fb_idx; cpi->alt_fb_idx = cpi->gld_fb_idx; cpi->gld_fb_idx = tmp; } else { /* For non key/golden frames */ if (cpi->refresh_alt_ref_frame) { int arf_idx = cpi->alt_fb_idx; #if CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled) { arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1]; } #endif ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx); } if (cpi->refresh_golden_frame) { ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); } } if (cpi->refresh_last_frame) { ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx); } } static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) { MACROBLOCKD *xd = &cpi->mb.e_mbd; struct loopfilter *lf = &cm->lf; if (xd->lossless) { lf->filter_level = 0; } else { struct vpx_usec_timer timer; vp9_clear_system_state(); vpx_usec_timer_start(&timer); vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.use_fast_lpf_pick); vpx_usec_timer_mark(&timer); cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); } if (lf->filter_level > 0) { vp9_set_alt_lf_level(cpi, lf->filter_level); vp9_loop_filter_frame(cm, xd, lf->filter_level, 0, 0); } vp9_extend_frame_inner_borders(cm->frame_to_show, cm->subsampling_x, cm->subsampling_y); } static void scale_references(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)]; YV12_BUFFER_CONFIG *const ref = &cm->frame_bufs[idx].buf; if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { const int new_fb = get_free_fb(cm); vp9_realloc_frame_buffer(&cm->frame_bufs[new_fb].buf, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL); scale_and_extend_frame(ref, &cm->frame_bufs[new_fb].buf); cpi->scaled_ref_idx[ref_frame - 1] = new_fb; } else { cpi->scaled_ref_idx[ref_frame - 1] = idx; cm->frame_bufs[idx].ref_count++; } } } static void release_scaled_references(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; int i; for (i = 0; i < 3; i++) cm->frame_bufs[cpi->scaled_ref_idx[i]].ref_count--; } static void full_to_model_count(unsigned int *model_count, unsigned int *full_count) { int n; model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN]; model_count[ONE_TOKEN] = full_count[ONE_TOKEN]; model_count[TWO_TOKEN] = full_count[TWO_TOKEN]; for (n = THREE_TOKEN; n < EOB_TOKEN; ++n) model_count[TWO_TOKEN] += full_count[n]; model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN]; } static void full_to_model_counts(vp9_coeff_count_model *model_count, vp9_coeff_count *full_count) { int i, j, k, l; for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]); } #if 0 && CONFIG_INTERNAL_STATS static void output_frame_level_debug_stats(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w"); int recon_err; vp9_clear_system_state(); recon_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm)); if (cpi->twopass.total_left_stats.coded_error != 0.0) fprintf(f, "%10u %10d %10d %10d %10d %10d " "%10"PRId64" %10"PRId64" %10d " "%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf" "%6d %6d %5d %5d %5d " "%10"PRId64" %10.3lf" "%10lf %8u %10d %10d %10d\n", cpi->common.current_video_frame, cpi->rc.this_frame_target, cpi->rc.projected_frame_size, cpi->rc.projected_frame_size / cpi->common.MBs, (cpi->rc.projected_frame_size - cpi->rc.this_frame_target), cpi->rc.total_target_vs_actual, (cpi->oxcf.starting_buffer_level - cpi->rc.bits_off_target), cpi->rc.total_actual_bits, cm->base_qindex, vp9_convert_qindex_to_q(cm->base_qindex), (double)vp9_dc_quant(cm->base_qindex, 0) / 4.0, cpi->rc.avg_q, vp9_convert_qindex_to_q(cpi->rc.ni_av_qi), vp9_convert_qindex_to_q(cpi->cq_target_quality), cpi->refresh_last_frame, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost, cpi->twopass.bits_left, cpi->twopass.total_left_stats.coded_error, cpi->twopass.bits_left / (1 + cpi->twopass.total_left_stats.coded_error), cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost, cpi->twopass.kf_zeromotion_pct); fclose(f); if (0) { FILE *const fmodes = fopen("Modes.stt", "a"); int i; fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame, cm->frame_type, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame); for (i = 0; i < MAX_MODES; ++i) fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); fprintf(fmodes, "\n"); fclose(fmodes); } } #endif static void encode_without_recode_loop(VP9_COMP *cpi, size_t *size, uint8_t *dest, int q) { VP9_COMMON *const cm = &cpi->common; vp9_clear_system_state(); vp9_set_quantizer(cpi, q); // Set up entropy context depending on frame type. The decoder mandates // the use of the default context, index 0, for keyframes and inter // frames