ref: 2493e0f33270f81aed1c51053e937a37d8db6879
dir: /vp9/decoder/vp9_decodemv.c/
/* Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_decodeframe.h" #include "vp9/decoder/vp9_reader.h" static PREDICTION_MODE read_intra_mode(vp9_reader *r, const vp9_prob *p) { return (PREDICTION_MODE)vp9_read_tree(r, vp9_intra_mode_tree, p); } static PREDICTION_MODE read_intra_mode_y(VP9_COMMON *cm, vp9_reader *r, int size_group) { const PREDICTION_MODE y_mode = read_intra_mode(r, cm->fc.y_mode_prob[size_group]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.y_mode[size_group][y_mode]; return y_mode; } static PREDICTION_MODE read_intra_mode_uv(VP9_COMMON *cm, vp9_reader *r, PREDICTION_MODE y_mode) { const PREDICTION_MODE uv_mode = read_intra_mode(r, cm->fc.uv_mode_prob[y_mode]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.uv_mode[y_mode][uv_mode]; return uv_mode; } static PREDICTION_MODE read_inter_mode(VP9_COMMON *cm, vp9_reader *r, int ctx) { const int mode = vp9_read_tree(r, vp9_inter_mode_tree, cm->fc.inter_mode_probs[ctx]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.inter_mode[ctx][mode]; return NEARESTMV + mode; } static int read_segment_id(vp9_reader *r, const struct segmentation *seg) { return vp9_read_tree(r, vp9_segment_tree, seg->tree_probs); } static TX_SIZE read_selected_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd, TX_SIZE max_tx_size, vp9_reader *r) { const int ctx = vp9_get_tx_size_context(xd); const vp9_prob *tx_probs = get_tx_probs(max_tx_size, ctx, &cm->fc.tx_probs); int tx_size = vp9_read(r, tx_probs[0]); if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { tx_size += vp9_read(r, tx_probs[1]); if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) tx_size += vp9_read(r, tx_probs[2]); } if (!cm->frame_parallel_decoding_mode) ++get_tx_counts(max_tx_size, ctx, &cm->counts.tx)[tx_size]; return (TX_SIZE)tx_size; } static TX_SIZE read_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd, TX_MODE tx_mode, BLOCK_SIZE bsize, int allow_select, vp9_reader *r) { const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8) return read_selected_tx_size(cm, xd, max_tx_size, r); else return MIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]); } static void set_segment_id(VP9_COMMON *cm, BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) { const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int xmis = MIN(cm->mi_cols - mi_col, bw); const int ymis = MIN(cm->mi_rows - mi_row, bh); int x, y; assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) cm->last_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id; } static int read_intra_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, vp9_reader *r) { struct segmentation *const seg = &cm->seg; const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int segment_id; if (!seg->enabled) return 0; // Default for disabled segmentation if (!seg->update_map) return 0; segment_id = read_segment_id(r, seg); set_segment_id(cm, bsize, mi_row, mi_col, segment_id); return segment_id; } static int read_inter_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, vp9_reader *r) { struct segmentation *const seg = &cm->seg; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; int predicted_segment_id, segment_id; if (!seg->enabled) return 0; // Default for disabled segmentation predicted_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col); if (!seg->update_map) return predicted_segment_id; if (seg->temporal_update) { const vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); mbmi->seg_id_predicted = vp9_read(r, pred_prob); segment_id = mbmi->seg_id_predicted ? predicted_segment_id : read_segment_id(r, seg); } else { segment_id = read_segment_id(r, seg); } set_segment_id(cm, bsize, mi_row, mi_col, segment_id); return segment_id; } static int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd, int segment_id, vp9_reader *r) { if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int ctx = vp9_get_skip_context(xd); const int skip = vp9_read(r, cm->fc.skip_probs[ctx]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.skip[ctx][skip]; return skip; } } static void read_intra_frame_mode_info(VP9_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, vp9_reader *r) { MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; const MODE_INFO *above_mi = xd->mi[-cm->mi_stride]; const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1] : NULL; const BLOCK_SIZE bsize = mbmi->sb_type; int i; mbmi->segment_id = read_intra_segment_id(cm, xd, mi_row, mi_col, r); mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r); mbmi->tx_size = read_tx_size(cm, xd, cm->tx_mode, bsize, 1, r); mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE; switch (bsize) { case BLOCK_4X4: for (i = 0; i < 4; ++i) mi->bmi[i].as_mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, i)); mbmi->mode = mi->bmi[3].as_mode; break; case