ref: 13253d612127b026e5dd99e76da4e9afe6c7de5d
dir: /test/dct32x32_test.cc/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include "third_party/googletest/src/include/gtest/gtest.h" extern "C" { #include "vp9/common/vp9_entropy.h" #include "./vp9_rtcd.h" void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch); void vp9_short_idct32x32_add_c(short *input, uint8_t *output, int pitch); } #include "test/acm_random.h" #include "vpx/vpx_integer.h" using libvpx_test::ACMRandom; namespace { #ifdef _MSC_VER static int round(double x) { if (x < 0) return (int)ceil(x - 0.5); else return (int)floor(x + 0.5); } #endif static const double kPi = 3.141592653589793238462643383279502884; static void reference2_32x32_idct_2d(double *input, double *output) { double x; for (int l = 0; l < 32; ++l) { for (int k = 0; k < 32; ++k) { double s = 0; for (int i = 0; i < 32; ++i) { for (int j = 0; j < 32; ++j) { x = cos(kPi * j * (l + 0.5) / 32.0) * cos(kPi * i * (k + 0.5) / 32.0) * input[i * 32 + j] / 1024; if (i != 0) x *= sqrt(2.0); if (j != 0) x *= sqrt(2.0); s += x; } } output[k * 32 + l] = s / 4; } } } static void reference_32x32_dct_1d(double in[32], double out[32], int stride) { const double kInvSqrt2 = 0.707106781186547524400844362104; for (int k = 0; k < 32; k++) { out[k] = 0.0; for (int n = 0; n < 32; n++) out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0); if (k == 0) out[k] = out[k] * kInvSqrt2; } } static void reference_32x32_dct_2d(int16_t input[32*32], double output[32*32]) { // First transform columns for (int i = 0; i < 32; ++i) { double temp_in[32], temp_out[32]; for (int j = 0; j < 32; ++j) temp_in[j] = input[j*32 + i]; reference_32x32_dct_1d(temp_in, temp_out, 1); for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j]; } // Then transform rows for (int i = 0; i < 32; ++i) { double temp_in[32], temp_out[32]; for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i*32]; reference_32x32_dct_1d(temp_in, temp_out, 1); // Scale by some magic number for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4; } } TEST(VP9Idct32x32Test, AccuracyCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; for (int i = 0; i < count_test_block; ++i) { int16_t in[1024], coeff[1024]; uint8_t dst[1024], src[1024]; double out_r[1024]; for (int j = 0; j < 1024; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); } // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 1024; ++j) in[j] = src[j] - dst[j]; reference_32x32_dct_2d(in, out_r); for (int j = 0; j < 1024; j++) coeff[j] = round(out_r[j]); vp9_short_idct32x32_add_c(coeff, dst, 32); for (int j = 0; j < 1024; ++j) { const int diff = dst[j] - src[j]; const int error = diff * diff; EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error << " at index " << j; } } } TEST(VP9Fdct32x32Test, AccuracyCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); unsigned int max_error = 0; int64_t total_error = 0; const int count_test_block = 1000; for (int i = 0; i < count_test_block; ++i) { int16_t test_input_block[1024]; int16_t test_temp_block[1024]; uint8_t dst[1024], src[1024]; for (int j = 0; j < 1024; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); } // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 1024; ++j) test_input_block[j] = src[j] - dst[j]; const int pitch = 64; vp9_short_fdct32x32_c(test_input_block, test_temp_block, pitch); vp9_short_idct32x32_add_c(test_temp_block, dst, 32); for (int j = 0; j < 1024; ++j) { const unsigned diff = dst[j] - src[j]; const unsigned error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(1u, max_error) << "Error: 32x32 FDCT/IDCT has an individual roundtrip error > 1"; EXPECT_GE(count_test_block, total_error) << "Error: 32x32 FDCT/IDCT has average roundtrip error > 1 per block"; } TEST(VP9Fdct32x32Test, CoeffSizeCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; for (int i = 0; i < count_test_block; ++i) { int16_t input_block[1024], input_extreme_block[1024]; int16_t output_block[1024], output_extreme_block[1024]; // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 1024; ++j) { input_block[j] = rnd.Rand8() - rnd.Rand8(); input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; } if (i == 0) for (int j = 0; j < 1024; ++j) input_extreme_block[j] = 255; const int pitch = 64; vp9_short_fdct32x32_c(input_block, output_block, pitch); vp9_short_fdct32x32_c(input_extreme_block, output_extreme_block, pitch); // The minimum quant value is 4. for (int j = 0; j < 1024; ++j) { EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j])) << "Error: 32x32 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j])) << "Error: 32x32 FDCT extreme has coefficient larger than " "4*DCT_MAX_VALUE"; } } } } // namespace