where the error_resilient_mode or intra_only flag is set. For // other inter-frames the encoder currently uses only two contexts; // context 1 for ALTREF frames and context 0 for the others. if (cm->frame_type == KEY_FRAME) { vp9_setup_key_frame(cpi); } else { if (!cm->intra_only && !cm->error_resilient_mode && !cpi->use_svc) { cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame; } vp9_setup_inter_frame(cpi); } // Variance adaptive and in frame q adjustment experiments are mutually // exclusive. if (cpi->oxcf.aq_mode == VARIANCE_AQ) { vp9_vaq_frame_setup(cpi); } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { setup_in_frame_q_adj(cpi); } // transform / motion compensation build reconstruction frame vp9_encode_frame(cpi); // Update the skip mb flag probabilities based on the distribution // seen in the last encoder iteration. // update_base_skip_probs(cpi); vp9_clear_system_state(); } static void encode_with_recode_loop(VP9_COMP *cpi, size_t *size, uint8_t *dest, int q, int bottom_index, int top_index) { VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; int loop_count = 0; int loop = 0; int overshoot_seen = 0; int undershoot_seen = 0; int q_low = bottom_index, q_high = top_index; int frame_over_shoot_limit; int frame_under_shoot_limit; // Decide frame size bounds vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target, &frame_under_shoot_limit, &frame_over_shoot_limit); do { vp9_clear_system_state(); vp9_set_quantizer(cpi, q); if (loop_count == 0) { // Set up entropy context depending on frame type. The decoder mandates // the use of the default context, index 0, for keyframes and inter // frames where the error_resilient_mode or intra_only flag is set. For // other inter-frames the encoder currently uses only two contexts; // context 1 for ALTREF frames and context 0 for the others. if (cm->frame_type == KEY_FRAME) { vp9_setup_key_frame(cpi); } else { if (!cm->intra_only && !cm->error_resilient_mode && !cpi->use_svc) { cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame; } vp9_setup_inter_frame(cpi); } } // Variance adaptive and in frame q adjustment experiments are mutually // exclusive. if (cpi->oxcf.aq_mode == VARIANCE_AQ) { vp9_vaq_frame_setup(cpi); } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { setup_in_frame_q_adj(cpi); } // transform / motion compensation build reconstruction frame vp9_encode_frame(cpi); // Update the skip mb flag probabilities based on the distribution // seen in the last encoder iteration. // update_base_skip_probs(cpi); vp9_clear_system_state(); // Dummy pack of the bitstream using up to date stats to get an // accurate estimate of output frame size to determine if we need // to recode. if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) { vp9_save_coding_context(cpi); cpi->dummy_packing = 1; if (!cpi->sf.use_nonrd_pick_mode) vp9_pack_bitstream(cpi, dest, size); rc->projected_frame_size = (int)(*size) << 3; vp9_restore_coding_context(cpi); if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; } if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { loop = 0; } else { if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced && (rc->projected_frame_size < rc->max_frame_bandwidth)) { int last_q = q; int kf_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm)); int high_err_target = cpi->ambient_err; int low_err_target = cpi->ambient_err >> 1; // Prevent possible divide by zero error below for perfect KF kf_err += !kf_err; // The key frame is not good enough or we can afford // to make it better without undue risk of popping. if ((kf_err > high_err_target && rc->projected_frame_size <= frame_over_shoot_limit) || (kf_err > low_err_target && rc->projected_frame_size <= frame_under_shoot_limit)) { // Lower q_high q_high = q > q_low ? q - 1 : q_low; // Adjust Q q = (q * high_err_target) / kf_err; q = MIN(q, (q_high + q_low) >> 1); } else if (kf_err < low_err_target && rc->projected_frame_size >= frame_under_shoot_limit) { // The key frame is much better than the previous frame // Raise q_low q_low = q < q_high ? q + 1 : q_high; // Adjust Q q = (q * low_err_target) / kf_err; q = MIN(q, (q_high + q_low + 1) >> 1); } // Clamp Q to upper and lower limits: q = clamp(q, q_low, q_high); loop = q != last_q; } else if (recode_loop_test( cpi, frame_over_shoot_limit, frame_under_shoot_limit, q, MAX(q_high, top_index), bottom_index)) { // Is the projected frame size out of range and are we allowed // to attempt to recode. int last_q = q; int retries = 0; // Frame size out