BLOCK_4X8: mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0)); mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 1)); break; case BLOCK_8X4: mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0)); mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 2)); break; default: mbmi->mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0)); } mbmi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mbmi->mode]); } static int read_mv_component(vp9_reader *r, const nmv_component *mvcomp, int usehp) { int mag, d, fr, hp; const int sign = vp9_read(r, mvcomp->sign); const int mv_class = vp9_read_tree(r, vp9_mv_class_tree, mvcomp->classes); const int class0 = mv_class == MV_CLASS_0; // Integer part if (class0) { d = vp9_read_tree(r, vp9_mv_class0_tree, mvcomp->class0); } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; for (i = 0; i < n; ++i) d |= vp9_read(r, mvcomp->bits[i]) << i; } // Fractional part fr = vp9_read_tree(r, vp9_mv_fp_tree, class0 ? mvcomp->class0_fp[d] : mvcomp->fp); // High precision part (if hp is not used, the default value of the hp is 1) hp = usehp ? vp9_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp) : 1; // Result mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1; return sign ? -mag : mag; } static INLINE void read_mv(vp9_reader *r, MV *mv, const MV *ref, const nmv_context *ctx, nmv_context_counts *counts, int allow_hp) { const MV_JOINT_TYPE joint_type = (MV_JOINT_TYPE)vp9_read_tree(r, vp9_mv_joint_tree, ctx->joints); const int use_hp = allow_hp && vp9_use_mv_hp(ref); MV diff = {0, 0}; if (mv_joint_vertical(joint_type)) diff.row = read_mv_component(r, &ctx->comps[0], use_hp); if (mv_joint_horizontal(joint_type)) diff.col = read_mv_component(r, &ctx->comps[1], use_hp); vp9_inc_mv(&diff, counts); mv->row = ref->row + diff.row; mv->col = ref->col + diff.col; } static REFERENCE_MODE read_block_reference_mode(VP9_COMMON *cm, const MACROBLOCKD *xd, vp9_reader *r) { if (cm->reference_mode == REFERENCE_MODE_SELECT) { const int ctx = vp9_get_reference_mode_context(cm, xd); const REFERENCE_MODE mode = (REFERENCE_MODE)vp9_read(r, cm->fc.comp_inter_prob[ctx]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.comp_inter[ctx][mode]; return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE } else { return cm->reference_mode; } } // Read the referncence frame static void read_ref_frames(VP9_COMMON *const cm, MACROBLOCKD *const xd, vp9_reader *r, int segment_id, MV_REFERENCE_FRAME ref_frame[2]) { FRAME_CONTEXT *const fc = &cm->fc; FRAME_COUNTS *const counts = &cm->counts; if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { ref_frame[0] = (MV_REFERENCE_FRAME)vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); ref_frame[1] = NONE; } else { const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r); // FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding if (mode == COMPOUND_REFERENCE) { const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd); const int bit = vp9_read(r, fc->comp_ref_prob[ctx]); if (!cm->frame_parallel_decoding_mode) ++counts->comp_ref[ctx][bit]; ref_frame[idx] = cm->comp_fixed_ref; ref_frame[!idx] = cm->comp_var_ref[bit]; } else if (mode == SINGLE_REFERENCE) { const int ctx0 = vp9_get_pred_context_single_ref_p1(xd); const int bit0 = vp9_read(r, fc->single_ref_prob[ctx0][0]); if (!cm->frame_parallel_decoding_mode) ++counts->single_ref[ctx0][0][bit0]; if (bit0) { const int ctx1 = vp9_get_pred_context_single_ref_p2(xd); const int bit1 = vp9_read(r, fc->single_ref_prob[ctx1][1]); if (!cm->frame_parallel_decoding_mode) ++counts->single_ref[ctx1][1][bit1]; ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME; } else { ref_frame[0] = LAST_FRAME; } ref_frame[1] = NONE; } else { assert(0 && "Invalid prediction mode."); } } } static INLINE INTERP_FILTER read_switchable_interp_filter( VP9_COMMON *const cm, MACROBLOCKD *const xd, vp9_reader *r) { const int ctx = vp9_get_pred_context_switchable_interp(xd); const INTERP_FILTER type = (INTERP_FILTER)vp9_read_tree(r, vp9_switchable_interp_tree, cm->fc.switchable_interp_prob[ctx]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.switchable_interp[ctx][type]; return type; } static void read_intra_block_mode_info(VP9_COMMON *const cm, MODE_INFO *mi, vp9_reader *r) { MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mi->mbmi.sb_type; int i; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE; switch (bsize) { case BLOCK_4X4: for (i = 0; i < 4; ++i) mi->bmi[i].as_mode = read_intra_mode_y(cm, r, 0); mbmi->mode = mi->bmi[3].as_mode; break; case BLOCK_4X8: mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode_y(cm, r, 0); mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode_y(cm, r, 0); break; case BLOCK_8X4: mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode_y(cm, r, 0); mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode_y(cm, r, 