shithub: libvpx

ref: 193fa5c8ba64b835932a0b3f6b080bdad8b2ff87
dir: /vp9/common/x86/vp9_subpixel_8t_intrin_ssse3.c/

View raw version
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <tmmintrin.h>
#include "vpx_ports/mem.h"
#include "vpx_ports/emmintrin_compat.h"


// filters only for the 4_h8 convolution
DECLARE_ALIGNED(16, const unsigned char,
filt1_4_h8[16])= {0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6};

DECLARE_ALIGNED(16, const unsigned char,
filt2_4_h8[16])= {4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10};

// filters for 8_h8 and 16_h8
DECLARE_ALIGNED(16, const unsigned char,
filt1_global[16])= {0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8};

DECLARE_ALIGNED(16, const unsigned char,
filt2_global[16])= {2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10};

DECLARE_ALIGNED(16, const unsigned char,
filt3_global[16])= {4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12};

DECLARE_ALIGNED(16, const unsigned char,
filt4_global[16])= {6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14};



void vp9_filter_block1d4_h8_intrin_ssse3(unsigned char *src_ptr,
                                         unsigned int src_pixels_per_line,
                                         unsigned char *output_ptr,
                                         unsigned int output_pitch,
                                         unsigned int output_height,
                                         int16_t *filter) {
    __m128i firstFilters, secondFilters, thirdFilters, forthFilters;
    __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
    __m128i addFilterReg64, filtersReg, srcReg, minReg;
    unsigned int i;

    // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
    addFilterReg64 =_mm_set1_epi32((int)0x0400040u);
    filtersReg = _mm_loadu_si128((__m128i *)filter);
    // converting the 16 bit (short) to  8 bit (byte) and have the same data
    // in both lanes of 128 bit register.
    filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

    // duplicate only the first 16 bits in the filter into the first lane
    firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
    // duplicate only the third 16 bit in the filter into the first lane
    secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
    // duplicate only the seconds 16 bits in the filter into the second lane
    firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
    // duplicate only the forth 16 bits in the filter into the second lane
    secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);

    // loading the local filters
    thirdFilters =_mm_load_si128((__m128i const *)filt1_4_h8);
    forthFilters = _mm_load_si128((__m128i const *)filt2_4_h8);

    for (i = 0; i < output_height; i++) {
        srcReg = _mm_loadu_si128((__m128i *)(src_ptr-3));

        // filter the source buffer
        srcRegFilt1= _mm_shuffle_epi8(srcReg, thirdFilters);
        srcRegFilt2= _mm_shuffle_epi8(srcReg, forthFilters);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
        srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);

        // extract the higher half of the lane
        srcRegFilt3 =  _mm_srli_si128(srcRegFilt1, 8);
        srcRegFilt4 =  _mm_srli_si128(srcRegFilt2, 8);

        minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2);

        // add and saturate all the results together
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);

        srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2);

        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);

        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);

        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

        // shift by 7 bit each 16 bits
        srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

        // shrink to 8 bit each 16 bits
        srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);

        src_ptr+=src_pixels_per_line;

        // save only 4 bytes
        *((int*)&output_ptr[0])= _mm_cvtsi128_si32(srcRegFilt1);

        output_ptr+=output_pitch;
    }
}


void vp9_filter_block1d8_h8_intrin_ssse3(unsigned char *src_ptr,
                                         unsigned int src_pixels_per_line,
                                         unsigned char *output_ptr,
                                         unsigned int output_pitch,
                                         unsigned int output_height,
                                         int16_t *filter) {
    __m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg;
    __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
    __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
    __m128i addFilterReg64, filtersReg, minReg;
    unsigned int i;

    // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
    addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
    filtersReg = _mm_loadu_si128((__m128i *)filter);
    // converting the 16 bit (short) to  8 bit (byte) and have the same data
    // in both lanes of 128 bit register.
    filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

    // duplicate only the first 16 bits (first and second byte)
    // across 128 bit register
    firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
    // duplicate only the second 16 bits (third and forth byte)
    // across 128 bit register
    secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
    // duplicate only the third 16 bits (fifth and sixth byte)
    // across 128 bit register
    thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
    // duplicate only the forth 16 bits (seventh and eighth byte)
    // across 128 bit register
    forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));

    filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
    filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
    filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
    filt4Reg = _mm_load_si128((__m128i const *)filt4_global);

    for (i = 0; i < output_height; i++) {
        srcReg = _mm_loadu_si128((__m128i *)(src_ptr-3));