of permitted range: // Update correction factor & compute new Q to try... // Frame is too large if (rc->projected_frame_size > rc->this_frame_target) { // Special case if the projected size is > the max allowed. if (rc->projected_frame_size >= rc->max_frame_bandwidth) q_high = rc->worst_quality; // Raise Qlow as to at least the current value q_low = q < q_high ? q + 1 : q_high; if (undershoot_seen || loop_count > 1) { // Update rate_correction_factor unless vp9_rc_update_rate_correction_factors(cpi, 1); q = (q_high + q_low + 1) / 2; } else { // Update rate_correction_factor unless vp9_rc_update_rate_correction_factors(cpi, 0); q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, MAX(q_high, top_index)); while (q < q_low && retries < 10) { vp9_rc_update_rate_correction_factors(cpi, 0); q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, MAX(q_high, top_index)); retries++; } } overshoot_seen = 1; } else { // Frame is too small q_high = q > q_low ? q - 1 : q_low; if (overshoot_seen || loop_count > 1) { vp9_rc_update_rate_correction_factors(cpi, 1); q = (q_high + q_low) / 2; } else { vp9_rc_update_rate_correction_factors(cpi, 0); q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, top_index); // Special case reset for qlow for constrained quality. // This should only trigger where there is very substantial // undershoot on a frame and the auto cq level is above // the user passsed in value. if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < q_low) { q_low = q; } while (q > q_high && retries < 10) { vp9_rc_update_rate_correction_factors(cpi, 0); q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, top_index); retries++; } } undershoot_seen = 1; } // Clamp Q to upper and lower limits: q = clamp(q, q_low, q_high); loop = q != last_q; } else { loop = 0; } } // Special case for overlay frame. if (rc->is_src_frame_alt_ref && rc->projected_frame_size < rc->max_frame_bandwidth) loop = 0; if (loop) { loop_count++; #if CONFIG_INTERNAL_STATS cpi->tot_recode_hits++; #endif } } while (loop); } static void get_ref_frame_flags(VP9_COMP *cpi) { if (cpi->refresh_last_frame & cpi->refresh_golden_frame) cpi->gold_is_last = 1; else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame) cpi->gold_is_last = 0; if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame) cpi->alt_is_last = 1; else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame) cpi->alt_is_last = 0; if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame) cpi->gold_is_alt = 1; else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame) cpi->gold_is_alt = 0; cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP9_GOLD_FLAG; if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP9_ALT_FLAG; if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP9_ALT_FLAG; } static void set_ext_overrides(VP9_COMP *cpi) { // Overrides the defaults with the externally supplied values with // vp9_update_reference() and vp9_update_entropy() calls // Note: The overrides are valid only for the next frame passed // to encode_frame_to_data_rate() function if (cpi->ext_refresh_frame_context_pending) { cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context; cpi->ext_refresh_frame_context_pending = 0; } if (cpi->ext_refresh_frame_flags_pending) { cpi->refresh_last_frame = cpi->ext_refresh_last_frame; cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame; cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame; cpi->ext_refresh_frame_flags_pending = 0; } } static void encode_frame_to_data_rate(VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { VP9_COMMON *const cm = &cpi->common; TX_SIZE t; int q; int top_index; int bottom_index; const SPEED_FEATURES *const sf = &cpi->sf; const unsigned int max_mv_def = MIN(cm->width, cm->height); struct segmentation *const seg = &cm->seg; set_ext_overrides(cpi); /* Scale the source buffer, if required. */ if (cm->mi_cols * MI_SIZE != cpi->un_scaled_source->y_width || cm->mi_rows * MI_SIZE != cpi->un_scaled_source->y_height) { scale_and_extend_frame_nonnormative(cpi->un_scaled_source, &cpi->scaled_source); cpi->Source = &cpi->scaled_source; } else { cpi->Source = cpi->un_scaled_source; } scale_references(cpi); vp9_clear_system_state(); // Enable or disable mode based tweaking of the zbin. // For 2 pass only used where GF/ARF prediction quality // is above a threshold. cpi->zbin_mode_boost = 0; cpi->zbin_mode_boost_enabled = 0; // Current default encoder behavior for the altref sign bias. cm->ref_frame_sign_bias[ALTREF_FRAME] = cpi->rc.source_alt_ref_active; // Set