0); break; default: mbmi->mode = read_intra_mode_y(cm, r, size_group_lookup[bsize]); } mbmi->uv_mode = read_intra_mode_uv(cm, r, mbmi->mode); } static INLINE int is_mv_valid(const MV *mv) { return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW && mv->col < MV_UPP; } static INLINE int assign_mv(VP9_COMMON *cm, PREDICTION_MODE mode, int_mv mv[2], int_mv ref_mv[2], int_mv nearest_mv[2], int_mv near_mv[2], int is_compound, int allow_hp, vp9_reader *r) { int i; int ret = 1; switch (mode) { case NEWMV: { nmv_context_counts *const mv_counts = cm->frame_parallel_decoding_mode ? NULL : &cm->counts.mv; for (i = 0; i < 1 + is_compound; ++i) { read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc.nmvc, mv_counts, allow_hp); ret = ret && is_mv_valid(&mv[i].as_mv); } break; } case NEARESTMV: { mv[0].as_int = nearest_mv[0].as_int; if (is_compound) mv[1].as_int = nearest_mv[1].as_int; break; } case NEARMV: { mv[0].as_int = near_mv[0].as_int; if (is_compound) mv[1].as_int = near_mv[1].as_int; break; } case ZEROMV: { mv[0].as_int = 0; if (is_compound) mv[1].as_int = 0; break; } default: { return 0; } } return ret; } static int read_is_inter_block(VP9_COMMON *const cm, MACROBLOCKD *const xd, int segment_id, vp9_reader *r) { if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { return vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME; } else { const int ctx = vp9_get_intra_inter_context(xd); const int is_inter = vp9_read(r, cm->fc.intra_inter_prob[ctx]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.intra_inter[ctx][is_inter]; return is_inter; } } static void read_inter_block_mode_info(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, MODE_INFO *const mi, int mi_row, int mi_col, vp9_reader *r) { MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; const int allow_hp = cm->allow_high_precision_mv; int_mv nearestmv[2], nearmv[2]; int inter_mode_ctx, ref, is_compound; read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame); is_compound = has_second_ref(mbmi); for (ref = 0; ref < 1 + is_compound; ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; vp9_find_mv_refs(cm, xd, tile, mi, frame, mbmi->ref_mvs[frame], mi_row, mi_col); } inter_mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]]; if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { mbmi->mode = ZEROMV; if (bsize < BLOCK_8X8) { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid usage of segement feature on small blocks"); return; } } else { if (bsize >= BLOCK_8X8) mbmi->mode = read_inter_mode(cm, r, inter_mode_ctx); } if (bsize < BLOCK_8X8 || mbmi->mode != ZEROMV) { for (ref = 0; ref < 1 + is_compound; ++ref) { vp9_find_best_ref_mvs(xd, allow_hp, mbmi->ref_mvs[mbmi->ref_frame[ref]], &nearestmv[ref], &nearmv[ref]); } } mbmi->interp_filter = (cm->interp_filter == SWITCHABLE) ? read_switchable_interp_filter(cm, xd, r) : cm->interp_filter; if (bsize < BLOCK_8X8) { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2 int idx, idy; PREDICTION_MODE b_mode; int_mv nearest_sub8x8[2], near_sub8x8[2]; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { int_mv block[2]; const int j = idy * 2 + idx; b_mode = read_inter_mode(cm, r, inter_mode_ctx); if (b_mode == NEARESTMV || b_mode == NEARMV) for (ref = 0; ref < 1 + is_compound; ++ref) vp9_append_sub8x8_mvs_for_idx(cm, xd, tile, j, ref, mi_row, mi_col, &nearest_sub8x8[ref], &near_sub8x8[ref]); if (!assign_mv(cm, b_mode, block, nearestmv, nearest_sub8x8, near_sub8x8, is_compound, allow_hp, r)) { xd->corrupted |= 1; break; }; mi->bmi[j].as_mv[0].as_int = block[0].as_int; if (is_compound) mi->bmi[j].as_mv[1].as_int = block[1].as_int; if (num_4x4_h == 2) mi->bmi[j + 2] = mi->bmi[j]; if (num_4x4_w == 2) mi->bmi[j + 1] = mi->bmi[j]; } } mi->mbmi.mode = b_mode; mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } else { xd->corrupted |= !assign_mv(cm, mbmi->mode, mbmi->mv, nearestmv, nearestmv, nearmv, is_compound, allow_hp, r); } } static void read_inter_frame_mode_info(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int mi_row, int mi_col, vp9_reader *r) { MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; int inter_block; mbmi->mv[0].as_int = 0; mbmi->mv[1].as_int = 0; mbmi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, r); mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r); inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r); mbmi->tx_size = read_tx_size(cm, xd, cm->tx_mode, mbmi->sb_type, !mbmi->skip || !inter_block, r); if (inter_block) read_inter_block_mode_info(cm, xd, tile, mi, mi_row, mi_col, r); else read_intra_block_mode_info(cm, mi, r); } void vp9_read_mode_info(VP9_COMMON *cm, MACROBLOCKD *xd, const TileInfo *const tile, int mi_row, int mi_col, vp9_reader *r) { if (frame_is_intra_only(cm)) read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r); else read_inter_frame_mode_info(cm, xd, tile, mi_row, mi_col, r); }