ref: 2d6393a98d5089d52cea3353e3a9e0b52a28c3f5
dir: /vp9/encoder/vp9_svc_layercontext.c/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include "vp9/encoder/vp9_aq_cyclicrefresh.h" #include "vp9/encoder/vp9_encoder.h" #include "vp9/encoder/vp9_svc_layercontext.h" #include "vp9/encoder/vp9_extend.h" #include "vpx_dsp/vpx_dsp_common.h" #define SMALL_FRAME_WIDTH 32 #define SMALL_FRAME_HEIGHT 16 void vp9_init_layer_context(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; int mi_rows = cpi->common.mi_rows; int mi_cols = cpi->common.mi_cols; int sl, tl, i; int alt_ref_idx = svc->number_spatial_layers; svc->spatial_layer_id = 0; svc->temporal_layer_id = 0; svc->first_spatial_layer_to_encode = 0; svc->rc_drop_superframe = 0; svc->force_zero_mode_spatial_ref = 0; svc->use_base_mv = 0; svc->current_superframe = 0; for (i = 0; i < REF_FRAMES; ++i) svc->ref_frame_index[i] = -1; for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { cpi->svc.ext_frame_flags[sl] = 0; cpi->svc.ext_lst_fb_idx[sl] = 0; cpi->svc.ext_gld_fb_idx[sl] = 1; cpi->svc.ext_alt_fb_idx[sl] = 2; } if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2) { if (vpx_realloc_frame_buffer(&cpi->svc.empty_frame.img, SMALL_FRAME_WIDTH, SMALL_FRAME_HEIGHT, cpi->common.subsampling_x, cpi->common.subsampling_y, #if CONFIG_VP9_HIGHBITDEPTH cpi->common.use_highbitdepth, #endif VP9_ENC_BORDER_IN_PIXELS, cpi->common.byte_alignment, NULL, NULL, NULL)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate empty frame for multiple frame " "contexts"); memset(cpi->svc.empty_frame.img.buffer_alloc, 0x80, cpi->svc.empty_frame.img.buffer_alloc_sz); } for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers); LAYER_CONTEXT *const lc = &svc->layer_context[layer]; RATE_CONTROL *const lrc = &lc->rc; int i; lc->current_video_frame_in_layer = 0; lc->layer_size = 0; lc->frames_from_key_frame = 0; lc->last_frame_type = FRAME_TYPES; lrc->ni_av_qi = oxcf->worst_allowed_q; lrc->total_actual_bits = 0; lrc->total_target_vs_actual = 0; lrc->ni_tot_qi = 0; lrc->tot_q = 0.0; lrc->avg_q = 0.0; lrc->ni_frames = 0; lrc->decimation_count = 0; lrc->decimation_factor = 0; for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { lrc->rate_correction_factors[i] = 1.0; } if (cpi->oxcf.rc_mode == VPX_CBR) { lc->target_bandwidth = oxcf->layer_target_bitrate[layer]; lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; lrc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; } else { lc->target_bandwidth = oxcf->layer_target_bitrate[layer]; lrc->last_q[KEY_FRAME] = oxcf->best_allowed_q; lrc->last_q[INTER_FRAME] = oxcf->best_allowed_q; lrc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; lrc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; if (oxcf->ss_enable_auto_arf[sl]) lc->alt_ref_idx = alt_ref_idx++; else lc->alt_ref_idx = INVALID_IDX; lc->gold_ref_idx = INVALID_IDX; } lrc->buffer_level = oxcf->starting_buffer_level_ms * lc->target_bandwidth / 1000; lrc->bits_off_target = lrc->buffer_level; // Initialize the cyclic refresh parameters. If spatial layers are used // (i.e., ss_number_layers > 1), these need to be updated per spatial // layer. // Cyclic refresh is only applied on base temporal layer. if (oxcf->ss_number_layers > 1 && tl == 0) { size_t last_coded_q_map_size; size_t consec_zero_mv_size; lc->sb_index = 0; lc->map = vpx_malloc(mi_rows * mi_cols * sizeof(signed char)); memset(lc->map, 0, mi_rows * mi_cols); last_coded_q_map_size = mi_rows * mi_cols * sizeof(uint8_t); lc->last_coded_q_map = vpx_malloc(last_coded_q_map_size); assert(MAXQ <= 255); memset(lc->last_coded_q_map, MAXQ, last_coded_q_map_size); consec_zero_mv_size = mi_rows * mi_cols * sizeof(uint8_t); lc->consec_zero_mv = vpx_malloc(consec_zero_mv_size); memset(lc->consec_zero_mv, 0, consec_zero_mv_size); } } } // Still have extra buffer for base layer golden frame if (!(svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) && alt_ref_idx < REF_FRAMES) svc->layer_context[0].gold_ref_idx = alt_ref_idx; } // Update the layer context from a change_config() call. void vp9_update_layer_context_change_config(VP9_COMP *const cpi, const int target_bandwidth) { SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; const RATE_CONTROL *const rc = &cpi->rc; int sl, tl, layer = 0, spatial_layer_target; float bitrate_alloc = 1.0; if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) { for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers); svc->layer_context[layer].target_bandwidth = oxcf->layer_target_bitrate[layer]; } layer = LAYER_IDS_TO_IDX(sl, ((oxcf->ts_number_layers - 1) < 0 ? 0 : (oxcf->ts_number_layers - 1)), oxcf->ts_number_layers); spatial_layer_target = svc->layer_context[layer].target_bandwidth = oxcf->layer_target_bitrate[layer]; for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { LAYER_CONTEXT *const lc = &svc->layer_context[sl * oxcf->ts_number_layers + tl]; RATE_CONTROL *const lrc = &lc->rc; lc->spatial_layer_target_bandwidth = spatial_layer_target; bitrate_alloc = (float)lc->target_bandwidth / spatial_layer_target; lrc->starting_buffer_level = (int64_t)(rc->starting_buffer_level * bitrate_alloc); lrc->optimal_buffer_level = (int64_t)(rc->optimal_buffer_level * bitrate_alloc); lrc->maximum_buffer_size = (int64_t)(rc->maximum_buffer_size * bitrate_alloc); lrc->bits_off_target = VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size); lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size); lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl]; lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = rc->max_frame_bandwidth; lrc->worst_quality = rc->worst_quality; lrc->best_quality = rc->best_quality; } } } else { int layer_end; if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) { layer_end = svc->number_temporal_layers; } else { layer_end = svc->number_spatial_layers; } for (layer = 0; layer < layer_end; ++layer) { LAYER_CONTEXT *const lc = &svc->layer_context[layer]; RATE_CONTROL *const lrc = &lc->rc; lc->target_bandwidth = oxcf->layer_target_bitrate[layer]; bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth; // Update buffer-related quantities. lrc->starting_buffer_level = (int64_t)(rc->starting_buffer_level * bitrate_alloc); lrc->optimal_buffer_level = (int64_t)(rc->optimal_buffer_level * bitrate_alloc); lrc->maximum_buffer_size = (int64_t)(rc->maximum_buffer_size * bitrate_alloc); lrc->bits_off_target = VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size); lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size); // Update framerate-related quantities. if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) { lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[layer]; } else { lc->framerate = cpi->framerate; } lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = rc->max_frame_bandwidth; // Update qp-related quantities. lrc->worst_quality = rc->worst_quality; lrc->best_quality = rc->best_quality; } } } static LAYER_CONTEXT *get_layer_context(VP9_COMP *const cpi) { if (is_one_pass_cbr_svc(cpi)) return &cpi->svc.layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers + cpi->svc.temporal_layer_id]; else return (cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) ? &cpi->svc.layer_context[cpi->svc.temporal_layer_id] : &cpi->svc.layer_context[cpi->svc.spatial_layer_id]; } void vp9_update_temporal_layer_framerate(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = get_layer_context(cpi); RATE_CONTROL *const lrc = &lc->rc; // Index into spatial+temporal arrays. const int st_idx = svc->spatial_layer_id * svc->number_temporal_layers + svc->temporal_layer_id; const int tl = svc->temporal_layer_id; lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl]; lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth; // Update the average layer frame size (non-cumulative per-frame-bw). if (tl == 0) { lc->avg_frame_size = lrc->avg_frame_bandwidth; } else { const double prev_layer_framerate = cpi->framerate / oxcf->ts_rate_decimator[tl - 1]; const int prev_layer_target_bandwidth = oxcf->layer_target_bitrate[st_idx - 1]; lc->avg_frame_size = (int)((lc->target_bandwidth - prev_layer_target_bandwidth) / (lc->framerate - prev_layer_framerate)); } } void vp9_update_spatial_layer_framerate(VP9_COMP *const cpi, double framerate) { const VP9EncoderConfig *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = get_layer_context(cpi); RATE_CONTROL *const lrc = &lc->rc; lc->framerate = framerate; lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->min_frame_bandwidth = (int)(lrc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100); lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) / 100); vp9_rc_set_gf_interval_range(cpi, lrc); } void vp9_restore_layer_context(VP9_COMP *const cpi) { LAYER_CONTEXT *const lc = get_layer_context(cpi); const int old_frame_since_key = cpi->rc.frames_since_key; const int old_frame_to_key = cpi->rc.frames_to_key; cpi->rc = lc->rc; cpi->twopass = lc->twopass; cpi->oxcf.target_bandwidth = lc->target_bandwidth; cpi->alt_ref_source = lc->alt_ref_source; // Reset the frames_since_key and frames_to_key counters to their values // before the layer restore. Keep these defined for the stream (not layer). if (cpi->svc.number_temporal_layers > 1 || (cpi->svc.number_spatial_layers > 1 && !is_two_pass_svc(cpi))) { cpi->rc.frames_since_key = old_frame_since_key; cpi->rc.frames_to_key = old_frame_to_key; } // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, // for the base temporal layer. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->svc.number_spatial_layers > 1 && cpi->svc.temporal_layer_id == 0) { CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; signed char *temp = cr->map; uint8_t *temp2 = cr->last_coded_q_map; uint8_t *temp3 = cr->consec_zero_mv; cr->map = lc->map; lc->map = temp; cr->last_coded_q_map = lc->last_coded_q_map; lc->last_coded_q_map = temp2; cr->consec_zero_mv = lc->consec_zero_mv; lc->consec_zero_mv = temp3; cr->sb_index = lc->sb_index; } } void vp9_save_layer_context(VP9_COMP *const cpi) { const VP9EncoderConfig *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = get_layer_context(cpi); lc->rc = cpi->rc; lc->twopass = cpi->twopass; lc->target_bandwidth = (int)oxcf->target_bandwidth; lc->alt_ref_source = cpi->alt_ref_source; // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, // for the base temporal layer. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->svc.number_spatial_layers > 1 && cpi->svc.temporal_layer_id == 0) { CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; signed char *temp = lc->map; uint8_t *temp2 = lc->last_coded_q_map; uint8_t *temp3 = lc->consec_zero_mv; lc->map = cr->map; cr->map = temp; lc->last_coded_q_map = cr->last_coded_q_map; cr->last_coded_q_map = temp2; lc->consec_zero_mv = cr->consec_zero_mv; cr->consec_zero_mv = temp3; lc->sb_index = cr->sb_index; } } void vp9_init_second_pass_spatial_svc(VP9_COMP *cpi) { SVC *const svc = &cpi->svc; int i; for (i = 0; i < svc->number_spatial_layers; ++i) { TWO_PASS *const twopass = &svc->layer_context[i].twopass; svc->spatial_layer_id = i; vp9_init_second_pass(cpi); twopass->total_stats.spatial_layer_id = i; twopass->total_left_stats.spatial_layer_id = i; } svc->spatial_layer_id = 0; } void vp9_inc_frame_in_layer(VP9_COMP *const cpi) { LAYER_CONTEXT *const lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers]; ++lc->current_video_frame_in_layer; ++lc->frames_from_key_frame; if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) ++cpi->svc.current_superframe; } int vp9_is_upper_layer_key_frame(const VP9_COMP *const cpi) { return is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0 && cpi->svc.layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers + cpi->svc.temporal_layer_id].is_key_frame; } static void get_layer_resolution(const int width_org, const int height_org, const int num, const int den, int *width_out, int *height_out) { int w, h; if (width_out == NULL || height_out == NULL || den == 0) return; w = width_org * num / den; h = height_org * num / den; // make height and width even to make chrome player happy w += w % 2; h += h % 2; *width_out = w; *height_out = h; } // The function sets proper ref_frame_flags, buffer indices, and buffer update // variables for temporal layering mode 3 - that does 0-2-1-2 temporal layering // scheme. static void set_flags_and_fb_idx_for_temporal_mode3(VP9_COMP *const cpi) { int frame_num_within_temporal_struct = 0; int spatial_id, temporal_id; spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; frame_num_within_temporal_struct = cpi->svc.layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers].current_video_frame_in_layer % 4; temporal_id = cpi->svc.temporal_layer_id = (frame_num_within_temporal_struct & 1) ? 2 : (frame_num_within_temporal_struct >> 1); cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame = cpi->ext_refresh_alt_ref_frame = 0; if (!temporal_id) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_last_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else if (cpi->svc.layer_context[temporal_id].is_key_frame) { // base layer is a key frame. cpi->ref_frame_flags = VP9_LAST_FLAG; cpi->ext_refresh_last_frame = 0; cpi->ext_refresh_golden_frame = 1; } else { cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } else if (temporal_id == 1) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_alt_ref_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else { cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } else { if (frame_num_within_temporal_struct == 1) { // the first tl2 picture if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer cpi->ext_refresh_frame_flags_pending = 1; if (!spatial_id) cpi->ref_frame_flags = VP9_LAST_FLAG; else cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } else if (!spatial_id) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_alt_ref_frame = 1; cpi->ref_frame_flags = VP9_LAST_FLAG; } else if (spatial_id < cpi->svc.number_spatial_layers - 1) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_alt_ref_frame = 1; cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } else { // The second tl2 picture if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer cpi->ext_refresh_frame_flags_pending = 1; if (!spatial_id) cpi->ref_frame_flags = VP9_LAST_FLAG; else cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } else if (!spatial_id) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ref_frame_flags = VP9_LAST_FLAG; cpi->ext_refresh_alt_ref_frame = 1; } else { // top layer cpi->ext_refresh_frame_flags_pending = 1; cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; cpi->ext_refresh_alt_ref_frame = 1; } } } if (temporal_id == 0) { cpi->lst_fb_idx = spatial_id; if (spatial_id) { if (cpi->svc.layer_context[temporal_id].is_key_frame) { cpi->lst_fb_idx = spatial_id - 1; cpi->gld_fb_idx = spatial_id; } else { cpi->gld_fb_idx = spatial_id - 1; } } else { cpi->gld_fb_idx = 0; } cpi->alt_fb_idx = 0; } else if (temporal_id == 1) { cpi->lst_fb_idx = spatial_id; cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; } else if (frame_num_within_temporal_struct == 1) { cpi->lst_fb_idx = spatial_id; cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; } else { cpi->lst_fb_idx = cpi->svc.number_spatial_layers + spatial_id; cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; } } // The function sets proper ref_frame_flags, buffer indices, and buffer update // variables for temporal layering mode 2 - that does 0-1-0-1 temporal layering // scheme. static void set_flags_and_fb_idx_for_temporal_mode2(VP9_COMP *const cpi) { int spatial_id, temporal_id; spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; temporal_id = cpi->svc.temporal_layer_id = cpi->svc.layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers].current_video_frame_in_layer & 1; cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame = cpi->ext_refresh_alt_ref_frame = 0; if (!temporal_id) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_last_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else if (cpi->svc.layer_context[temporal_id].is_key_frame) { // base layer is a key frame. cpi->ref_frame_flags = VP9_LAST_FLAG; cpi->ext_refresh_last_frame = 0; cpi->ext_refresh_golden_frame = 1; } else { cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } else if (temporal_id == 1) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_alt_ref_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else { cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } if (temporal_id == 0) { cpi->lst_fb_idx = spatial_id; if (spatial_id) { if (cpi->svc.layer_context[temporal_id].is_key_frame) { cpi->lst_fb_idx = spatial_id - 1; cpi->gld_fb_idx = spatial_id; } else { cpi->gld_fb_idx = spatial_id - 1; } } else { cpi->gld_fb_idx = 0; } cpi->alt_fb_idx = 0; } else if (temporal_id == 1) { cpi->lst_fb_idx = spatial_id; cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; } } // The function sets proper ref_frame_flags, buffer indices, and buffer update // variables for temporal layering mode 0 - that has no temporal layering. static void set_flags_and_fb_idx_for_temporal_mode_noLayering( VP9_COMP *const cpi) { int spatial_id; spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame = cpi->ext_refresh_alt_ref_frame = 0; cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_last_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else if (cpi->svc.layer_context[0].is_key_frame) { cpi->ref_frame_flags = VP9_LAST_FLAG; cpi->ext_refresh_last_frame = 0; cpi->ext_refresh_golden_frame = 1; } else { cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } cpi->lst_fb_idx = spatial_id; if (spatial_id) { if (cpi->svc.layer_context[0].is_key_frame) { cpi->lst_fb_idx = spatial_id - 1; cpi->gld_fb_idx = spatial_id; } else { cpi->gld_fb_idx = spatial_id - 1; } } else { cpi->gld_fb_idx = 0; } } int vp9_one_pass_cbr_svc_start_layer(VP9_COMP *const cpi) { int width = 0, height = 0; LAYER_CONTEXT *lc = NULL; if (cpi->svc.number_spatial_layers > 1) cpi->svc.use_base_mv = 1; cpi->svc.force_zero_mode_spatial_ref = 1; if (cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) { set_flags_and_fb_idx_for_temporal_mode3(cpi); } else if (cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) { set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi); } else if (cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0101) { set_flags_and_fb_idx_for_temporal_mode2(cpi); } else if (cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { // In the BYPASS/flexible mode, the encoder is relying on the application // to specify, for each spatial layer, the flags and buffer indices for the // layering. // Note that the check (cpi->ext_refresh_frame_flags_pending == 0) is // needed to support the case where the frame flags may be passed in via // vpx_codec_encode(), which can be used for the temporal-only svc case. // TODO(marpan): Consider adding an enc_config parameter to better handle // this case. if (cpi->ext_refresh_frame_flags_pending == 0) { int sl; cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; sl = cpi->svc.spatial_layer_id; vp9_apply_encoding_flags(cpi, cpi->svc.ext_frame_flags[sl]); cpi->lst_fb_idx = cpi->svc.ext_lst_fb_idx[sl]; cpi->gld_fb_idx = cpi->svc.ext_gld_fb_idx[sl]; cpi->alt_fb_idx = cpi->svc.ext_alt_fb_idx[sl]; } } if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode) cpi->svc.rc_drop_superframe = 0; lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers + cpi->svc.temporal_layer_id]; // Setting the worst/best_quality via the encoder control: SET_SVC_PARAMETERS, // only for non-BYPASS mode for now. if (cpi->svc.temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { RATE_CONTROL *const lrc = &lc->rc; lrc->worst_quality = vp9_quantizer_to_qindex(lc->max_q); lrc->best_quality = vp9_quantizer_to_qindex(lc->min_q); } get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height, lc->scaling_factor_num, lc->scaling_factor_den, &width, &height); if (vp9_set_size_literal(cpi, width, height) != 0) return VPX_CODEC_INVALID_PARAM; return 0; } #if CONFIG_SPATIAL_SVC #define SMALL_FRAME_FB_IDX 7 int vp9_svc_start_frame(VP9_COMP *const cpi) { int width = 0, height = 