default state for segment based loop filter update flags. cm->lf.mode_ref_delta_update = 0; // Initialize cpi->mv_step_param to default based on max resolution. cpi->mv_step_param = vp9_init_search_range(cpi, max_mv_def); // Initialize cpi->max_mv_magnitude and cpi->mv_step_param if appropriate. if (sf->auto_mv_step_size) { if (frame_is_intra_only(cm)) { // Initialize max_mv_magnitude for use in the first INTER frame // after a key/intra-only frame. cpi->max_mv_magnitude = max_mv_def; } else { if (cm->show_frame) // Allow mv_steps to correspond to twice the max mv magnitude found // in the previous frame, capped by the default max_mv_magnitude based // on resolution. cpi->mv_step_param = vp9_init_search_range(cpi, MIN(max_mv_def, 2 * cpi->max_mv_magnitude)); cpi->max_mv_magnitude = 0; } } // Set various flags etc to special state if it is a key frame. if (frame_is_intra_only(cm)) { vp9_setup_key_frame(cpi); // Reset the loop filter deltas and segmentation map. vp9_reset_segment_features(&cm->seg); // If segmentation is enabled force a map update for key frames. if (seg->enabled) { seg->update_map = 1; seg->update_data = 1; } // The alternate reference frame cannot be active for a key frame. cpi->rc.source_alt_ref_active = 0; cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0); cm->frame_parallel_decoding_mode = (cpi->oxcf.frame_parallel_decoding_mode != 0); // By default, encoder assumes decoder can use prev_mi. cm->coding_use_prev_mi = 1; if (cm->error_resilient_mode) { cm->coding_use_prev_mi = 0; cm->frame_parallel_decoding_mode = 1; cm->reset_frame_context = 0; cm->refresh_frame_context = 0; } else if (cm->intra_only) { // Only reset the current context. cm->reset_frame_context = 2; } } // Configure experimental use of segmentation for enhanced coding of // static regions if indicated. // Only allowed in second pass of two pass (as requires lagged coding) // and if the relevant speed feature flag is set. if (cpi->pass == 2 && cpi->sf.static_segmentation) configure_static_seg_features(cpi); // For 1 pass CBR, check if we are dropping this frame. // Never drop on key frame. if (cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && cm->frame_type != KEY_FRAME) { if (vp9_rc_drop_frame(cpi)) { vp9_rc_postencode_update_drop_frame(cpi); ++cm->current_video_frame; return; } } vp9_clear_system_state(); vp9_zero(cpi->rd_tx_select_threshes); #if CONFIG_VP9_POSTPROC if (cpi->oxcf.noise_sensitivity > 0) { int l = 0; switch (cpi->oxcf.noise_sensitivity) { case 1: l = 20; break; case 2: l = 40; break; case 3: l = 60; break; case 4: case 5: l = 100; break; case 6: l = 150; break; } vp9_denoise(cpi->Source, cpi->Source, l); } #endif #ifdef OUTPUT_YUV_SRC vp9_write_yuv_frame(cpi->Source); #endif // Decide q and q bounds. q = vp9_rc_pick_q_and_bounds(cpi, &bottom_index, &top_index); if (!frame_is_intra_only(cm)) { cm->interp_filter = DEFAULT_INTERP_FILTER; /* TODO: Decide this more intelligently */ set_high_precision_mv(cpi, q < HIGH_PRECISION_MV_QTHRESH); } if (cpi->sf.recode_loop == DISALLOW_RECODE) { encode_without_recode_loop(cpi, size, dest, q); } else { encode_with_recode_loop(cpi, size, dest, q, bottom_index, top_index); } // Special case code to reduce pulsing when key frames are forced at a // fixed interval. Note the reconstruction error if it is the frame before // the force key frame if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) { cpi->ambient_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm)); } // If the encoder forced a KEY_FRAME decision if (cm->frame_type == KEY_FRAME) cpi->refresh_last_frame = 1; cm->frame_to_show = get_frame_new_buffer(cm); #if WRITE_RECON_BUFFER if (cm->show_frame) write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame); else write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame + 1000); #endif // Pick the loop filter level for the frame. loopfilter_frame(cpi, cm); #if WRITE_RECON_BUFFER if (cm->show_frame) write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame + 2000); else write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame + 3000); #endif // build the bitstream cpi->dummy_packing = 0; vp9_pack_bitstream(cpi, dest, size); if (cm->seg.update_map) update_reference_segmentation_map(cpi); release_scaled_references(cpi); update_reference_frames(cpi); for (t = TX_4X4; t <= TX_32X32; t++) full_to_model_counts(cm->counts.coef[t], cpi->coef_counts[t]); if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) vp9_adapt_coef_probs(cm); if (!frame_is_intra_only(cm)) { if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { vp9_adapt_mode_probs(cm); vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); } } #if 0 output_frame_level_debug_stats(cpi); #endif if (cpi->refresh_golden_frame == 1) cm->frame_flags |= FRAMEFLAGS_GOLDEN; else cm->frame_flags &= ~FRAMEFLAGS_GOLDEN; if (cpi->refresh_alt_ref_frame == 1) cm->frame_flags |= FRAMEFLAGS_ALTREF; else cm->frame_flags &= ~FRAMEFLAGS_ALTREF; get_ref_frame_flags(cpi); vp9_rc_postencode_update(cpi, *size); if (cm->frame_type == KEY_FRAME) { // Tell the caller that the frame was coded as a key frame *frame_flags = cm->frame_flags | FRAMEFLAGS_KEY; #if CONFIG_MULTIPLE_ARF // Reset the sequence number. if (cpi->multi_arf_enabled) { cpi->sequence_number = 0; cpi->frame_coding_order_period = cpi->new_frame_coding_order_period; cpi->new_frame_coding_order_period = -1; } #endif } else { *frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY; #if CONFIG_MULTIPLE_ARF /* Increment position in the coded frame sequence. */ if (cpi->multi_arf_enabled) { ++cpi->sequence_number; if (cpi->sequence_number >= cpi->frame_coding_order_period) { cpi->sequence_number = 0; cpi->frame_coding_order_period = cpi->new_frame_coding_order_period; cpi->new_frame_coding_order_period = -1; } cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number]; assert(cpi->this_frame_weight >= 0); } #endif } // Clear the one shot update flags for segmentation map and mode/ref loop // filter deltas. cm->seg.update_map = 0; cm->seg.update_data = 0; cm->lf.mode_ref_delta_update = 0; // keep track of the last coded dimensions cm->last_width = cm->width; cm->last_height = cm->height; // reset to normal state now that we are done. if (!cm->show_existing_frame) cm->last_show_frame = cm->show_frame; if (cm->show_frame) { // current mip will be the prev_mip for the next frame MODE_INFO *temp = cm->prev_mip; MODE_INFO **temp2 = cm->prev_mi_grid_base; cm->prev_mip = cm->mip; cm->mip = temp; cm->prev_mi_grid_base = cm->mi_grid_base; cm->mi_grid_base = temp2; // update the upper left visible macroblock ptrs cm->mi = cm->mip + cm->mode_info_stride + 1; cm->mi_grid_visible = cm->mi_grid_base + cm->mode_info_stride + 1; cpi->mb.e_mbd.mi_8x8 = cm->mi_grid_visible; cpi->mb.e_mbd.mi_8x8[0] = cm->mi; // Don't increment frame counters if this was an altref buffer // update not a real frame ++cm->current_video_frame; } // restore prev_mi cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1; cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mode_info_stride + 1; } static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { vp9_rc_get_svc_params(cpi); encode_frame_to_data_rate(cpi, size, dest, frame_flags); } static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { vp9_rc_get_one_pass_cbr_params(cpi); } else { vp9_rc_get_one_pass_vbr_params(cpi); } encode_frame_to_data_rate(cpi, size, dest, frame_flags); } static void Pass1Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { (void) size; (void) dest; (void) frame_flags; vp9_rc_get_first_pass_params(cpi); vp9_set_quantizer(cpi, find_fp_qindex()); vp9_first_pass(cpi); } static void Pass2Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED; vp9_rc_get_second_pass_params(cpi); encode_frame_to_data_rate(cpi, size, dest, frame_flags); vp9_twopass_postencode_update(cpi, *size); } static void check_initial_width(VP9_COMP *cpi, int subsampling_x, int subsampling_y) { VP9_COMMON *const cm = &cpi->common; if (!cpi->initial_width) { cm->subsampling_x = subsampling_x; cm->subsampling_y = subsampling_y; alloc_raw_frame_buffers(cpi); cpi->initial_width = cm->width; cpi->initial_height = cm->height; } } int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time) { VP9_COMP *cpi = (VP9_COMP *)ptr; VP9_COMMON *cm = &cpi->common; struct vpx_usec_timer timer; int res = 0; const int subsampling_x = sd->uv_width < sd->y_width; const int subsampling_y = sd->uv_height < sd->y_height; check_initial_width(cpi, subsampling_x, subsampling_y); vpx_usec_timer_start(&timer); if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags, cpi->active_map_enabled ? cpi->active_map : NULL)) res = -1; vpx_usec_timer_mark(&timer); cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); if (cm->version == 0 && (subsampling_x != 1 || subsampling_y != 1)) { vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM, "Non-4:2:0 color space requires profile >= 1"); res = -1; } return res; } static int frame_is_reference(const VP9_COMP *cpi) { const