        // filter the source buffer
        srcRegFilt1= _mm_shuffle_epi8(srcReg, filt1Reg);
        srcRegFilt2= _mm_shuffle_epi8(srcReg, filt2Reg);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
        srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);

        // filter the source buffer
        srcRegFilt3= _mm_shuffle_epi8(srcReg, filt3Reg);
        srcRegFilt4= _mm_shuffle_epi8(srcReg, filt4Reg);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters);
        srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters);

        // add and saturate all the results together
        minReg = _mm_min_epi16(srcRegFilt4, srcRegFilt3);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);

        srcRegFilt4= _mm_max_epi16(srcRegFilt4, srcRegFilt3);

        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);

        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);

        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

        // shift by 7 bit each 16 bits
        srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

        // shrink to 8 bit each 16 bits
        srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);

        src_ptr+=src_pixels_per_line;

       // save only 8 bytes
        _mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1);

        output_ptr+=output_pitch;
    }
}

void vp9_filter_block1d16_h8_intrin_ssse3(unsigned char *src_ptr,
                                          unsigned int src_pixels_per_line,
                                          unsigned char *output_ptr,
                                          unsigned int output_pitch,
                                          unsigned int output_height,
                                          int16_t *filter) {
    __m128i addFilterReg64, filtersReg, srcReg1, srcReg2;
    __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
    __m128i firstFilters, secondFilters, thirdFilters, forthFilters;
    __m128i srcRegFilt1_1, srcRegFilt2_1, srcRegFilt2, srcRegFilt3;
    unsigned int i;

    // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
    addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
    filtersReg = _mm_loadu_si128((__m128i *)filter);
    // converting the 16 bit (short) to  8 bit (byte) and have the same data
    // in both lanes of 128 bit register.
    filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

    // duplicate only the first 16 bits (first and second byte)
    // across 128 bit register
    firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
    // duplicate only the second 16 bits (third and forth byte)
    // across 128 bit register
    secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
    // duplicate only the third 16 bits (fifth and sixth byte)
    // across 128 bit register
    thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
    // duplicate only the forth 16 bits (seventh and eighth byte)
    // across 128 bit register
    forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));

    filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
    filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
    filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
    filt4Reg = _mm_load_si128((__m128i const *)filt4_global);

    for (i = 0; i < output_height; i++) {
        srcReg1 = _mm_loadu_si128((__m128i *)(src_ptr-3));

        // filter the source buffer
        srcRegFilt1_1= _mm_shuffle_epi8(srcReg1, filt1Reg);
        srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt2Reg);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, firstFilters);
        srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);

        // add and saturate the results together
        srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);

        // filter the source buffer
        srcRegFilt3= _mm_shuffle_epi8(srcReg1, filt4Reg);
        srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt3Reg);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, forthFilters);
        srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);

        // add and saturate the results together
        srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
        _mm_min_epi16(srcRegFilt3, srcRegFilt2));

        // reading the next 16 bytes.
        // (part of it was being read by earlier read)
        srcReg2 = _mm_loadu_si128((__m128i *)(src_ptr+5));

        // add and saturate the results together
        srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
        _mm_max_epi16(srcRegFilt3, srcRegFilt2));

        // filter the source buffer
        srcRegFilt2_1= _mm_shuffle_epi8(srcReg2, filt1Reg);
        srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt2Reg);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, firstFilters);
        srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);

        // add and saturate the results together
        srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);

        // filter the source buffer
        srcRegFilt3= _mm_shuffle_epi8(srcReg2, filt4Reg);
        srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt3Reg);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, forthFilters);
        srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);

        // add and saturate the results together
        srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
        _mm_min_epi16(srcRegFilt3, srcRegFilt2));
        srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
        _mm_max_epi16(srcRegFilt3, srcRegFilt2));

        srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, addFilterReg64);

        srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, addFilterReg64);

        // shift by 7 bit each 16 bit
        srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
        srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);

        // shrink to 8 bit each 16 bits, the first lane contain the first
        // convolve result and the second lane contain the second convolve
        // result
        srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);

        src_ptr+=src_pixels_per_line;

        // save 16 bytes
        _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);

        output_ptr+=output_pitch;
    }
}



void vp9_filter_block1d4_v8_intrin_ssse3(unsigned char *src_ptr,
                                         unsigned int src_pitch,
                                         unsigned char *output_ptr,
                                         unsigned int out_pitch,
                                         unsigned int output_height,
                                         int16_t *filter) {
    __m128i addFilterReg64, filtersReg, firstFilters, secondFilters;
    __m128i minReg, srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
    unsigned int i;

    // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
    addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
    filtersReg = _mm_loadu_si128((__m128i *)filter);
    // converting the 16 bit (short) to  8 bit (byte) and have the same data
    // in both lanes of 128 bit register.
    filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

    // duplicate only the first 16 bits in the filter into the first lane
    firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
    // duplicate only the second 16 bits in the filter into the second lane
    firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
    // duplicate only the third 16 bits in the filter into the first lane
    secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
    // duplicate only the forth 16 bits in the filter into the second lane
    secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);

    for (i = 0; i < output_height; i++) {
        // load the first 4 byte
        srcRegFilt1 = _mm_cvtsi32_si128(*((int*)&src_ptr[0]));
        // load the next 4 bytes in stride of src_pitch
        srcRegFilt2 = _mm_cvtsi32_si128(*((int*)&(src_ptr+src_pitch)[0]));

        // merge the result together
        srcRegFilt1 = _mm_unpacklo_epi8(srcRegFilt1, srcRegFilt2);


        srcRegFilt2 = _mm_cvtsi32_si128(*((int*)&(src_ptr+src_pitch*2)[0]));
        srcRegFilt3 =  _mm_cvtsi32_si128(*((int*)&(src_ptr+src_pitch*3)[0]));

        // merge the result together
        srcRegFilt2 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt3);

        srcRegFilt3 = _mm_cvtsi32_si128(*((int*)&(src_ptr+src_pitch*4)[0]));
        srcRegFilt4 = _mm_cvtsi32_si128(*((int*)&(src_ptr+src_pitch*5)[0]));

        // merge the result together
        srcRegFilt3 = _mm_unpacklo_epi8(srcRegFilt3, srcRegFilt4);
        srcRegFilt1 = _mm_unpacklo_epi64(srcRegFilt1, srcRegFilt2);

        srcRegFilt4 = _mm_cvtsi32_si128(*((int*)&(src_ptr+src_pitch*6)[0]));
        srcRegFilt2 = _mm_cvtsi32_si128(*((int*)&(src_ptr+src_pitch*7)[0]));

        // merge the result together
        srcRegFilt4 = _mm_unpacklo_epi8(srcRegFilt4, srcRegFilt2);
        srcRegFilt3 = _mm_unpacklo_epi64(srcRegFilt3, srcRegFilt4);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
        srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);

        // extract the second lane of the 128 bit register
        srcRegFilt2 = _mm_srli_si128(srcRegFilt1, 8);

        // add and saturate the results together
        minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
        _mm_srli_si128(srcRegFilt3, 8));
        srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

        // shift by 7 bit each 16 bit
        srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

        // shrink to 8 bit each 16 bits
        srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);

        src_ptr+=src_pitch;

        // save only 4 bytes convolve result
        *((int*)&output_ptr[0])= _mm_cvtsi128_si32(srcRegFilt1);

        output_ptr+=out_pitch;
    }
}

void vp9_filter_block1d8_v8_intrin_ssse3(unsigned char *src_ptr,
                                         unsigned int src_pitch,
                                         unsigned char *output_ptr,
                                         unsigned int out_pitch,
                                         unsigned int output_height,
                                         int16_t *filter) {
    __m128i addFilterReg64, filtersReg, minReg, srcRegFilt6;
    __m128i firstFilters, secondFilters, thirdFilters, forthFilters;
    __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4, srcRegFilt5;
    unsigned int i;

    // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
    addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
    filtersReg = _mm_loadu_si128((__m128i *)filter);
    // converting the 16 bit (short) to  8 bit (byte) and have the same data
    // in both lanes of 128 bit register.
    filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

    // duplicate only the first 16 bits in the filter
    firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
    // duplicate only the second 16 bits in the filter
    secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
    // duplicate only the third 16 bits in the filter
    thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
    // duplicate only the forth 16 bits in the filter
    forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));

    for (i = 0; i < output_height; i++) {
        // load the first 8 bytes
        srcRegFilt1 = _mm_loadl_epi64((__m128i *)&src_ptr[0]);
        // load the next 8 bytes in stride of src_pitch
        srcRegFilt2 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch)[0]);
        srcRegFilt3 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*2)[0]);
        srcRegFilt4 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*3)[0]);

        // merge the result together
        srcRegFilt1 = _mm_unpacklo_epi8(srcRegFilt1, srcRegFilt2);
        srcRegFilt3 = _mm_unpacklo_epi8(srcRegFilt3, srcRegFilt4);

        // load the next 8 bytes in stride of src_pitch
        srcRegFilt2 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*4)[0]);
        srcRegFilt4 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*5)[0]);
        srcRegFilt5 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*6)[0]);
        srcRegFilt6 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*7)[0]);