0; LAYER_CONTEXT *lc; struct lookahead_entry *buf; int count = 1 << (cpi->svc.number_temporal_layers - 1); cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id]; cpi->svc.temporal_layer_id = 0; while ((lc->current_video_frame_in_layer % count) != 0) { ++cpi->svc.temporal_layer_id; count >>= 1; } cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; cpi->lst_fb_idx = cpi->svc.spatial_layer_id; if (cpi->svc.spatial_layer_id == 0) cpi->gld_fb_idx = (lc->gold_ref_idx >= 0) ? lc->gold_ref_idx : cpi->lst_fb_idx; else cpi->gld_fb_idx = cpi->svc.spatial_layer_id - 1; if (lc->current_video_frame_in_layer == 0) { if (cpi->svc.spatial_layer_id >= 2) { cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2; } else { cpi->alt_fb_idx = cpi->lst_fb_idx; cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_ALT_FLAG); } } else { if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id]) { cpi->alt_fb_idx = lc->alt_ref_idx; if (!lc->has_alt_frame) cpi->ref_frame_flags &= (~VP9_ALT_FLAG); } else { // Find a proper alt_fb_idx for layers that don't have alt ref frame if (cpi->svc.spatial_layer_id == 0) { cpi->alt_fb_idx = cpi->lst_fb_idx; } else { LAYER_CONTEXT *lc_lower = &cpi->svc.layer_context[cpi->svc.spatial_layer_id - 1]; if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id - 1] && lc_lower->alt_ref_source != NULL) cpi->alt_fb_idx = lc_lower->alt_ref_idx; else if (cpi->svc.spatial_layer_id >= 2) cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2; else cpi->alt_fb_idx = cpi->lst_fb_idx; } } } get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height, lc->scaling_factor_num, lc->scaling_factor_den, &width, &height); // Workaround for multiple frame contexts. In some frames we can't use prev_mi // since its previous frame could be changed during decoding time. The idea is // we put a empty invisible frame in front of them, then we will not use // prev_mi when encoding these frames. buf = vp9_lookahead_peek(cpi->lookahead, 0); if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2 && cpi->svc.encode_empty_frame_state == NEED_TO_ENCODE && lc->rc.frames_to_key != 0 && !(buf != NULL && (buf->flags & VPX_EFLAG_FORCE_KF))) { if ((cpi->svc.number_temporal_layers > 1 && cpi->svc.temporal_layer_id < cpi->svc.number_temporal_layers - 1) || (cpi->svc.number_spatial_layers > 1 && cpi->svc.spatial_layer_id == 0)) { struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead, 0); if (buf != NULL) { cpi->svc.empty_frame.ts_start = buf->ts_start; cpi->svc.empty_frame.ts_end = buf->ts_end; cpi->svc.encode_empty_frame_state = ENCODING; cpi->common.show_frame = 0; cpi->ref_frame_flags = 0; cpi->common.frame_type = INTER_FRAME; cpi->lst_fb_idx = cpi->gld_fb_idx = cpi->alt_fb_idx = SMALL_FRAME_FB_IDX; if (cpi->svc.encode_intra_empty_frame != 0) cpi->common.intra_only = 1; width = SMALL_FRAME_WIDTH; height = SMALL_FRAME_HEIGHT; } } } cpi->oxcf.worst_allowed_q = vp9_quantizer_to_qindex(lc->max_q); cpi->oxcf.best_allowed_q = vp9_quantizer_to_qindex(lc->min_q); vp9_change_config(cpi, &cpi->oxcf); if (vp9_set_size_literal(cpi, width, height) != 0) return VPX_CODEC_INVALID_PARAM; vp9_set_high_precision_mv(cpi, 1); cpi->alt_ref_source = get_layer_context(cpi)->alt_ref_source; return 0; } #undef SMALL_FRAME_FB_IDX #endif // CONFIG_SPATIAL_SVC struct lookahead_entry *vp9_svc_lookahead_pop(VP9_COMP *const cpi, struct lookahead_ctx *ctx, int drain) { struct lookahead_entry *buf = NULL; if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) { buf = vp9_lookahead_peek(ctx, 0); if (buf != NULL) { // Only remove the buffer when pop the highest layer. if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { vp9_lookahead_pop(ctx, drain); } } } return buf; } void vp9_free_svc_cyclic_refresh(VP9_COMP *const cpi) { int sl, tl; SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers); LAYER_CONTEXT *const lc = &svc->layer_context[layer]; if (lc->map) vpx_free(lc->map); if (lc->last_coded_q_map) vpx_free(lc->last_coded_q_map); if (lc->consec_zero_mv) vpx_free(lc->consec_zero_mv); } } }