VP9_COMMON *cm = &cpi->common; return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame || cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame || cm->refresh_frame_context || cm->lf.mode_ref_delta_update || cm->seg.update_map || cm->seg.update_data; } #if CONFIG_MULTIPLE_ARF int is_next_frame_arf(VP9_COMP *cpi) { // Negative entry in frame_coding_order indicates an ARF at this position. return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0; } #endif void adjust_frame_rate(VP9_COMP *cpi) { int64_t this_duration; int step = 0; if (cpi->source->ts_start == cpi->first_time_stamp_ever) { this_duration = cpi->source->ts_end - cpi->source->ts_start; step = 1; } else { int64_t last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen; // do a step update if the duration changes by 10% if (last_duration) step = (int)((this_duration - last_duration) * 10 / last_duration); } if (this_duration) { if (step) { vp9_new_framerate(cpi, 10000000.0 / this_duration); } else { // Average this frame's rate into the last second's average // frame rate. If we haven't seen 1 second yet, then average // over the whole interval seen. const double interval = MIN((double)(cpi->source->ts_end - cpi->first_time_stamp_ever), 10000000.0); double avg_duration = 10000000.0 / cpi->oxcf.framerate; avg_duration *= (interval - avg_duration + this_duration); avg_duration /= interval; vp9_new_framerate(cpi, 10000000.0 / avg_duration); } } cpi->last_time_stamp_seen = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_end; } int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags, size_t *size, uint8_t *dest, int64_t *time_stamp, int64_t *time_end, int flush) { VP9_COMP *cpi = (VP9_COMP *) ptr; VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; struct vpx_usec_timer cmptimer; YV12_BUFFER_CONFIG *force_src_buffer = NULL; MV_REFERENCE_FRAME ref_frame; if (!cpi) return -1; vpx_usec_timer_start(&cmptimer); cpi->source = NULL; set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV); // Normal defaults cm->reset_frame_context = 0; cm->refresh_frame_context = 1; cpi->refresh_last_frame = 1; cpi->refresh_golden_frame = 0; cpi->refresh_alt_ref_frame = 0; // Should we code an alternate reference frame. if (cpi->oxcf.play_alternate && cpi->rc.source_alt_ref_pending) { int frames_to_arf; #if CONFIG_MULTIPLE_ARF assert(!cpi->multi_arf_enabled || cpi->frame_coding_order[cpi->sequence_number] < 0); if (cpi->multi_arf_enabled && (cpi->pass == 2)) frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number]) - cpi->next_frame_in_order; else #endif frames_to_arf = cpi->rc.frames_till_gf_update_due; assert(frames_to_arf <= cpi->rc.frames_to_key); if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) { #if CONFIG_MULTIPLE_ARF cpi->alt_ref_source[cpi->arf_buffered] = cpi->source; #else cpi->alt_ref_source = cpi->source; #endif if (cpi->oxcf.arnr_max_frames > 0) { // Produce the filtered ARF frame. // TODO(agrange) merge these two functions. vp9_configure_arnr_filter(cpi, frames_to_arf, cpi->rc.gfu_boost); vp9_temporal_filter_prepare(cpi, frames_to_arf); vp9_extend_frame_borders(&cpi->alt_ref_buffer, cm->subsampling_x, cm->subsampling_y); force_src_buffer = &cpi->alt_ref_buffer; } cm->show_frame = 0; cpi->refresh_alt_ref_frame = 1; cpi->refresh_golden_frame = 0; cpi->refresh_last_frame = 0; cpi->rc.is_src_frame_alt_ref = 0; #if CONFIG_MULTIPLE_ARF if (!cpi->multi_arf_enabled) #endif cpi->rc.source_alt_ref_pending = 0; } else { cpi->rc.source_alt_ref_pending = 0; } } if (!cpi->source) { #if CONFIG_MULTIPLE_ARF int i; #endif if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) { cm->show_frame = 1; cm->intra_only = 0; #if CONFIG_MULTIPLE_ARF // Is this frame the ARF overlay. cpi->rc.is_src_frame_alt_ref = 0; for (i = 0; i < cpi->arf_buffered; ++i) { if (cpi->source == cpi->alt_ref_source[i]) { cpi->rc.is_src_frame_alt_ref = 1; cpi->refresh_golden_frame = 1; break; } } #else cpi->rc.is_src_frame_alt_ref = cpi->alt_ref_source && (cpi->source == cpi->alt_ref_source); #endif if (cpi->rc.is_src_frame_alt_ref) { // Current frame is an ARF overlay frame. #if CONFIG_MULTIPLE_ARF cpi->alt_ref_source[i] = NULL; #else cpi->alt_ref_source = NULL; #endif // Don't refresh the last buffer for an ARF overlay frame. It will // become the GF so preserve last as an alternative prediction option. cpi->refresh_last_frame = 0; } #if CONFIG_MULTIPLE_ARF ++cpi->next_frame_in_order; #endif } } if (cpi->source) { cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img; *time_stamp = cpi->source->ts_start; *time_end = cpi->source->ts_end; *frame_flags = cpi->source->flags; #if CONFIG_MULTIPLE_ARF if ((cm->frame_type != KEY_FRAME) && (cpi->pass == 2)) cpi->rc.source_alt_ref_pending = is_next_frame_arf(cpi); #endif } else { *size = 0; if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) { vp9_end_first_pass(cpi); /* get last stats packet */ cpi->twopass.first_pass_done = 1; } return -1; } if (cpi->source->ts_start < cpi->first_time_stamp_ever) { cpi->first_time_stamp_ever = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_start; } // adjust frame rates based on timestamps given if (cm->show_frame) { adjust_frame_rate(cpi); } if (cpi->svc.number_temporal_layers > 1 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { update_layer_framerate(cpi); restore_layer_context(cpi); } // start with a 0 size frame *size = 0; // Clear down mmx registers vp9_clear_system_state(); /* find a free buffer for the new frame, releasing the reference previously * held. */ cm->frame_bufs[cm->new_fb_idx].ref_count--; cm->new_fb_idx = get_free_fb(cm); #if CONFIG_MULTIPLE_ARF /* Set up the correct ARF frame. */ if (cpi->refresh_alt_ref_frame) { ++cpi->arf_buffered; } if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) && (cpi->pass == 2)) { cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number]; } #endif cm->frame_flags = *frame_flags; // Reset the frame pointers to the current frame size vp9_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL); for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)]; YV12_BUFFER_CONFIG *const buf = &cm->frame_bufs[idx].buf; RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1]; ref_buf->buf = buf; ref_buf->idx = idx; vp9_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width, cm->height); if (vp9_is_scaled(&ref_buf->sf)) vp9_extend_frame_borders(buf, cm->subsampling_x, cm->subsampling_y); } set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME); xd->interp_kernel = vp9_get_interp_kernel( DEFAULT_INTERP_FILTER == SWITCHABLE ? EIGHTTAP : DEFAULT_INTERP_FILTER); if (cpi->oxcf.aq_mode == VARIANCE_AQ) { vp9_vaq_init(); } if (cpi->use_svc) { SvcEncode(cpi, size, dest, frame_flags); } else if (cpi->pass == 1) { Pass1Encode(cpi, size, dest, frame_flags); } else if (cpi->pass == 2) { Pass2Encode(cpi, size, dest, frame_flags); } else { // One pass encode Pass0Encode(cpi, size, dest, frame_flags); } if (cm->refresh_frame_context) cm->frame_contexts[cm->frame_context_idx] = cm->fc; // Frame was dropped, release scaled references. if (*size == 0) { release_scaled_references(cpi); } if (*size > 0) { cpi->droppable = !frame_is_reference(cpi); } // Save layer specific state. if (cpi->svc.number_temporal_layers > 1 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { save_layer_context(cpi); } vpx_usec_timer_mark(&cmptimer); cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) generate_psnr_packet(cpi); #if CONFIG_INTERNAL_STATS if (cpi->pass != 1) { cpi->bytes += (int)(*size); if (cm->show_frame) { cpi->count++; if (cpi->b_calculate_psnr) { YV12_BUFFER_CONFIG *orig = cpi->Source; YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer; PSNR_STATS psnr; calc_psnr(orig, recon, &psnr); cpi->total += psnr.psnr[0]; cpi->total_y += psnr.psnr[1]; cpi->total_u += psnr.psnr[2]; cpi->total_v += psnr.psnr[3]; cpi->total_sq_error += psnr.sse[0]; cpi->total_samples += psnr.samples[0]; { PSNR_STATS psnr2; double frame_ssim2 = 0, weight = 0; #if CONFIG_VP9_POSTPROC vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->lf.filter_level * 10 / 6); #endif vp9_clear_system_state(); calc_psnr(orig, pp, &psnr2); cpi->totalp += psnr2.psnr[0]; cpi->totalp_y += psnr2.psnr[1]; cpi->totalp_u += psnr2.psnr[2]; cpi->totalp_v += psnr2.psnr[3]; cpi->totalp_sq_error += psnr2.sse[0]; cpi->totalp_samples += psnr2.samples[0]; frame_ssim2 = vp9_calc_ssim(orig, recon, 1, &weight); cpi->summed_quality += frame_ssim2 * weight; cpi->summed_weights += weight; frame_ssim2 = vp9_calc_ssim(orig, &cm->post_proc_buffer, 1, &weight); cpi->summedp_quality += frame_ssim2 * weight; cpi->summedp_weights += weight; #if 0 { FILE *f = fopen("q_used.stt", "a"); fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", cpi->common.current_video_frame, y2, u2, v2, frame_psnr2, frame_ssim2); fclose(f); } #endif } } if (cpi->b_calculate_ssimg) { double y, u, v, frame_all; frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v); cpi->total_ssimg_y += y; cpi->total_ssimg_u += u; cpi->total_ssimg_v += v; cpi->total_ssimg_all += frame_all; } } } #endif return 0; } int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest, vp9_ppflags_t *flags) { VP9_COMP *cpi = (VP9_COMP *)comp; VP9_COMMON *cm = &cpi->common; if (!cm->show_frame) { return -1; } else { int ret; #if CONFIG_VP9_POSTPROC ret = vp9_post_proc_frame(cm, dest, flags); #else if (cm->frame_to_show) { *dest = *cm->frame_to_show; dest->y_width = cm->width; dest->y_height = cm->height; dest->uv_width = cm->width >> cm->subsampling_x; dest->uv_height = cm->height >> cm->subsampling_y; ret = 0; } else { ret = -1; } #endif // !CONFIG_VP9_POSTPROC vp9_clear_system_state(); return ret; } } int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[MAX_SEGMENTS], int delta_lf[MAX_SEGMENTS], unsigned int threshold[MAX_SEGMENTS]) { VP9_COMP *cpi = (VP9_COMP *) comp; signed char feature_data[SEG_LVL_MAX][MAX_SEGMENTS]; struct segmentation *seg = &cpi->common.seg; int i; if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols) return -1; if (!map) { vp9_disable_segmentation((VP9_PTR)cpi); return 0; } // Set the segmentation Map vp9_set_segmentation_map((VP9_PTR)cpi, map); // Activate segmentation. vp9_enable_segmentation((VP9_PTR)cpi); // Set up the quant, LF and breakout threshold segment data for (i = 0; i < MAX_SEGMENTS; i++) { feature_data[SEG_LVL_ALT_Q][i] = delta_q[i]; feature_data[SEG_LVL_ALT_LF][i] = delta_lf[i]; cpi->segment_encode_breakout[i] = threshold[i]; } // Enable the loop and quant changes in the feature mask for (i = 0; i < MAX_SEGMENTS; i++) { if (delta_q[i]) vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q); else vp9_disable_segfeature(seg, i, SEG_LVL_ALT_Q); if (delta_lf[i]) vp9_enable_segfeature(seg, i, SEG_LVL_ALT_LF); else vp9_disable_segfeature(seg, i, SEG_LVL_ALT_LF); } // Initialize the feature data structure // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA); return 0; } int vp9_set_active_map(VP9_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols) { VP9_COMP *cpi = (VP9_COMP *) comp; if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { if (map) { vpx_memcpy(cpi->active_map, map, rows * cols); cpi->active_map_enabled = 1; } else { cpi->active_map_enabled = 0; } return 0; } else { // cpi->active_map_enabled = 0; return -1; } } int vp9_set_internal_size(VP9_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode) { VP9_COMP *cpi = (VP9_COMP *) comp; VP9_COMMON *cm = &cpi->common; int hr = 0, hs = 0, vr = 0, vs = 0; if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1; Scale2Ratio(horiz_mode, &hr, &hs); Scale2Ratio(vert_mode, &vr, &vs); // always go to the next whole number cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs; cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs; assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); update_frame_size(cpi); return 0; } int vp9_set_size_literal(VP9_PTR comp, unsigned int width, unsigned int height) { VP9_COMP *cpi = (VP9_COMP *)comp; VP9_COMMON *cm = &cpi->common; check_initial_width(cpi, 1, 1); if (width) { cm->width = width; if (cm->width * 5 < cpi->initial_width) { cm->width = cpi->initial_width / 5 + 1; printf("Warning: Desired width too small, changed to %d\n", cm->width); } if (cm->width > cpi->initial_width) { cm->width = cpi->initial_width; printf("Warning: Desired width too large, changed to %d\n", cm->width); } } if (height) { cm->height = height; if (cm->height * 5 < cpi->initial_height) { cm->height = cpi->initial_height / 5 + 1; printf("Warning: Desired height too small, changed to %d\n", cm->height); } if (cm->height > cpi->initial_height) { cm->height = cpi->initial_height; printf("Warning: Desired height too large, changed to %d\n", cm->height); } } assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); update_frame_size(cpi); return 0; } void vp9_set_svc(VP9_PTR comp, int use_svc) { VP9_COMP *cpi = (VP9_COMP *)comp; cpi->use_svc = use_svc; return; } int vp9_calc_ss_err(const YV12_BUFFER_CONFIG *source, const YV12_BUFFER_CONFIG *reference) { int i, j; int total = 0; const uint8_t *src = source->y_buffer; const uint8_t *ref = reference->y_buffer; // Loop through the Y plane raw and reconstruction data summing // (square differences) for (i = 0; i < source->y_height; i += 16) { for (j = 0; j < source->y_width; j += 16) { unsigned int sse; total += vp9_mse16x16(src + j, source->y_stride, ref + j, reference->y_stride, &sse); } src += 16 * source->y_stride; ref += 16 * reference->y_stride; } return total; } int vp9_get_quantizer(VP9_PTR c) { return ((VP9_COMP *)c)->common.base_qindex; }