        // merge the result together
        srcRegFilt2 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt4);
        srcRegFilt5 = _mm_unpacklo_epi8(srcRegFilt5, srcRegFilt6);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
        srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
        srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);
        srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters);

        // add and saturate the results together
        minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5);
        srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

        // shift by 7 bit each 16 bit
        srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

        // shrink to 8 bit each 16 bits
        srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);

        src_ptr+=src_pitch;

        // save only 8 bytes convolve result
        _mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1);

        output_ptr+=out_pitch;
    }
}


void vp9_filter_block1d16_v8_intrin_ssse3(unsigned char *src_ptr,
                                          unsigned int src_pitch,
                                          unsigned char *output_ptr,
                                          unsigned int out_pitch,
                                          unsigned int output_height,
                                          int16_t *filter) {
    __m128i addFilterReg64, filtersReg, srcRegFilt1, srcRegFilt2, srcRegFilt3;
    __m128i firstFilters, secondFilters, thirdFilters, forthFilters;
    __m128i srcRegFilt4, srcRegFilt5, srcRegFilt6, srcRegFilt7, srcRegFilt8;
    unsigned int i;

    // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
    addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
    filtersReg = _mm_loadu_si128((__m128i *)filter);
    // converting the 16 bit (short) to  8 bit (byte) and have the same data
    // in both lanes of 128 bit register.
    filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

    // duplicate only the first 16 bits in the filter
    firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
    // duplicate only the second 16 bits in the filter
    secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
    // duplicate only the third 16 bits in the filter
    thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
    // duplicate only the forth 16 bits in the filter
    forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));


    for (i = 0; i < output_height; i++) {
        // load the first 16 bytes
        srcRegFilt1 = _mm_loadu_si128((__m128i *)(src_ptr));
        // load the next 16 bytes in stride of src_pitch
        srcRegFilt2 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch));
        srcRegFilt3 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*6));
        srcRegFilt4 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*7));

        // merge the result together
        srcRegFilt5 = _mm_unpacklo_epi8(srcRegFilt1, srcRegFilt2);
        srcRegFilt6 = _mm_unpacklo_epi8(srcRegFilt3, srcRegFilt4);
        srcRegFilt1 = _mm_unpackhi_epi8(srcRegFilt1, srcRegFilt2);
        srcRegFilt3 = _mm_unpackhi_epi8(srcRegFilt3, srcRegFilt4);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, firstFilters);
        srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, forthFilters);
        srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
        srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, forthFilters);


        // add and saturate the results together
        srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, srcRegFilt6);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);

        // load the next 16 bytes in stride of two/three src_pitch
        srcRegFilt2 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*2));
        srcRegFilt3 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*3));

        // merge the result together
        srcRegFilt4 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt3);
        srcRegFilt6 = _mm_unpackhi_epi8(srcRegFilt2, srcRegFilt3);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, secondFilters);
        srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, secondFilters);

        // load the next 16 bytes in stride of four/five src_pitch
        srcRegFilt2 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*4));
        srcRegFilt3 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*5));

        // merge the result together
        srcRegFilt7 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt3);
        srcRegFilt8 = _mm_unpackhi_epi8(srcRegFilt2, srcRegFilt3);

        // multiply 2 adjacent elements with the filter and add the result
        srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7, thirdFilters);
        srcRegFilt8 = _mm_maddubs_epi16(srcRegFilt8, thirdFilters);


        // add and saturate the results together
        srcRegFilt5 = _mm_adds_epi16(srcRegFilt5,
        _mm_min_epi16(srcRegFilt4, srcRegFilt7));
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
        _mm_min_epi16(srcRegFilt6, srcRegFilt8));


        // add and saturate the results together
        srcRegFilt5 = _mm_adds_epi16(srcRegFilt5,
        _mm_max_epi16(srcRegFilt4, srcRegFilt7));
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
        _mm_max_epi16(srcRegFilt6, srcRegFilt8));
        srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, addFilterReg64);
        srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

        // shift by 7 bit each 16 bit
        srcRegFilt5 = _mm_srai_epi16(srcRegFilt5, 7);
        srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

        // shrink to 8 bit each 16 bits, the first lane contain the first
        // convolve result and the second lane contain the second convolve
        // result
        srcRegFilt1 = _mm_packus_epi16(srcRegFilt5, srcRegFilt1);

        src_ptr+=src_pitch;

        // save 16 bytes convolve result
        _mm_store_si128((__m128i*)output_ptr, srcRegFilt1);

        output_ptr+=out_pitch;
    }
}